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Abstract

Unmanned vehicles are autonomous robotic systems that are fully or partially controlled by an operator
remotely from a station. In the last 2 decades, massive amount of advancements have been observed regarding
unmanned vehicles for both military and civilian purposes. Today majority of these vehicles require human
guidance even for basic missions, thus, minimizing the human intervention on such systems is one of the
emerging research topics. To serve this purpose, this study proposes a new trajectory tracking algorithm
usingMirage pose estimation method. Mirage employs target pixel errors in 2D image plane and analytically
calculates the robot’s pose in 3D Euclidean space. Therefore, complex computations are not needed and
undesirable Euclidean trajectories are avoided since the vehicle pose is directly controlled. We performed
both simulations and real experiments to verify the effectiveness of our method. The results show that the
proposed method is a feasible alternative for vision-based Euclidean trajectory tracking with high accuracy
and low complexity.

Keywords: Trajectory tracking, Vision-based control, Mirage pose estimation, O(n) time complexity

1. Introduction

Target tracking, recognition of the environment, obstacle avoidance, and trajectory following have been
investigated for autonomous systems for over two decades. Various types of sensors are installed on robotic
or autonomous systems such as robotic arms, unmanned (ground, aerial, and underwater) vehicles, and
space exploration robots or rovers. While using these sensors may increase reliability, possible failures and
limitations necessitate robust and versatile methods. One of the major challenges for autonomous vehicles
is trajectory tracking problem that is normally solved by GPS (Global Positioning System) technology [1].
However, using GPS is not a feasible solution when the signal is weak, jammed, or lost. Also, accuracy
of pose measurement using GPS is not satisfactory for missions requiring high precision. In such cases,
vision-based methods are good alternatives with high precision and robustness [2]. In vision-based trajectory
tracking, an unmanned vehicle is expected to follow a trajectory by getting visual feedback from camera(s).
The vehicle reconstructs its position/velocity and angle/rotation rates with respect to a reference (target)
object at any instant of time during the motion.

The studies regarding vision-based trajectory tracking problem can be classified with respect to camera
placement and pose error computation [3]. There are three types of camera placement approaches: 1)
eye-to-hand: the camera is placed on a fixed position [4], 2) eye-in-hand: the camera is mounted on the
moving vehicle [5], and 3) hybrid systems: these support both mechanisms [6]. Another categorization is
made regarding the method of pose error measurement [7]. In the first group of studies, the vehicle is
guided such that pixel errors in 2D image space vanish (image based visual servoing). In that approach,
visual features (edges [8] or corners [9]) on the image are employed with corresponding interaction matrix
to determine new linear and angular velocity of the vehicle [10]. These methods are free from camera
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calibration and usually considered to be robust, however, 3D motion of the vehicle cannot be controlled
directly, because the Euclidean pose of the vehicle is not calculated. Marchand et al. [11] proposed virtual
visual servoing framework that adopted an alternative image based (2D visual servoing) approach for real
time augmented reality applications. In 2007, Mariottini et al. [12] proposed an image-based control method
for non-holonomic mobile robots. Their algorithm was established based on epipolar geometry calculations
using current and desired camera views. In 2008 Choi et al. [13] presented another image-based tracking
system based on Kande-Lucas-Tomasi (KLT) tracker. Their method runs under the assumption of known
3D geometric model with SIFT description of an object. A recent study in 2014 [14] employs homography
decomposition to formulate the kinematic model of the mobile robot after determining the fixed depth
parameter. The method was tested on simulated experiments and promising results have been received.

The second group of methods minimize the pose error in 3D Euclidean space by using actual 3D pose
of the vehicle (position based visual servoing) [15]. This procedure often requires a pose estimation method
that calculates the vehicle pose in 3D space using visual features. Beavidez et al. [16] proposed a tracking
system by utilizing MS Kinect RGB-D camera, which simplifies the pose measurement problem since a direct
depth measurement is possible. A fuzzy logic controller is used to control the robot. Elqursh et al. [17]
investigated the robot pose estimation by using 2 parallel lines and 1 more line orthogonal to the others in
the image. Estimated pose is employed to control the mobile robot. However, pose estimation part usually
involves complex calculations or numerical (iterative) solutions, which reduces the preferability of the method
[18]. Even though there exist O(n) time solutions such as [19], [20], our previous experiments show that the
robustness is still a challenging problem to solve.

In this study, we propose a novel trajectory tracking algorithm for mobile robots using Mirage pose
estimation method, which has linear time complexity and analytically calculates the Euclidean pose of the
vehicle in real time. The foundation of the Mirage pose estimation is presented in [21], where we used 2
identical cameras and 1 target to calculate the pose errors on a grid surface. However, it is not limited to
these conditions and it allows one or more cameras. It can be integrated as an independent module that
replaces navigational sensors in unmanned aerial vehicles as well as underwater or ground vehicles. In our
tracking system, the vehicle is able to track its trajectory using only 2 information. The first one is the
target image(s) that are captured by the individually calibrated camera(s) mounted on the vehicle. And
the second one is the desired pose of the vehicle for that time instant. No explicit 3D pose measurement or
depth-analysis (stereo-vision structure) is required to calculate vehicle pose as long as the target points are
in the field of view. Our solution can be categorized as an eye-in-hand position based tracking method since
the vehicle is controlled in 3D space and a pose estimation technique is employed. The major advantage of
our system is that it computes the 3D pose error directly without computing actual 3D pose by reducing the
error on 2D image plan using linear calculations and feeding the pose error directly to the controller. The
contributions of this paper may be summarized as follows: Our solution

• employs Mirage pose estimation, which is robust and fast compared to the other state-of-art methods,

• performs 6 DOF (degrees of freedom) motion in Euclidean space,

• only needs analytical computations, so it has approximately the same computational economy as that
of image based systems, while lacks the problem of undesirable Euclidean trajectories.

• needs only single vision to operate, but supports multi-camera systems without using stereo-vision,
and

• is platform independent.

In the following sections of the paper, we adopt the following notation. Scalars are denoted by non-bold
italic letters. Vectors are noted by lowercase bold letters (e.g., m, n, o). And matrices are represented by
uppercase bold letters (e.g., M, K, V).

2. Background: Mirage Pose Error Estimation

Mirage analytically solves 6 pose parameters in O(n) time with multi-camera support. It assumes the
availability of a basic 3D object model and calculates the pose parameters by minimizing the 2D projection
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error between the actual and desired image pixel coordinates and returns relative pose of the camera with
respect to the object. The relative pose can be fed into the controller to determine next linear and angular
velocities. Moreover, Mirage is designed to support multiple cameras without significant overhead while
improving its reliability as the field-of-view is extended. We start explaining our method for single-camera
systems and later, we show the generalization for multi-camera systems.

Figure 1 is an informative illustration of a sample scenario showing world, vehicle, camera spaces, and
target object in the scene. The process starts by a user defining the desired pose of the vehicle at any given
time (qd = [xd, yd, zd, θd, φd, ψd]), which represents the desired trajectory of the vehicle. In Fig. 1, the
vehicle is shown at its desired pose by dashed lines. Suppose that the real vehicle is not at its desired pose.
The pose of the real vehicle is called the actual pose is denoted by q = [x, y, z, θ, φ, ψ]. In Fig. 1, the actual
pose is shown by solid lines. There exists a 4× 4 transformation that transforms the vehicle’s local frame at
its actual pose (XB , YB , ZB) to its local frame at its desired pose XBd, YBd, ZBd. This matrix is denoted by
T̃B
Bd = [RB

Bd|tbBd]. Mirage’s aim is to calculate this transformation matrix. Once this transformation matrix
is known, the pose error between the actual and the desired vehicle pose (q̃) will be calculated.
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Figure 1: Sample Scene for Mirage. q and rB are actual positions of the vehicle and target object. Similarly, qd and rBd

represent desired coordinates of the vehicle and object points, respectively. Mirage calculates the relative pose of the vehicle
(T̃B

Bd) with respect to its desired position. The desired position qd, is defined by the user beforehand, and actual position of
the vehicle q, can be calculated. I, B, and C represent world, vehicle, and camera spaces, respectively.

When the vehicle is at its desired pose, it has an image of the target in its camera(s). This image is
called the desired image, and pixel coordinates of the target’s feature points in this desired image are called
the desired 2D points. When the vehicle is not at its desired pose (i.e. it is at its actual pose), the camera(s)
see an image different than the desired image. The pixel coordinates of the target’s feature points this image
are called the actual 2D points.

Our calculations are based on the 2D pixel differences between desired and actual 2D points. Let rB =
[rB1 rB2 rB3 1]T be a 3D point in the actual vehicle space and rBd be the corresponding point in desired vehicle
space, where rB = T̃B

Bdr
Bd is satisfied. Even though rBd is available, rB is unknown, therefore, our goal is

to calculate T̃B
Bd matrix using actual 2D image pixels that have a relation with rB . Let pC be a 3D point

in camera space and MC be a 4× 4 transformation matrix satisfying following equation,

pC = MCrB (1)
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where MC = [m1 m2 m3 1]T . MC is a composite matrix of two different transformation matrices such that,

MC = KCTC
B (2)

where KC and TC
B are matrices of extrinsic and intrinsic camera parameters, respectively. KC projects the

point from camera space into image plane coordinates and the parameters of KC (focal length, principle
points and distortion parameters) are available a priori via camera calibration. Using the similar idea in Eq.
(1), the point in the desired camera space can be calculated by pCd = MCrBd. The 3D pose error of the
vehicle depends on the actual and desired points. Normally, a simple subtraction operation pC −pCd would
be performed, however, subtraction is not closed under 3D camera space. Instead, the error can be derived
as

p̃C =

 p̃C1
p̃C2
p̃C3

 =

 pCd3 pC1 − pCd1 pC3
pCd3 pC2 − pCd2 pC3

pCd3 pC3

 (3)

where p̃C represents the error between actual and desired values of the target points in the camera space.
Expression in Eq. (3) is substituted with corresponding values in Eq. (1), then the common factor rB is
moved out of the parenthesis. New form of the equation becomes

p̃C =

 p̃C1
p̃C2
p̃C3

 =

 m3r
Bdm1 −m1r

Bdm3

m3r
Bdm2 −m2r

Bdm3

m3r
Bdm3

 rB (4)

Let ni represent the ith row of Eq. (4). Using this notation, equation can be simplified such that

p̃C =

 n1

n2

n3

 rB = NCrB (5)

where NC is the matrix of ni rows. After substitution of rB with T̃B
Bdr

Bd, Eq. (6) can be derived.

p̃C = NCT̃B
Bdr

Bd (6)

Equation (6) implies that T̃B
Bd can analytically be calculated if p̃C is known, since all other parameters

in the equation are known. p̃C can be calculated directly from desired and actual pixel coordinates because
2D image errors can be related to p̃C . So we can obtain a relation between 2D and 3D image errors as

eC =

[
ex
ey

]
=

[
p̃C1 /p̃

C
3

p̃C2 /p̃
C
3

]
(7)

where e represents the error between actual and desired 2D pixel coordinates of the 3D points. In this case,
e is a known vector because both the desired and actual images are known. So we may use 2D image errors
instead of 3D errors. Following this path, it is possible to reach Eq. (8) after a series of derivations.

ēC = VC t̃BBd (8)

where t̃BBd = [t̃11 t̃21 t̃31 ... t̃24 t̃34]T represents a 12 × 1 vector, which is actually the reshaped form of
T̃B
Bd. V

C is 2× 12 matrix that satisfies the corresponding equations. Equation (8) suggests that t̃BBd can be
computed, since all other parameters in the equation are known.

Equation (8) clearly a linear system of equations, which can be solved by various techniques in the
literature. Since there are 12 unknowns in t̃BBd, at least 12 equations are necessary to solve the equation
system, in other words VC matrix must have a full rank. In a single camera system, one target point
generates two equations for 2 image dimensions x and y as (Eq. (7)). Hence, a minimum of 6 distinctive
target points are necessary in order to satisfy all 12 equations. However, due to calibration error and
dimensional inaccuracies, 12 equations may not lead to the best results. Therefore, adding extra target
points to the system is highly recommended to compensate for the camera calibration error and dimensional
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inaccuracies. Considering recent feature extracting techniques in the literature, number of matching points
will most likely be around hundreds, which eliminates the singularity problem of VC .

In a real application, handling large number of matching points with noise may be challenging. For such
cases, direct solutions are not applicable since the number of rows of VC matrix will be much larger than
12 and the noise may cause significant error in calculations. Therefore, a “least squares” based optimization
is preferred for solving the equation system. Let us rewrite the Eq. (8) such that Q becomes a 2n × 12
coefficient matrix on the left hand side and W becomes a 2n× 1 constant vector on the right hand side,

Qt̃BBd = W (9)

Considering large number of points, Q will not be a square matrix, thus Eq. (9) may be solved using
linear least squares method such that,

t̃BBd = (QTQ)
−1

(QTW) (10)

Note that, t̃BBd includes 12 elements of the transformation matrix T̃B
Bd. Therefore, a conversion is

necessary of 12 elements to the actual rotation angles (in radian) and translation distances. Suppose the
calculated unknowns are rewritten as follows,

T̃B
Bd =


t̃11 t̃12 t̃13 t̃14
t̃21 t̃22 t̃23 t̃24
t̃31 t̃32 t̃33 t̃34
0 0 0 1

 (11)

where the values t̃14, t̃24, and t̃34 is conveniently assigned to translation parameters x̃, ỹ, and z̃, respectively.
For the rotational parameters, however, the following conversions are necessary to compute the angles. Note
that the quadrant-dependent function atan2 is used instead of a simple arctangent function. The sign of
cos(θ̃) determines the quadrant of φ̃ and ψ̃, so it must not be dropped from the denominators.

θ̃ = atan2(−t̃31,
√
t̃211 + t̃221) (12)

φ̃ = atan2(
t̃32

cos θ̃
,
t̃33

cos θ̃
) (13)

ψ̃ = atan2(
t̃21

cos θ̃
,
t̃11

cos θ̃
) (14)

After the final step, the pose error of the vehicle, q̃ = [x̃, ỹ, z̃, θ̃, φ̃, ψ̃], is calculated. This can be easily
employed in a position based vehicle controller. Note that all the derivations in this section are analytical.
So, numerical (iterative) calculations are not necessary for the proposed method.

Our method can easily be adopted to multi-camera systems without major modifications. Since our
algorithm requires fixed number of equations, it is not crucial how many cameras or target points are
employed. Moreover, our derivations yield a significant advantage, in which increasing the number of cameras
decreases the number of target points required for the solution. Based on the fact that 1 camera can provide
2 equations from a target point, theoretically, the equation m ∗ n ≥ 6 must be satisfied, where m and n are
the number of cameras and target points, respectively. However, in practice at least 4 non-planar points
are necessary to localize the vehicle and perform reliable tracking. Using the equations coming from the
cameras, ēC vector and VC matrix is found and then unknowns can be solved conveniently with the new
equation system. There are no major restrictions on the setup and specifications of cameras. The cameras
do not have to be identical, and they can be installed on the vehicle at known arbitrary poses. All cameras
can capture different target points, which means they do not have to capture the same set of points.
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3. Trajectory Tracking using Mirage

In vision based trajectory tracking problems, a moving vehicle is expected to follow a pre-defined (desired)
trajectory using actual and reference views of the target. Visual features are extracted from captured images,
then a control law is employed to compute necessary velocities to manipulate the vehicle’s pose. Depending
on the type of the system, the control law may be image based or position based controller. In Fig. 2 (a)
and (b), traditional image based and position based trajectory tracking systems are depicted, respectively.
As discussed in more detail in the introduction, the major difference between these systems originates from
the pose estimation method. Image based systems only minimize the pixel error in 2D image plane, while
position based methods can determine the vehicle pose in 3D space. In this study, we offer an alternate
trajectory tracking system (Figure 2 (c)), which also has the ability of full motion control as in position
based methods. However, our method does not require direct pose measurement via additional equipment
and avoids numerical calculations. Also unlike position based methods, our method directly calculates
the pose error, not the actual pose. Estimated pose error is used by a closed-loop feedback controller to
determine u = [υ, ω]T , the linear and angular velocity of the robotic vehicle. Repeating this process for
each time instant, the vehicle follows a given trajectory. Please note that, no assumptions are made on the
characteristics of desired trajectory as long as the target points are visible. It can be any arbitrary set of
continuous positions in time domain.

Image Based 

Controller+sd

Image Feature 

Extraction

Robot

qdt

q Camera 

Model

s images

s u

(a)

Position Based 

Controller+qd

Image Feature 

Extraction

Robot

qdt

q Camera 
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s imagesPose 

Estimation

q

q u

(b)

Position Based 

Controller
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Robot
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q Camera 
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s images
Mirage 

q
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Figure 2: Overview of typical a) Image based, b) Position based and c) Proposed (Mirage based) trajectory tracking systems.
q, s, and u represent the 3D pose, set of image features, and velocity of the vehicle, respectively.

As mentioned in earlier sections, the proposed system offers a generic framework that is capable of
controlling the vehicle in 3D with 6 degrees of freedom. So our approach can be applied to robotic systems
with no modifications. General form of the kinematic model for a robotic system can be expressed as,

q̇ = Su (15)

where q̇ is the time derivative of the vehicle pose and S is the vehicle specific matrix. Depending on the
motion constraints of the system, S changes. In the following, characteristics of two sample systems are
described. The first system is a 6DOF vehicle with no motion constraints. And the latter is a 3DOF two-
wheeled nonholonomic mobile robot. Both systems are selected to demonstrate particular difficulties to be
solved.
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3.1. 6DOF Unconstrained System
We prefer to start with a 6DOF robotic vehicle (e.g. an underwater robot). In such a system, S matrix

in Eq. (15) is an identity matrix since no motion constraints are specified. Hence the new form of system
model becomes q̇ = u. The controller of the system can be specified as

u = λq̃ (16)

where u the velocity vector fed into system model, λ is small negative constant and q̃ is the pose error
generated by Mirage. After substituting u in given equations, the new form of the system model becomes
q̇ = λq̃, which suggests that the motion is realized by direct integration of pose error after multiplying by
λ. Please note that this system is applicable to limited real applications, however, it has very simple and
straightforward structure, which makes these systems suitable for simulation purposes.

3.2. 2-Wheeled Nonholonomic Mobile Robot
Planar vehicles can also benefit from our tracking system. We applied our approach to a nonholonomic

two-wheeled robot in a virtual 2D system with 3 degrees of freedom. Figure 3 demonstrates the schematic
view of the chosen robot, where x, y are coordinates of the axis center, and θ is the orientation of the robot,
such that q = [x, y, θ]T .

θ
XI

YI

(x,y)

YR

XR
ZL

ZR

XL

XR

Figure 3: Two-wheeled nonholonomic mobile robot

This system may also be represented by the kinematic model given in Eq. (15) with modified S matrix
such that

q̇ =

 cos(θ) 0
sin(θ) 0

0 1

u (17)

where q̇ is the time derivative of the pose and u = [υ, ω]T . In simulation, we consider the robot moving
along a desired trajectory using the vision system containing two calibrated cameras (not stereo vision mode)
mounted on the robot body. For each time instant, robot checks its pose with respect to the reference pose,
then moves with the objective of reducing pose error. In this paper, we briefly describe the derivations
of controller. The detailed information is provided in [22]. In order to derive the u vector, the following
equation may be used [23]:

u =

[
v
w

]
=

[
vd cos q̃θ + vb

wd + wb

]
(18)
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where vd and wd are the desired input velocities and vb and wb are feedback signals which are explained in
[22]. The inertial posture error q̃I = [q̃Ix q̃Iy q̃Iθ ]

T is necessary for computation but the errors calculated
by Mirage are only available in local coordinate system not in global coordinate system. Hence, following
transformation is necessary  q̃Ix

q̃Iy
q̃Iθ

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 q̃ (19)

where q̃ is the local pose error calculated by Mirage and θ = θd+ θ̃. In this manner, the posture error model
can be shown as  ˙̃qIx

˙̃qIy
˙̃qIθ

 =

 cos q̃Iθ 0
sin q̃Iθ 0

0 1

[ vd

wd

]
+

 −1 q̃Iy
0 −q̃Ix
0 −1

u (20)

It is shown in [22] that the error can vanish by employing the feedback signals vb and wb as follows:

vb = kxq̃x (21)

wb = kvdq̃y(1 +
ecos
a

)
2

+ ksesin[(1 +
ecos
a

)
2
]
n

(22)

where q̃x and q̃y are local errors, kx and ks are positive values and n ∈ Z. [22] also suggests that n should
be chosen as a small number such as -2, -1, 0, 1 or 2 for practical reasons. Parameters k and a are constants
larger than zero. And finally directional error parameters, esin and ecos in Eq. (22) are presented as follows:

esin = sin(q̃Iθ ) (23)

ecos = cos(q̃Iθ )− 1 (24)

4. Experimental Results

In this section, we present the simulation and real experiment results of our algorithm described in Section
3.

4.1. Simulation: 6DOF Unconstrained System
The first simulation is applied to the 6DOF vehicle. Using such an unconstrained system, we address

a well-known benchmark problem [24] on which image based systems usually generate undesirable motion.
This is an unavoidable issue in such systems due to their limited solution space (2D image plane). Optimal
minimization on the image plane does not yield optimal solution in 3D space.

The problem involves a square shape target object that is placed on a fixed position and the robotic
vehicle is rotated around only one dimension with respect to its desired position. When the system runs, the
motion of the vehicle is analyzed until convergence to the desired pose. To test this problem on the proposed
method, the initial position of our robot is rotated 30 degrees and placed 2 m behind the desired position.
An illustration of this scenario can be seen in Figure 4 with initial and desired positions of the vehicle, and
target images for both cases.

This scenario is simulated using traditional image based, position based, virtual visual servoing approach1

[11], and the proposed approach. Detailed comparison results are shown in Figure 5. Note that only
differences between initial and desired pose are in x dimension and φ angle. Therefore, the expected motion
change must be in only x and φ. According to the results, all 4 methods converge to the desired pose.
However, there are significant differences in the image based and virtual visual servoing results. First,

1Source Code can be downloaded at http://www.irisa.fr/lagadic/visp/visp.html
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Figure 4: Initial and desired pose of the robot: a) initial position: rotated 30 degrees and placed 2 m behind the desired
position, b) desired position, c) initial and desired target images

they converge later than the other 2 methods. Second, the robot makes undesirable motion in almost all
dimensions due to 2D error minimization process. Particularly, on x direction, the robot moves back for some
time to correct its position. On the other hand, the position based method yields satisfactory results for all
dimensions. Majority of position based methods calculate the 3D pose of the robot via numeric (iterative)
solutions, which are usually slow for real time implementation. Also there is a possibility to be trapped in
local minima during iterative process [25]. Since the 3D pose of the robot is directly fed into the controller,
the position based solution generates good results. Our proposed approach provides very similar results with
the position based method, while only using the 2D image pixels of the target and obtaining the motion
parameters in Euclidean Space with low computational complexity. This is a noticeable advantage of our
method over other solutions.
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4.2. Simulation: 3DOF Planar System
Second simulation is presented using 3DOF planar system described in Section 3.2. The reference tra-

jectory is defined as a function of time in a 2D environment and the initial pose of the robot is set. The
objective is to reduce the pose error by moving the robot as time passes. A sine wave function is selected
to represent the trajectory, since it has sufficient complexity for such systems. The initial position of the
desired trajectory is qd0 = [−30 2 0.5610]T and the initial position of the robot is q0 = [−32 − 2 0]T . The
simulation is run for 25 seconds. This experiment has been repeated for noise-free and noisy scenarios and
the results of 5 state-of-art pose estimation techniques are compared on noisy environment

4.2.1. Noise-Free Environment
In the first case, we consider an ideal condition, where there is no noise in the environment. We intend

to see whether our method generates unexpected results under perfect conditions. The controller gains are
selected as k = 1, kx = 1, ks = 1, a = 3, and n = 0. Figure 6 illustrates the simulation results.
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Figure 6: Tracking results under noise-free environment. Convergence is achieved at 9th second of the motion.

As shown in Figure 6, mobile robot converges to the reference trajectory and finally follows it with no
error. Figure 7 shows how the image of the target in the left camera looks like when the robot is at actual
and desired positions in 3 different frames. The actual image of the target converges to the desired image of
the target approximately at the 9th second of the simulation.
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Figure 7: Target image in the left camera; a) at time 0, b) at time 5, c) at time 9

4.2.2. Noisy Environment
In the second case, we added certain amount of gaussian noise (σ = 20) to the target pixel coordinates

and ran the same simulation on 3DOF mobile robot. This time we also tested 5 pose estimation methods:
Direct Linear Transform (DLT) [26], Lu-Hager-Mjolsness (LHM) [27], Modern POSIT (Posit) [28], Efficient
PnP (EPnP) [19], and Robust PnP (RPnP) [29]. Selected methods include numeric and analytic solutions
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with varying complexities. The controller gains are selected as k = 1, kx = 1, ks = 1, a = 3, and n = 0.
Figure 8 shows the tracking results of each method.
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Figure 8: Tracking results under noisy environment

In Figure 8 it can be seen that, DLT generated inconsistent motion, which cannot be applicable to a real
system. EPnP, RPnP, and LHM can converge to the desired trajectory with high level of error, which may
be critical for some applications. Posit returns relatively good results but it is not as good as Mirage. Our
method is the most robust pose estimation method in the given scenario.
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Figure 9: Pose error minimization during the simulation using (a) 20 target points, (b) 5 Target Points
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We also track the minimization of pose errors by the time. Figure 9 (a) shows the results of each method
using 20 target points. The results clearly indicate that Mirage is very stable under the noise while others
produce significant errors. Also, using 20 points is much more than necessary points for Mirage. When we
reduce the number of points to 4 (minimum for Mirage) the error rate of some methods becomes very high.
Particularly, Posit cannot even calculate the pose in 4 point case. We found that 5 is the minimum number
that runs for all methods. So, the same scenario is tested using 5 points and the results are provided in
Figure 9 (b). The results show that Mirage generate very similar results using low number of target points
while some other methods, such as EPnP and RPnP, generate significant errors compared to the 20 point
case.

To investigate the effect of the number of points, we conducted further experiments from 5 to 100 points
and provide the results in Table 1. Table entries show the sum of squared errors (SSE) of a method for
given number of points. The results indicate that the error rate of the Mirage is very low for any number
of target points and it is independent of the number of points. This is a significant advantage when only
limited number of features can be extracted from the images. On the other hand, EPnP and DLT produce
very high error on small set of target points and the error decreases by increasing the target points. RPnP
and LHM are more robust to the change of target points but the errors are still not as low as Mirage. Posit
cannot calculate the pose using 4 points, but then generates relatively good results.

Table 1: Sum of squared errors of pose estimation methods for each dimension with respect to the number of target points

4 Target Points 20 Target Points 50 Target Points 100 Target Points

ex ey eθ ex ey eθ ex ey eθ ex ey eθ

Mirage 3.249 8.7845 2.3101 3.3537 8.8294 2.1606 3.4167 8.7393 2.1728 3.1275 8.9024 2.2154
EPnP 50.018 36.722 15.973 8.5741 10.446 4.1263 6.1572 10.016 2.9885 4.6746 9.9953 2.841
RPnP 7.4068 11.912 3.3667 3.7396 9.6026 3.1745 4.0028 10.264 2.8311 2.868 9.787 2.8544
LHM 9.5819 23.235 7.3379 5.8029 9.8064 2.6997 6.0816 9.8986 3.014 5.4213 9.7372 2.8033
Posit N/A N/A N/A 4.1916 9.5632 2.678 3.0467 9.7196 2.7939 3.2983 9.5816 2.5117
DLT 143.62 47.683 70.489 15.984 17.509 8.9795 10.221 12.357 3.8159 5.5212 10.531 4.8191

4.3. Real Time Tracking using Non-holonomic Vehicle
Experimental Setup. Proposed tracking algorithm has also been applied on a real non-holonomic robotic

system to present its efficiency with real equipment. In the experiments, a 2 wheeled ground vehicle holding
2 cameras is utilized (Figure 10(a)). 640 × 480 resolution images are captured from the cameras and then
images are processed by onboard computer to detect the target points. The points are fed into Mirage to
calculate the pose errors that are converted to velocity using the controller system provided in Section 3.2.
Our experiments show that the controller gains in Eq.(21) and Eq. (22) should be k = 0.3, kx = 1.5, ks =
1.5, a = 3, and n = 0 in order to receive accurate results for our robotic system. The time consumed for
image acquisition and feature extraction stages is about 285ms. The time for Mirage pose estimation using
4 feature points and two cameras is about 15ms.

We defined a 3-meter path and desired trajectory. The vehicle moves on x direction with varying velocity
by the time. On this planar space, initial pose of the vehicle is q0 = [−4 0 0]T and a 36-second desired
trajectory is defined such that the vehicle moves forward with sinusoidally increasing velocity for 9-second
to the pose q1 = [−2.5 0 0]T and then continues with sinusoidally decreasing velocity for 9-second to zero,
the pose q2 = [−1 0 0]T . After that it stops and moves backwards to q0 following the same pattern in the
remaining 18 sec. A 4 point target object in Figure 10(b) is constructed and placed at the origin.

Results. The experiment is repeated 2 times and in total of 150 seconds. The robot is initially at
rest at x = −4m and y = 0m. The control is switched to automatic tracking at t = 11 and t = 95
seconds, when the robot starts moving for a period of 36 seconds. The robot is commanded to move straight
forward and backward along in the x direction for 3-meter, while increasing and decreasing its speed in a
sinusoidal pattern. Considering two 36-second periods in Figure 11, the vehicle follows the trajectory in all
3 dimensions without significant sum of squared errors (SSE) such that ex = 4.5204m2, ey = 0.8261m2, and
eθ = 0.4942rad2.
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(a) (b)

Figure 10: a) Non-holonomic vehicle employed in the real experiments, b) 4 point target object
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Figure 11: Experiment results with real robotic system

5. Conclusion

This study presents a new vision based trajectory tracking algorithm that uses 2D target image features,
however, unlike image based methods, proposed method analytically calculates the pose in 3D Euclidean
space with 6 motion parameters. This is a noticeable advantage that provides high accuracy in Euclidean
trajectory tracking problems as in position based methods. Moreover, unlike position based methods, the
Euclidean pose is calculated analytically without iterative solutions in Mirage. The proposed method can
be applied to various types of mobile vehicles having spatial motions (e.g., aircraft, spacecraft, underwater
robots). However, it can also be easily applied to vehicles with planar motion. In this study, we demonstrated
two sample applications, and provide real environment and simulation results that verify the effectiveness of
our method. Our method converges to the trajectory with less error in shorter time than other methods and
it is still robust in noisy environments. Both simulations and actual experiments successfully confirm the
advantages of the proposed methodology. Based on these promising results, in the future, we aim to improve
our system for more realistic and challenging environments such as low illumination and poor detection or
undetected target points.
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