
A SOFTWARE REQUIREMENTS SPECIFICATION DOCUMENT MODEL FOR THE MEDICAL DEVICE INDUSTRY

Janis V. Halvorsen
Food and Drug Administration
60 Eighth Street N.E.
Atlanta, GA 30309

ABSTRACT

Medical devices that were entirely controlled by
hardware systems are being replaced with software
controlled systems. The versatility of software and
ease of change means that documenting that software
should be given a very high priority with designers,
developers, and users of these software based systems.
The Food and Drug Administration (FDA) regulates
medical devices. Medical devices can contain software
or be stand alone software. FDA's study of software
related recalls from 1983 to 1989 has found that the
number of recalls have quadrupled over that time
period. Eighty nine per cent of the recalls were
specification related. The software requirements
specification document defines the what of the system
and is used to design, test, and validate software. A
model of a requirements specification document for use
by the medical device industry is discussed. The model
is not endorsed by the Food and Drug Administration nor
proposed as the only model that could be used to meet
the regulatory requirements. The model is based on the
ANSI/IEEE and Fairley models. The model can also be
used to evaluate preexistent software requirements
specification documents.

INTRODUCTION

Medical devices, controlled entirely by hardware
systems, are being replaced with software controlled
systems. The versatility of software and convenience
of change means that documentation should be given a
very high priority by designers, developers, and users
of software based systems. Unfortunately, instead of
documentation being part of the initial design, it is
often left as an afterthought. Designers of hardware
do not sit down with wires, op amps, capacitors, etc.
and put a device together. Documentation has always
existed for hardware controlled medical devices.
Hardware has had its requirements, specifications,
blueprints, maintenance documents, testing setups, and
procedure manuals for disassembly, trouble shooting,
reassembly, etc.

Why then should software be any different? Often
comments in the code are the only documentation.
Software code for any computer system needs to have
additional accompanying documentation that has been
developed prior to the first line of code being
written. This initial documentation needs to be
dynamic, useable, and changeable. Its beginning should
coincide with the initial discussions of the system
requirements and should be functional when the software
is in the maintenance phase of the software life cycle.

Many levels of documentation are necessary to
adequately document software that is or is a component
of a medical device. One of the first documents is the
software requirements specification. Specifications
for medical devices can come from many sources. A
company may decide what a device will do and then
attempt to market that device. A doctor may have a
device that does much of what he wants but needs
additional features. He may ask a company to
manufacture a new device to his specifications. A
company may have a device that was controlled
electronically and now wants their new model to be
computer controlled. The user is the person who is
having the software developed for him. The user in
each of these examples is typically the marketing
department, the doctor, and the president of the
company.

Documentation needs to be complete and detailed enough
so it is fully understandable to a knowledgeable
individual who is reviewing the documentation. Who
that knowledgeable individual is would depend upon the
document. For example, the software requirements
specification document should be understandable to the
user and to the developer of the requirements [12].
The user cannot abdicate his responsibilities of
involvement in developing the software specification

soheil Khajenoori
Dept. of Electrical & Computer Engineering
University of Central Florida
P.O. Box 25000
Orlando, FL 32816-0993

requirements. Even if the user contracts with a person
or company who has designed similar software systems in
the past, software can and will be customized. A user
who purchases off the shelf software must develop
requirements because he will need to assure that the
software is adequate for his needs and meets all of his
requirements. Communication is the primary function of
the requirements specification.

The cost to correct a problem is very little during the
software requirements specification phase when compared
to the final testing and integration stage of the
software life cycle (according to Good [5] in 1986 -
$350 compared to $12,000). These problems can be
avoided by starting with a good software requirements
specification document [E, 111. This paper focuses on
that document. The software requirements specification
document should be updated and current throughout the
life cycle of the medical device. Software used in or
as a component of a medical device must have complete
and accurate documentation. A review of medical device
recalls from 1983 to 1989 shows that the number of
software related recalls has tripled; 89% of which were
attributed to inadequate design 1141.

MEDICAL DEVICE SOFTWARE REGULATION

The U. S. Food and Drug Administration (FDA) is a
governmental regulatory agency with the responsibility
for assuring the safety and efficacy of medical
devices. A medical device is defined in the Federal
Food, Drug, and Cosmetic Act (FD&C Act) as "any
instrument, apparatus, implement, in vitro reagent, or
similar or related article ... which is (1) recognized
in the official National Formulary, or the United
States Pharmacopeia, or any supplement to them, (2)
intended for use in a diagnosis of disease or other
conditions, or in the cure, mitigation, treatment, or
prevention of disease, in man or other animals, or (3)
intended to affect the structure or any function of the
body of man...and which does not achieve its principal
intended purposes through chemical action within or on
the body of man...and which is not dependent upon being
metabolized for the achievement of any of its principal
intended purposes" (21 USC 321[h], 1990 [la]) [2, 91.
Software that is a medical device includes data and/or
programs that operate a computer controlled system; an
expert system; or a database contained on disks, tapes,
or embedded in the hardware of a device (also referred
to as firmware). A software package that is a library
function only, is not currently regulated as a medical
device, if it is not used as the sole basis to make a
diagnosis.

The FDA enforces the Good Manufacturing Practices
(GMPs) for medical devices contained in Title 21 Code
of Federal Regulations (CFR) parts 800 - 1299 (201.
This section of the regulations enumerates the
documentation needed. Manufacturers are responsible
for assuring that their devices comply with the GMPs.
Software can be part of a computerized device, such as
a computerized tomography device, or a stand alone
package, such as software to set up a radiation therapy
machine given a physician's prescription.

The GMP regulations are written as broad requirements
setting forth standards and practices to be followed by
manufacturers. The regulations must be interpreted for
application to the particular device and manufacturing
facility. Two basic premises of the GMP's are that 1)
quality begins at the design phase; and 2) quality
cannot be tested into a product. Since software design
cannot be done properly without requirements, quality
begins with the requirements specification phase.
Without adequate documentation of the specification
requirements, quality cannot be assured in the design
of the final device.

After the device is ready for distribution, FDA
requires all documents to be complete, reviewed, and
approved by responsible and knowledgeable individuals
within the company. The Safe Medical Device Act of
1990 amended the FD&C Act so FDA can promulgate
regulations requiring manufacturers to do pre-

@7803-1257-0~3/$3.CXl Q 1993 IEEE.

I

production design validation [19]. The design is
better and validation is easier when the software
requirements specification document is complete and
accurate.

SOFTWARE REOUIREMENTS SPECIFICATION

Develop documentation in a systematic way, following a
plan already written (such as the IEEE Software
Configuration Management Plan [16]) or developed in-
house. The goal is to assure consistency of
documentation. Written standards should include the
qualifications of personnel involved, their training,
documentation standards, approaches to design, and
coding and testing Standards. Written software
documentation procedures should describe the documents
to be used, who will maintain the documents, and where
the documents will be located. Software configuration
management is equivalent to the term 'change control'
used by the GMPs. Its goal is to assure that only the
current, tested, reviewed, and approved version of the
software and software documentation is used.

R. E. Fairley [4] in Software Enaineerina ConceDts and
the ANSI/IEEE standard 830 - 1984 [15] define the
characteristics and content of the software
requirements specification document. R. Kosmala [lo]
divides the requirements specification into two
documents: functional requirements and system
specification. The software requirements specification
document ahould contain a11 the requirements that the
medical software needs to fulfill to meet
specifications. The document should not be hardware
specific. If hardware has already been developed or is
pre-existent, the hardware will impose design
constraints that should be included in the software
requirements specification document. How the software
is to be written should not be included since this is
part of the design of the software.

The software requirements specification defines the
"what" of the system and not the "how". Write in a way
to make it adaptable to other hardware systems or
software languages. It should be unambiguous,
consistent, verifiable, modifiable, comprehensive,
complete, and easy to use at all times. To be
unambiguous, the language must be precise and
consistent throughout the document. To be verifiable,
define the requirements in quantifiable or testable
terminology. Verifying both that the requirements meet
the needs of the customer and that the device meets the
requirements is equally important. Identifying the
requirements of the software system is difficult since
it requires Understanding the process or activity to be
computerized as well as the needs and desires of the
eventual users or operators of the system.

The document must contain all of the requirements that
the device will be expected to meet. It needs to be
modifiable and useable at a l l times. Documentation
needs to change as the requirements are changed and
adjusted. Change can occur during the specification
phase when requirements are changed and/or modified;
during the design phase when implementation requires a
different approach that alters the requirements
specification; through the change and maintenance
phases when additional requirements are introduced to
the device or changes are made to how the device
operates. During this iterative process, handle the
software requirements specification document like an
approved final document. Incorporate changes using a
change control system. Ideally, change control starts
when the design phase begins. Archiving these changes
would help during the maintenance phase, when adjusting
the software either to provide additional functions or
correct bugs found in the system. Troubleshooting and
modification of software programs must be possible from
the documentation.

The documentation method should develop an audit trail
as changes occur. The evolution of the requirements
specification can be as important as the final product.
As the life cycle of the product continues with
software and requirements updated and modified, change
the software requirements specification document to
reflect the current requirements of the system. Copies
of past specification documents must be kept in a
history file. The history file serves three purposes:
1) to show the evolution of the software; 2) to give
the manufacturer or user information on when the
specifications changed (beginning with which serial or
lot number); and 3) to prevent future changes from the

same mistakes made in the past. Historical records
also need to trace problems with the existing devices
to show how the devices were manufactured. The
developer also can use the old documentation if a
change was incorrect and he needs to fall back to a
previous version.

Change control requires that a baseline of all approved
documents be maintained and changes to these documents
be controlled. Prior to coding, the change(s) in a
requirements specification are translated to the
programmer within the documentation. However, if
during coding the programmer changes the requirements,
he must incorporate this change into the requirements
specification document.
documentation ahould be reviewed at appropriate levels
to assure that the change(s) do not affect other areas
or the intent of the original specification.

The software requirements specification document should
be divided into sections. ANSI/IEEE Std 830 - 1984
[15], Fairley [4], and DOD-STD-2167A [17] are three
references that describe ways the information can be
arranged. All documents need to be readable and
understandable to the designers and the engineers, as
well as, the users, customers, and marketing people.
Use whatever format accomplishes these goals.
Procedures for functional validation and testing of the
software are developed from the software requirements
specification [I, 61.

Any changes to the

A Model for Software Reauirements SDecification
Document

A model for use for medical device software
requirements specification document is discussed below
(71. This model combines the ANSI/IEEE and Fairley
models and is designed to meet the regulatory
requirements of the Food and Drug Administration. The
model is not endorsed by the Food and Drug
Administration nor proposed as the only model that
could be used to meet the regulatory requirements.
model can also be used to analyze existing software
requirements specifications documents.

Introduction and Scoue

This section can be divided into three subsections.
Each subsection will be described using questions to be
answered by those sections.

document should be stated with regard to the definition
of the medical device software (device) to be described
by the software requirements specification document.
This statement should be brief but complete.

The

Purwsa or Identification The purpose of the

1. Define the device.
2. Where will the device be used or operated?
3. Is the device critical or non-critical?
4. Is the device self-contained or an adjunct to
another device?

Product Overview A brief summary of the device
and the environment in which the device operates should
include information on who will operate the device.
This section is meant to aid the reader in
understanding the specific requirements section better.
Block diagrams can be used to show the interconnections
and external interfaces for the device without imposing
design solutions.

1. Who will use the device?
2. Summarize product features and requirements.
3. What are the principal interfaces for the
device?
4. What hardware and peripheral equipment will be
used with the device? (overview only)

Processina Environment The development,
operation and maintenance of the device should be
described as it relates to the processing environment.
The processing environment is the development,
operating, and maintenance environments in which the
device will operate. This section will contain
information that can later be expanded in the User
Manual.

1. Who will operate the system?
2. Who will/can modify and/or update the program?
3. Brief description of development process,

including testing of the device prior to and
after marketing.
4. What post marketing support will be available?

External -ace irements

Four types of interfaces should be discussed in terms
of the software program for the medical device. Each
section may begin with a summary of the requirements
for that interface and then go into greater detail.
Explanations of the specific requirements or design
constraints are helpful in guiding the later design of
the eystom. Data diagrams ohowing data flow into and
out of the device can help to graphically depict the
system's interaction with the outside world. The data
dictionary can be used to explain the data flows.
Information in the data dictionary should include the
name of the data item or control flow, what the purpose
of the element is, and any sub items of which the
element is compoeed. The data dictionary will probably
be an attachment to or exhibit of the document and will
be later expanded in the design document.

U8er I n t u e A list of what the user will see
and use should comprise this section. The following
questions should be answered:

1. Who are the users of the device? Are they
exclusive operators or occasional users? What
training or experience will enable them to use
the device?
2. Will the system be self-explanatory?
3. What are the user commands?
4. What input will the user give to the program?
5. What output or reports will the device
produce?
6. What is the timing between inputs and outputs?

Hardware Interfaces Discuss how the software
will interact with the hardware part of the medical
device. Describe what the hardware is, in general
terms. If the system is embedded in a specific device,
this should be explained. If both the hardware and
software systems are being designed concurrently, then
information on how the two will work together should be
explained.

Software Interfaces Discuss uses of other
required software products, either commercial or firm
designed, with the new software. Include information
on the links between the software, such as passing
information, and operations that will be done outside
of this new software program. Questions that need to
be answered are:

1. What is the other software package by name,
version, source, and location?
2. Why is the interface necessary?
3. What type of documentation does the other
Software have?
4. What information will pass between the
programs?

Communications Interface If the software will
communicate with a network, then its interfaces to that
network must be specified.

1. Why does the software connect to a network?
2. What information will be exchanged?

Medical Device Functions

Explain the detailed functions of the medical device.
This section should contain all of the information that
the software designer will need to develop the
software. Express the functions in formal notation.
The format of this section should allow the reader and
the designer to understand the software's functions,
inputs, outputs, etc. All information discussed in
the eight sections below is necessary.

product requirements in a manner so anyone reading the
document will understand the functional requirements of
the medical device. Reasons for specific requirements
should be explained in this section. This section
should make the functions understandable to the first
time reader. The language should be less formalized.
This section summarizes the information in the specific
requirements section and shows the interrelationship of
all the requirements for the medical device software.

Fu- Remirements Preeent

a c t i o n a l Remiremen ts Formalized , .

language, equations, and flow diagrams should be used
to identify the requirements. Each functional
requirement should have its own subsection with four
subparagraphs:

Introduction: The introduction should describe
the purpose of the function. All background material
necessary to clarify the intent of the function should
be included.

1. What does the function do?
2. Why is this function necessary?

Inputs: Data and control inputs into the
function, including units of measure, timing,
quantities, and valid ranges should be described. Any
external inputs such as operator commands should be
described.

Data Processing: Processing of the input data,
operations performed, intermediate or local parameters
used, and outputs obtained should be fully explained.
Validity checke on the inputs, sequencing and timing of
the operatione, responses to abnormal situations such
as overflow, error handling etc., parameters affected
by the operations performed, validity checks on the
output should each be explained. Algorithms,
equations, logical operations, etc., that are used to
change the inputs into outputs should be included here.

function should be described in the same terms as the
inputs. Error messages, disposition of illegal or out
of range values and the destination of each output
should be detailed.

Perfoance R eauirements Performance
requirements of the software system should be described
here. They can be further divided into static and
dynamic. The requirements include the internal
numerical constraints and human interaction with the
software. They must be presented in quantifiable terms
and methods to verify the requirements should also be
included. Static performance requirements include the
capacity of the files, number of simultaneous system
users, s i ze of internal tables, constraints of primary
and secondary memory, etc. Dynamic performance
requirements include the number of tasks that will be
performed within a given time period, or the amount of
data expected to be processed within a given time
period. This is stated for the entire software
package. Any requirements that are specific to a
function, should be stated in the processing
subparagraph for that function.

Outputs: Descriptions of the outputs from the

1. How will the device perform?
2. How long will it take to do its operation.
3. When will it need information given to it by
another user or program?
4. How many operators can use the device at a
t ime?

EXCeR tion Han dling The device may not always be
operated in an acceptable environment. When
unacceptable events occur, error messages and their
resolution must be delineated. A table of exception
conditions and responses is one way to represent this
to the reader. As many of these as can be foreseen
should be handled. As the program is debugged, this
part of the documentation may change and expand to
incorporate other conditions that come up during
debugging and initial test runs.

Desian Constr aintq The design of any medical
device may be subject to standards governmental,
industrial, or voluntary. The medical device must
comply with the GMP's and may have performance
requirements that are required by the FDA (ie. x-ray
performance standards) or recommended by other
standards organizations (UL, ANSI). These standards
may require certain data elements, report forms, user
interfaces, accuracy, and precision limits, etc.
Within the context of these constraints the software
must be designed. If the software is to work with
already existing hardware, then the characteristics of
the hardware configuration must be included in the
requirements document.

Attributw All software has characteristics that
add requirements to the system. Some of the attributes
that may need to be addressed are the availability of

the system; security from unauthorized access, use,
modification, or destruction of the software;
maintainability; transportability or conversion of the
software between environments; etc.

designed to accommodate an ever changing medical
environment. If during the initial phase of
determining the requirements of the device, additional
requirements, design constraints, or foreseeable
modifications are already known, each should be
included here. The designer of the software may modify
his design so that these changes can be incorporated
more easily at a later date.

ACCeDtanCe Criteria The acceptance tests that

gesian Enhancements Medical devices must be

will be performed to assure that the functions are met
should be discussed. Acceptance testing should be
based on the functional requirements of the system.
Documentation standards for the tests performed may be
described or their location may be referred to.
Acceptance criteria should quantitatively verify the
functional requirements stated in the specific
requirements section. Any audits of this documentation
and what will be covered during them should be
delineated.

Definitions

Any terms that may be new or defined differently should
be defined here. Definitions should be complete and
precise.
and for the reference of non-technical reviewers of the
document.

Common terms may also be defined for clarity

CONCLUSION

The software requirements specification document is a
necessary and cost effective part of designing medical
devices. Any company, large or small, who buys,
develops, or manufactures software for or as part of a
medical device can use this model. The software
requirements specification document must be updated
throughout the life of the software. During the
maintenance phase, the document helps the company
understand the process by which the device was designed
so that change or modification is accomplished
smoothly. Thoughts of the original specifiers are lost
if the only documentation kept is the code and test
documents.

The software requirements specification document
describes the behavior of the medical device software
in terms that the manufacturer/owner can understand.
It will help the designers and programmers understand
the requirements up front and should avoid duplication,
arguments, and inconsistency with requirements during
their parts of the software life cycle. This document
should be a good basis for test plan development. The
software requirements specification document, if
properly completed and updated, will be useful to the
maintainers of the software long after all the original
personnel, who developed it, are no longer available
for consultation.

BIBLIOG RAPHY

[l] R. D. Berkland, "Validatable Software Design",
pharmaceutical Technoloav, vol 15, no. 9, pp. 160-165,
September, 1991.

[2] I. P. Cooper and B. F. Mackler, "Regulation of
Diagnostic Software: Preparative Steps", Medical Device
and Diaanos tic Industry, vol. 7, no. 10, pp. 38-42,
October, 1985.

[3] A. M. Davis, "A Comparison of Techniques for the
Specification of External System Behavior",
Conununicatio n6 of the ACM, vol. 31, no. 9, pp. 1098-
1115, September, 1988.

[4] R. E. Fairley, Software Enaineerina ConceDts. New
York: McGraw-Hill, 1985.

[5] D. I. Good, "Cost-Effectiveness", ACM Software
Enaineerina Notes, vol. 11, no. 11, pp. 82, November,
1986.

[6] P. A. V. Hall, " Relationship between
Specifications and Testing", Information and Software
Technoloay, vol. 33, no. 1, pp. 47-52,
JanuaryjFebruary, 1991.

-T--

[7] J. V. Halvorsen, "A Proposed Software Requirements
Specification Document for the Medical Device
Industry", Masters Thesis, University of Central
Florida, College of Engineering, May, 1992.

(81 M. F. Houston, "Designing Safer, More Reliable
Software Systems", presented to the Medical Design and
Manufacturing Conference, New York, NY 1988.

[9] J. S. Kahan, "FDA Regulation of Computer Software
as Medical Devices", Medical Device and Diaanostic
Jndustry, vol. 7, no. 3, pp. 51-54, March 1985.

[lo] R. M. Kosmala, "The Relationship between
Functional Requirements and Software Desian".

- Technoloqy, vol 14, no. 11; pp, 66-68, Pharmaceutical
November, 1990.

[ll] P. G. Neumann, "Flaws in Specifications and What
to do about Them", ggocepdina s of Fifth International

Pittsburgh, PA, 19-20 May 1989, pp. xi-xv.
Workehou on Soft ware SDecific ation and Desia n,

(121 D. L. Parnas and P. C. Clementa, "A Rational
Design Process: How and Why to Fake It", IEEE
TranEaCtionB of Software Enaineerinq, vol. SE-12, NO.
2, February, 1986.

[13] D. L. Ripps, "Developing Real-time Requirements", m, vol. 35, pp. 223-228, October 11, 1990.

1141 J. V. Sroka and R. M. Rustina. Medical Device
Computer Software: Challenges and-Safeguards" , -Medical
Device an d Diaano stic Indue trv, vol. 14, no. 1, pp, 63-
65, 165-167, January, 1992.

[15] ANSI/JEEE Std 830-1984. IEEE Guide to Software
R e a u i r w Swcif ications , Institute of Electrical
and Electronic Engineers, New York, 1984.

[161,ANSIIXEEE s td 828. JEEE Standard for Software
ConfLauration Nanaa ement Plans, Institute of Electrical
and Electronic Engineers, New York, 1983.

[17] DOD-STD-2167A Militarv Stand ard Defense Svstem
Software De velownen t, Department of Defense,
Washington, D.C., February, 1988.

[18] Food, Drua, and Cosmetic Act, 21 USC 321[h], 1990.

[19] Medical Device Good Manufacturina Practices
ition, U.S. Government Printing Office, Manual. Fifth Ed

Washington, D.C., 1991.

(201 21 Code of Federal Reaulations, Dar ts 800-1299,
U.S. Government Printing Office, Washington, D.C.,
1991.

