Your Brain on Java—A Learner’s Guide

59 Head First

solve a Five-Minute
Pump neurons with Java Mystery
the Brain Barbell
workouts

See what

makes the JVM o R k .
tick and what (A R Watch Java objects

ticks it off = e ; , expose their inner
~ A secrets on
Java Tabloid TV

Fool around in
the Java Library

some code with
Ready-Bake Java

Bend your mind
around 4?2

Learn why Lucy \ Java puzzles >
*really* keeps her

variables private

Kathy Sierra & Bert Bates




Inheritance is jUSt the beginning. To exploit polymorphism, we need interfaces
(and not the GUI kind). We need to go beyond simple inheritance to a level of flexibility and
extensibility you can get only by designing and coding to interface specifications. Some of the
coolest parts of Java wouldn't even be possible without interfaces, so even if you don’t design
with them yourself, you still have to use them. But you'll want to design with them.You'll need
to design with them. You’ll wonder how you ever lived without them.What's an interface? It's

a 100% abstract class.What's an abstract class? It’s a class that can’t be instantiated. What's that
good for? You'll see in just a few moments. But if you think about the end of the last chapter,
and how we used polymorphic arguments so that a single Vet method could take Animal
subclasses of all types, well, that was just scratching the surface. Interfaces are the poly in

polymorphism.The ab in abstract.The caffeine in Java.



objects are Objects

Object

equals()
getClass()
hashCode()
toString()

——

Snowboard

2

equals()
getClass()
hashCode()
toString()

turn()
shred()

seControl()

He treats me like an
Object. But I can do so
much more...if only he'd see
me for what I really am.

Get in touch with your inner Object.

An object contains everythingit inherits from each of its
superclasses. That means every object—regardless of its
actual class type—is also an instance of class Object.That
means any object in Java can be treated not just as a Dog,
Button, or Snowboard, but also as an Object. When you
say new Snowboard (), you get a single object on the
heap—a Snowboard obect—but that Snowboard wraps
itself around an inner core representing the Object
(capital “O”) portion of itself.

A single object
on the hca‘g‘

Snowboard inhevits methods
from supevtlass Object, and

adds four move. N
O
\05e%

Snowboard

S e
OOWbo ard oo¥

Theve is onl\/ ONE ob\)cc{: on the heap heve. A Snowboard
objcd:- But it contains both the Snowboard ¢lass Pav“(:s of
itself and the Object tlass parts of itself.

Head First Java Sampler



interfaces and

‘Polymorphism’ means

‘many forms’ When you put an object

in an Arraylist, it

You can treat a Snowboard as a forgets (temporarily) its
Snowboard or an Object. true type, and thinks of
If a reference is like a remote control, the itself as an ObjeCt'

remote control takes on more and more buttons
as you move down the inheritance tree. A
remote control (reference) of type Object has

When you get a
reference from

only a few buttons—the buttons for the exposed an Arraylist, the
methods of class Object. But a remote control reference is always of
of type Snowboard includes all the buttons from type Object.

class Object, plus any new buttons (for new

methods) of class Snowboard. The more specific That means you get an
the class, the more buttons it may have. Object remote control.

Of course that’s not always true; a subclass might
not add any new methods, but simply override
the methods of its superclass. The key point is
that even if the object is of type Snowboard, an
Object reference to it can’t see the Snowboard-
specific methods.

Snowboard s = new Snowboard() ;

Object o = s;

The Snowboard vemote tontrol
(vefevente) has more buttons than

an Object vemote tontrol. The o '\

snowboard vemote tan see the full

Snowboardness of the Snowboard The Object veferente can see anly the

object. [t ean aceess all the methods Object parts of the Snowboard objeet.
in Snowboard, intluding both the [+ ean ateess only the methods of elass
inherited Objeet methods and the Object. [t has fewer buttons than the

methods from ¢lass Snowboard. Snowboard vemote tontrol.




casting objects

Wait a minute...
what good is a Dog if it
comes out of an ArrayList and it

can't do any Dog things? There's Casting an object reference

gotta be a way to get the Dog back back to its real type

to a state of Dogness...

- -
.‘ﬂ

- X
Object

T hope it doesn't hurt.

And what's so wrong with
staying an Object? OK, I can't
fetch, sure, but I can give you

It’s really still a Dog object, but if you want to call
Dog-specific methods, you need a reference declared
as type Dog. If you're sure* the object is really a
Dog, you can make a new Dog reference to it by
copying the Object reference, and forcing that
copy to go into a Dog reference varaiable, using a
cast (Dog). You can use the new Dogreference to
call Dog methods.

a real nice hashcode.

Object o = al.get(index); ok batk to
_ ) he Object
]c:)iogocai.m—() fDog‘) °7 (_C:%:; we kiow is theve:

Cast the so—called ‘Ob\)cd:' (but
we know he’s actually a Dog) to

type Dog, so that you ean treat T
him like the Dog he veally is. '

Dog
*If you’re not sure it’s a Dog, you can use the
instanceof operator to check. Because if you're
wrong, you'll get a ClassCastException and come
to a grinding halt.

if (d instanceof Dog) ({
Dog d = (Dog) o;
}




interfaces and

So now you’ve seen how much Java
cares about the methods in the

class of the reference variable.
e

You can call a method on an object only if

the class of the reference variable has t
method.

hat

Think of the public methods in your class as
your contract, your promise to the outside

world about the things you can do.

When you write a class, you almost always expose some

of the methods to code outside the class. To expose

a

method means you make a method accessible, usually by

marking it public.

Imagine this scenario: you’re writing code for a small
business accounting program. A custom application

for “Simon’s Surf Shop”. The good re-

user that you are, you found an Account Account
class that appears to meet your needs . debit(double am)
perfectly, according to its documentation,

anyway. Each account instance represents credit(double amt)

an individual customer’s account with the
store. So there you are minding your own doubl
business invoking the credit() and debit()

e getBalance()

methods on an account object when you

realize you need to get a balance on an account. No
problem—there’s a getBalance() method that should do

nicely.

Except... when you invoke the getBalance() method,

the whole thing blows up at runtime. Forget the

documentation, the class does not have that method.

Yikes!

But that won’t happen to you, because everytime you

use the dot operator on a reference (a.doStuff()),

the

compiler looks at the reference type (the type ‘a’ was

declared to be) and checks that class to guarantee

it

has the method, and that it indeed takes the argument
you’re passing and returns the kind of value you're

expecting to get back.

Just remember that it checks the class of the reference
variable, not the class of the actual object at the other end

of the reference.




