

SEAL: A Divide-and-Conquer Approach For Sequence Alignment

Harini Kandadi, and Ramazan Savas Aygün1
1Computer Science Department, University of Alabama in Huntsville.

{harinikandadi@gmail.com, aygunr@uah.edu }

ABSTRACT

Sequence similarity search and sequence alignment methods are

fundamental steps in comparative genomics and have a wide spec-

trum of application in the field of medicine, agriculture and environ-

ment. The dynamic programming sequence alignment methods pro-

duce optimal alignments but are impractical for a similarity search due

to their large running time. Heuristic methods like BLAST run much

faster but may not provide optimal alignments. In this paper, we intro-

duce a novel sequence alignment algorithm, SEAL. SEAL is a paral-

lelizable algorithm that does not require gap penalty parameter as in

heuristic methods. SEAL uses a combination of divide-and-conquer

paradigm and the maximum contiguous sub-array solution. SEAL is

also improved by the use of borders in every contiguous segment.

The alignment scores obtained by SEAL are consistently higher than

those obtained by heuristic methods. Since the dependencies are

minimized among intermediate steps, the complexity of SEAL can be

reduced to Θ(log2 𝑛) in the presence of satisfactory number of parallel

processors.

1 INTRODUCTION

Comparative genomics enables functional annotation of genes by

comparing genes of different species. A sequence similarity search

is an integral step in comparative genomics and proteomics. Se-

quence similarity search helps us identify similar DNA or protein

sequences from the same or different species.

A sequence similarity search lines up sequences using sequence

alignment methods to compare them and identify regions of similar-

ity between a given query sequence and chosen database. Dynamic

programming is a well-known method for sequence alignment and

gives the highest scoring alignment between two sequences. Heuris-

tic methods are less time-consuming and give good alignments. The

most popular heuristic tool is BLAST (Basic Local Alignment

Search Tool). BLAST gives good alignments in a reasonable

amount of time but misses some sequences in the search process due

to its strict parameters.

Dynamic programming algorithms provide the highest scoring

alignments (Shpaer; 1996) and the number of false positives and

false negatives is proven to be significantly lower than heuristic

methods (Pearson; 1995). Therefore, there is a high risk that many

sequences that are readily detected by Dynamic Programming algo-

rithms may be missed by heuristic approaches like BLAST. Dy-

namic programming algorithms give optimal alignments between

two sequences whereas BLAST search results may not necessarily

be optimal and heuristic approaches give more than one alignment

for a single database sequence compared. In cases where the search

is focused on remote homology, heuristic methods may miss certain

sequences. But time complexity for dynamic programming algo-

rithms is high since an optimal alignment is obtained only after the

whole matrix is filled (the number of cells in the matrix is the prod-

uct of the lengths of the two sequences).

As sequence databases are increasing rapidly on a daily basis, par-

allelizing alignment methods to increase the speed and performance

of search is gaining importance. There are various approaches used

for parallel sequence alignment and search. Parallel approaches can

be used at various stages: processing of input query sequences (i.e.,

each processor works on a subset of the query set), alignment algo-

rithm (i.e., parallel version of the alignment algorithm is developed),

and/or searching database sequences (Mathog; 2003) (i.e., each pro-

cessor searches in a specific portion of the database). Most methods

are feasible by the use of unique hardware like shared memory mul-

tiprocessors, systolic arrays (White; 1991), Blue Gene/P architec-

ture (Lin; 2008), grid computing (Krishnan; 2005) and more.

BLAST++ (Wang; 2003)[6], SOAP-HT Blast (Wang, Mu; 2003)

and similar methods employ parallel processing of input query se-

quences. pioBLAST uses dynamic partitioning of databases (Lin;

2005). HBLAST (O’Driscoll et al., 2015) utilizes Hadoop architec-

ture based on MapReduce framework using virtual partitioning con-

cept for parallel sequence alignment. In (Dai; 2012), a cloud based

service is provided using the Map-Reduce Framework for the short

read mapping and storing reference genomes in Hbase. Bwasw-

Cloud (Sun; 2014) extends BWA-SW algorithm using open source

implementation of Map-Reduce framework. The Map phase per-

forms alignment with respect to each reference chunk by extending

around the reference; the Shuffle phase clusters alignment locations

for each read output; and the Reduce phase combines the alignment

locations with the same reads. BWA-ST (Li; 2010) follows seed-

and-extend paradigm but finds the seeds using dynamic program-

ming. Parallel methods based on BLAST also have the low sensitiv-

ity problem of BLAST.

There are a number of pairwise alignment algorithms. AlignMe

(Stamm et al., 2014) provides pair-wise sequence-to-sequence

alignment using the standard Needleman-Wunsch algorithm. It has

four optimized parameter set: AlignMe PST, AlignMe,PS, Align Me

P, and Fast. The letters (P, S, T) along with the algorithm correspond

to the required inputs for the alignment where P, S, and T indicate

position-specific substitution matrix, a secondary structure predic-

tion, and a transmembrane prediction, respectively. AlignMe PST,

PS an7d P work with distantly related proteins (with sequence iden-

tity <15%), low-homology proteins sequence similarity (~15%-

Network Modeling Analysis in Health Informatics and Bioinformatics, December 2015, Volume 4, Issue 25.
The final publication is available at Springer via http://dx.doi.org/10.1007/s13721-015-0096-z.

mailto:%7bharinikandadi@gmail.com
mailto:aygunr@uah.edu

45%), and closely related proteins (>45%), respectively. According

to their experiments, AlignMe PST provided 1.8-7.5% more cor-

rectly aligned positions than HMAP (Soding, 2005) or HHalign

(Huang and Miller, 1991). AlignMe produced 6.5% more correct

alignment than HMAP, and AlignMe P provides 4.1% more correct

aligned positions than HMAP. AlignMe P, PS, and PST use PSI-

BLAST to generate a position-specific substitution matrix. AlignMe

Fast avoids the PSI-BLAST search in the other versions. WHAM

(Li et al., 2012) is designed for short-read alignment problem. The

sequence is represented in binary format as bits by mapping each

nucleic acid to a binary number. The pairwise alignment is applied

on binary representation. Since scoring is not part of this algorithm,

it is assumed that WHAM targets exact match with errors of substi-

tutions, insertions, and deletions. Choi et al. propose PROVEAN

(Choi, 2012), a fast computation of pairwise sequence alignment

based protein sequence variations. Their proposed algorithm takes

O((n+l).m) time where n and m correspond to the length of se-

quences and l is the number of variations if the length of variations

is constant. It is assumed that two sequences differ in a small con-

tiguous region. MC64-NW/SW (Díaz et al., 2011) method redesigns

Needleman-Wunsch/Still-Waterman (NW/SW) algorithm that ob-

tains optimal sequence alignment in quadratic time and space cost

for parallelization to yield in O(m+n) complexity.

European Bioinformatics Institute (EMBL) (Li et al., 2015;

McWilliam et al., 2013) provides a number of database, tools and

services. Their sequence alignment services

(https://www.ebi.ac.uk/Tools/psa/) include Lalign, EMBOSS tools

(matcher (based on Lalign), needle (Needleman-Wunsch), stretcher

(modified Needleman-Wunsch), water (modified Smith-Water-

man)), and the Wise2 tools (GeneWise, PromoterWise and

Wise2DBA). Their sequence similarity search services

(https://www.ebi.ac.uk/Tools/sss/) include FASTA, SSEARCH

(based on Smith-Waterman) PSISearch (using PSI-BLAST and

Smith-Waterman), GGSEARCH (global-global alignment),

GLSEARCH (global query -local database alignment),

FASTM/S/F, NCBI BLAST, PSI-BLAST, WU-BLAST, and ENA

Sequence Search (faster than BLAST for large datasets but with

marginal loss of sensitivity).

Divide-and-Conquer methods have been applied to sequence

alignment in the past. The recurrence relation of a divide-and-con-

quer algorithm can generally be represented as T(n)=aT(n/b)+f(n).

While (n/b) is related to the size of the sub-problem to be solved, the

coefficient a indicates the number of sub-problems to be solved. The

function 𝑓(𝑛)usually indicates the time to combine the solutions of

sub-problems. The function 𝑓(𝑛) plays critical role in the complex-

ity of a divide-and-conquer method. If 𝑓(𝑛) has a polynomial com-

plexity of 𝛩(𝑛𝑐), the best complexity (using Master Theorem) is

obtained when log𝑏 𝑎 < 𝑐 and the complexity becomes 𝑂(𝑛𝑐). Pref-

erably, fast parallel algorithms should have a low value for the co-

efficient a (e.g., 1), and a high value for the coefficient b to reduce

the size of the sub-problems. However, even for the best combina-

tion of coefficients a and b, the complexity of the method is dictated

by 𝑓(𝑛) ∈ 𝑂(𝑛𝑐). Ultimately, to make divide-and-conquer efficient,

the complexity of 𝑓(𝑛) should be reduced.

In the literature, there are a good number of applications of divide-

and-conquer for sequence alignment. One application area is multi-

ple sequence alignment. One of the key ideas in algorithms proposed

in (Stoye, 1998), (Stoye et al., 1997), (Tönges et al., 1996), (Stoye,

1997) is that alignment problem can be divided or sliced based on

the center or a reference index position of one of the strings. Then

the question becomes finding out the position where other strings

meet with the center of the first string. After those positions are

found, the alignment can be divided into two sub-problems: align-

ment up to the mid-point of the first string and alignment after the

mid-point of the string. These algorithms are based on dynamic pro-

gramming. If no optimization has been done, the time complexity of

these algorithms is 𝑂(𝑛2) related to the cost of finding correspond-

ing positions in the other strings. A speed-up (Jones and Pevzner,

2004) is provided by block alignment at the coarser level and using

a lookup table. The matrix is divided into (n/t) by (n/t) blocks. Mini-

alignment is applied to each block at the cost of 𝑂(𝑡2). However,

this still leads to complexity of 𝑂(𝑛2). The complexity of mini-

alignment is reduced to 𝑙𝑜𝑔 𝑛 using a lookup table and setting t to

𝑙𝑜𝑔 𝑛. The complexity is then reduced to 𝑂(𝑛2/𝑙𝑜𝑔𝑛). At its core,

it is still a dynamic programming approach but starts at the coarser

block level. Ideally, to improve divide-and-conquer methods, 𝑓(𝑛)

should be minimized without affecting coefficients a and b in the

recurrence relation.

Although a number of algorithms are developed to parallelize the

alignment algorithm, they still face some limitations. For example,

in dynamic programming methods, the computation of a value in the

matrix depends on the computation of values in the neighboring

cells. Due to this, parallelization is significantly limited. Heuristic

approaches have also limitations. For example, parameters such as

gap penalty should be defined by the user. Developing faster ap-

proaches based on these methods will again face similar problems.

Heuristic approaches find hits and explore these hits to expand the

matching sequence heuristically based on some parameters provided

by the user. For divide-and-conquer problems, there is a limit on

how further the problem can be divided into sub-problems. Even

with the availability of all the processing power, there is a theoretical

limit because of the number of levels a problem can be divided into

sub-problems due to the dependency between sub-problems. There-

fore, an alternate reasoning about alignment is required.

This work introduces a novel parallelizable and sensitive method

for sequence alignment called SEAL (SEquence ALignment).

SEAL integrates the advantages of divide-and-conquer paradigm

and the maximum contiguous sub-array solution. Divide-and-con-

quer divides the alignment search space between two sequences into

smaller parts and the maximum contiguous sub-array solution finds

locally optimal sequences. Given an array of integers, the maximum

contiguous sub-array solution attempts to find the sub-sequence of

consecutive integers which have the highest sum. The method finds

the maximum contiguous segment in the whole search space initially

and then uses divide-and-conquer to recursively find such segments

in the prefix and suffix spaces. It provides a complete alignment of

two sequences where locally optimum sub-sequences are joined

with gaps. In an improved version of SEAL called iSEAL, each con-

tiguous segment is further divided using borders and the segments

outside the borders are re-explored. This work focuses on compar-

ing protein sequences. Since our method minimizes dependencies in

the intermediate steps, the time complexity can be reduced to

Θ(log2 𝑛) in the presence of satisfactory number of parallel proces-

sors. The major advantage of our method its paralleizable nature.

Three components of SEAL are parallelizable: a) submatrices, b) the

diagonals, and c) maximum contiguous subarray. In our method, the

sub-problems (the maximum contiguous sub-array) can further be

solved as divide-and-conquer problems. Our major contribution is

SEAL: A Divide-and-Conquer Approach For Sequence Alignment

3

to increase the parallel components of the alignment algorithm with-

out sacrificing the accuracy of the algorithm.

This paper is organized as follows. The following section pro-

vides the overview of our methodology. Section 3 explains our al-

gorithms. Section 4 analyzes experiments and complexity of our

methods. The last section concludes our paper.

2 SYSTEM AND METHODS

The objective of our method is to design a parallelizable sequence

alignment method which is much more sensitive to distant relation-

ships than existing heuristic methods. SEAL is a novel sequence

alignment method which combines maximum contiguous sub-array

solution and divide-and-conquer approach. The maximum contigu-

ous sub-array solution finds the longest consecutive positive inte-

gers given an array of integers. It begins by exploring the entire

search space and then recursively explores sub-spaces. A maximum

contiguous sub-array solution is applied to each diagonal array in a

search space and scores are calculated. Scores of contiguous seg-

ments are compared to find the maximum segment for that search

space. The prefix and suffix sub-regions of this segment are ex-

plored recursively for maximum scoring segments in those regions

and sub-regions (Fig. 1). The process continues until the search

space spans a single cell. The basic divide-and-conquer methodol-

ogy used in SEAL is presented in Fig. 2. Borders are introduced to

each maximum contiguous segment in an improved version of

SEAL called iSEAL. BLOSUM62 amino acid scoring matrix is used

in this method.

Fig. 1. Prefix and suffix regions to be analyzed after finding a good

matching sequence.

Divide-and-Conquer

The challenging component of SEAL is to divide the alignment

problem into subproblems such that the outcomes of these subprob-

lems can be solved independently and then merged to find the align-

ment. We have the following observations:

1. A good matching sequence corresponds to a diagonal in the

matrix whereas horizontal or vertical matching corresponds

to a gap in the query or database sequence.

2. If there is a good matching sequence without any gaps, the

corresponding segments from the sequences will not be used

again for alignment.

The initial subproblem turns into finding the maximum subarray

problem. The maximum subarray problem is the task of finding the

subsequence that has the highest sum of its consecutive values. The

number of diagonals for a query sequence of m and a database se-

quence of n is (m+n-1). Note that each diagonal is a 1-dimensional

sequence of values (scores between corresponding amino acids

based on BLOSUM62 matrix).

After finding the best maximum contiguous array among all di-

agonals, this matching sequence divides the problem into 3 regions:

diagonal region, suffix, and prefix. This further helps us eliminate

all the regions that can be aligned with the identified matching re-

gion. The suffix and prefix regions are the next areas to be explored

(Fig. 1).

Fig. 2. Divide-and-Conquer exploration with maximum contigu-

ous subsequence in each sub-matrix.

Note that our algorithm introduces gaps naturally into the result so

that the user does not need to worry about selecting a gap parameter.

3 ALGORITHM

The basic steps involved in SEAL are as follows:

SEAL (M X N Matrix)

#Input: A M X N matrix. M and N are the lengths of query and #da-

tabase sequences respectively

#Output: An alignment of the query and database sequence.

Step 1. Create a matrix of BLOSUM scores for the given query

and database sequence. Divide M X N matrix into diago-

nals.

Step 2. Find the maximum contiguous sub-array for each diago-

nal of M X N matrix.

Step 3. Compare the scores of all the maximum contiguous seg-

ments for each diagonal and find the highest scoring seg-

ment for that matrix.

Step 4. Divide the matrix into two sub-matrices covering the pre-

fix and suffix search spaces of the highest scoring seg-

ment. Sub-matrix1 spans cell [0, 0] to the start coordinates

of the highest scoring segment. Sub-matrix2 occupies the

search space from end coordinates of highest scoring seg-

ment to cell [M, N]. Repeat Step 1 to Step 3 for sub-ma-

trices.

Suffix

Prefix

Step 5. Repeat Step 1 to Step 4. The recursion stops when the ma-

trix or sub-matrix has no positive scores or it reaches the

ends of the matrix.

Step 6. The highest scoring segments from all the sub-matrices

are joined and padded with gaps to make the final align-

ment.

Borders

The original SEAL algorithm introduces challenges about the

length of the segment. Usually longer matching sequence is pre-

ferred to shorter sequence matching sequence. However, this may

also eliminate some good segments to be matched. Assume that a

sequence such as [1, 1, 1, 5, 0, -1, 1] is given. The sum of the maxi-

mum subarray is 8. The last 3 values do not increase the score of the

sequence but using those returns a longer matching sequence. The

search regions for prefix and suffix start from the beginning and end

of the diagonal, respectively. The second best matching sequence

may intersect with the best matching subsequence. However, since

the corresponding portions of the query or database sequence are

used for the best subsequence, those portions cannot be used again

and this may lead that the second best matching subsequence is no

longer a good matching subsequence.

Fig 3 represents this scenario. The sum of scores are as follows

for three diagonals, A, B, and C: sum(A)=7, sum(B)=3, and

sum(C)=10. Diagonal C has a better matching sequence than diago-

nal A. The last two cells of A intersect with the first two cells of C.

If diagonal C is selected, those cells will not appear in the prefix

space to be further analyzed. Since those cells are ignored, diagonal

B is selected instead of diagonal A. On the other hand, the first two

cells of diagonal C could be ignored and then diagonal A with a good

score of 7 could be selected.

This problem can be avoided or minimized if special considera-

tion is given to the borders of the contiguous subarray. The contig-

uous segment of a matrix may include high and low scores. It is clear

that the highest score values should certainly be included in the final

alignment. A method which separates the good scoring part of the

maximum contiguous segment from the rest of the weak scoring

segment is designed. Borders separate the good scoring part of the

maximum contiguous segment. Beginning from the end coordinates

of a segment and moving inwards by deducting the current cell score

from the total score of a segment, the border is defined at the point

 A 1

 1

 3

 B 2 2

 1

 C -1

 1

 2

 5

 3

Fig. 3. The effect of low scores at the end of matching subsequence.

where the score of the segment falls by at most 2. This is repeated

for both ends of a segment to define hard borders. An example of a

maximum contiguous segment and the defined borders is given as

follows.

Maximum contiguous segment: 1 1 1 5 0 -1 1

Segment with borders(marked as red lines):1 1 | 1 5 | 0 -1 1

The portions outside the hard borders can be reused in further

stages of divide-and-conquer method. The algorithm is improved

and named as iSEAL. The basic steps involved in iSEAL are as fol-

lows:

iSEAL (M X N Matrix)

#Input: A matrix M X N with query sequence and database

#sequence. M and N are the lengths of query and database

#sequence respectively.

#Output: An alignment of query and database sequences.

Step 1. Create a matrix of BLOSUM scores for the given query

and database sequence. Divide M X N matrix into diago-

nals.

Step 2. Find the maximum contiguous sub-array for each diago-

nal of M X N matrix.

Step 3. Compare the scores of all the maximum contiguous seg-

ments for each diagonal and find highest scoring segment

for that matrix.

Step 4. For each highest scoring segment define borders.

Step 5. Repeat Step 1 to Step 4 for two sub-matrices on either

ends of the borders of the maximum contiguous segment.

Step 6. Repeat Step 1 to Step 5 until the sub-matrix has no posi-

tive scores or ends of matrix are reached.

Step 7. The highest scoring segments from all the sub-matrices

are joined and padded with gaps to make the final align-

ment.

4 IMPLEMENTATION

4.1 Experiments

We have implemented our algorithm using Perl. A database of 45

transcription factor protein sequences downloaded from NCBI

serves as a basis for all experiments. Each sequence from the data-

base is aligned with a test database sequence, using all the alignment

methods developed, so as to get a comparative view of alignments.

Preparing Test Database. To prepare a test database, protein se-

quences of transcription factors of all organisms are downloaded in

FASTA format from NCBI. A database of these sequences was cre-

ated with standalone BLAST version using makeblastdb command.

The query is searched against the database using the BLASTP com-

mand. The additional parameters such as the threshold value can be

specified according to the requirements. Gap penalty is not a subject

under focus for the present research, so the lowest values supported

by BLAST are used. For the experiments, default values are thresh-

old = 10.0, gapopen = 6 and gapextend = 2.

Identifying Motifs. Multiple sequence alignment of the database

of transcription factors sequences provides a useful insight into the

evolutionary relationships. Since all the proteins in the database are

transcription factors, they are expected to have similar functional

domains. Multiple sequence alignment method lines up a number

of sequences optimally by bringing the greatest number of similar

characters into alignment. Most popular tools for multiple sequence

SEAL: A Divide-and-Conquer Approach For Sequence Alignment

5

Query: gi|6323540|ref|NP_013611.1| TFIID subunit (19 kDa), involved in RNA polymerase II transcrip-

tion initiation, similar to histone H4 with atypical histone fold motif of Spt3-like transcription

factors [Saccharomyces cerevisiae]

Test Database Sequence: gi|125490392|ref|NP_038661.2| POU domain, class 5, transcription factor 1

[Mus musculus]

Gapped BLAST output:(Score=36)

Query 2 SRKLKKTNLFNKDVSSLLYAYGDVPQP-LQATVQCLDEL 39

 +RK K+T++ N+ SL + P+P LQ ++L

Sbjct 222 ARKRKRTSIENRVRWSLETMFLKCPKPSLQQITHIANQL 260

iSEAL output: (Score = 202)

Query: m s -

Db : l s l k n m c k l r p l l e k w v e e a d n n e n l q e i c k s e t l v q a

Query: r k l k k t n l f n k d v s s l l y a y g d v p q p - l - q a t v q c l d e l v s g

Db : r k r k r t s i e n r v r w s l e t m f l k c p k p s l q q i t - - - - - - - - - -

Query: y l v d v c t n a f h t a q n s q r n k l r l e - d - - - - - f - - - - - k f a l

Db : - - - - - - - - - - h i a - - - - - n q l g l e k d v v r v w f c n r r q k - g -

Query: r k d p i k l g r a e e l i a t n k e q q v t d d d e e a - k k q f n e t d n q n s l k r y

Db : k r s s i e y s q r e e y e a t g – - - - - - - - - - - a v s - - - - - - - - - - - - - - -

Query: r e e d e e g d k q g p k q f n e t d n q n s - - - - - l k r y r e e d

Db : - - - - - - - - - - - - - h f g - t p g y g s p h f t t l - - y - - - -

Query: e - - - - e g d - - - e m v t d d d e e a a g r n s a k q s t d s k a t k i r k q g p – - k

Db : s v p f p e g e a f p s v v t - - - - - a l g - - - - - - - - - s - - - - - - - - - p m h s

Fig. 5. Sample alignment comparison between gapped BLAST and iSEAL.

Fig. 4. Sample output of BLOCKS leading two blocks on sequences A: gi|47169278; B: gi|42543138; C: gi|19069247; D:

gi|116000610; E: gi|108884304; F: gi|2829920; G: gi|12545384; H: gi|47605752; I: gi|47117899; J: gi|6323540; K: gi|125490392.

BLOCK2

A KFDPWVLPNKALFGEKEWYFFSPRDR 100

B ALNLSFKNMAKLKPLLEKWLNDAENL 74

C ALELRFPDYDFCGESWGSFRRKTLAE 87

D VKADEARLASITDEKERKRLKRLLRN 67

E ERLARFLWSLPVAHPNISELDRSEAV 74

F DSSSVIVSTGKYKNFTIFLTIPFLHV 77

G PDYSMALSYSPEYASGAAGLDHSHYG 40

H QRNSGKWVCELREPNKKTRIWLGTFQ 84

I PDYSMALSYSPEYASGAAGLDHSHYG 40

J QNSQRNKLRLEDFKFALRKDPIKLGR 52

K SPCPPAYEFCGGMAYCGPQVGLGLVP 90

BLOCK1

A GSHMGIQETDPLTQLSLPPGFRFYPTDEELMVQYLCRKAAGYDFSLQLIAEIDLY 95

B GSHMEEPSDLEELEQFAKTFKQRRIKLGFTQGDVGLAMGKLYGNDFSQTTISRFE 100

C MRYLELGCISKTNKLFQKLQDLNPLLNIEIEAYSCKSSRRQRGRFVEKPLGYLLS 87

D MTVSGSSGRAKRSTTQAKAAEQMATKPQARRASEAGTSAVVKGFSHIPHGNTALS 78

E MAVGPPTGGSGNPPQIPVQPHPILAPSPLFALPTLNFTASQVATVCETLEESGDI 71

F MGRRKIEIKRIENKSSRQVTFSKRRNGLIDKARQLSILCESSVAVVVVSASGKLY 71

G MSLVGGFPHHPVVHHEGYPFAAAAAAAAAAAASRCSHEENPYFHGWLIGHPEMSP 43

H MNSFSAFSEMFGSDYESPVSSGGDYSPKLATSCPKKPAGRKKFRETRHPIYRGVR 77

I MSLVGGFPHHPVVHHEGYPFAAAAAAAAAAAASRCSHEENPYFHGWLIGHPEMSP 43

J MSRKLKKTNLFNKDVSSLLYAYGDVPQPLQATVQCLDELVSGYLVDVCTNAFHTA 77

K MAGHLASDFAFSPPPGGGDGSAGLEPGWVDPRTWLSFQGPPGGPGIGPGSEVLGI 67

 Id. No.

(gi no)
Dynamic
Prog.
Score

Gapped
BLAST-
score

iSEAL
score

Std.
BLOCKS
motifs

Motifs
detected
by
gapped
Blast

Motifs
detected
by
iSEAL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

47169278
42543138
19069247
116000610
6323540
108884304
2829920
12545384
47605752
47117899
4885665
12643786
4504573
68989258
31982933
13958612
112253397
54039792
3913130
127704
31317299
31317297
113594633
124360101
124359419
88963532
88963530
60498987
124360009
124359882
89113792
89113790
89113784
89113782
89113780
89113778
124054218
124013584
729811
729810
81673105
47117699
122934930
17981708
122053927

439
557
417
414
427
555
464
498
516
498
501
526
444
531
380
417
395
432
533
415
450
452
463
350
497
358
350
376
489
410
350
352
323
351
358
343
281
431
380
376
451
498
428
454
376

22
430
36
32
36
70
31
33
34
33
36
28
35
41
24
38
24
39
30
36
26
2
30
19
26
26
26
19
25
41
26
24
26
27
26
27
26
33
27
27
29
33
27
40
38

164
516
248
252
202
265
222
175
317
175
243
259
245
227
156
190
223
214
261
136
147
152
218
176
114
162
156
248
167
274
158
151
134
177
158
174
140
255
182
163
162
175
206
228
196

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
1
1
2
1
1
0
1
0
2
0
1
0
2
2
2
2
2
1
1
2
1
2
2
2
0
1
2
1
1
2
2
2
2
2
2
2
2
2
1
2
2
2

2
2
2
2
2
2
2
0
2
0
1
2
2
1
2
1
1
2
2
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
1
2
2
2

Table 1. Comparison of alignment methods on a database of 50

transcription factors.

alignment are ClustalW [13] and PileUp [14]. ClustalW is a pro-

gressive method of multiple sequence alignment in which most re-

lated sequences are aligned and then progressively less related se-

quences or groups of sequences are added. Alignments based on

localized sequences give information about domains and motifs.

The common blocks or motifs are extracted from unaligned se-

quences based on previously calculated motifs from known gene

families. There are widely used web tools like Profile [14] and

BLOCKS [14]. Profile identifies highly conserved portion of the se-

quence alignment and constructs a score profile which includes

score for substitutions and gaps. BLOCKS tool concentrates on the

conserved regions of the alignment with substitutions without gaps.

Since SEAL involves placing gaps between locally optimal se-

quences, BLOCKS is a good tool to provide standard motifs without

gaps. In Table 1, the column for Std. BLOCKS motifs indicates the

number of motifs found by the BLOCKS tool. Multiple sequence

alignment of some sequences by BLOCKS is shown in Fig. 4 to give

a measure of the number of significant motifs (protein segments

which can function independently) identified by alignment methods.

The Dynamic Programming alignment (Needleman- Wunsch)

serves as a standard for each alignment as it gives optimal alignment

with the maximum score. BLAST (without gaps) and gapped

BLAST are very popular tools and therefore can serve as good

benchmarks. The methods developed in this research SEAL and im-

proved SEAL (with borders) are used for alignment. The scores of

the alignments produced with each method are compared. Fig. 5 pro-

vides an example of comparison of alignments between gapped

BLAST and iSEAL.

In a total of 45 sequence alignments, all the scores obtained

by iSEAL are higher than those obtained by gapped BLAST.

There are 14 cases in which motifs detected by iSEAL are

undetected by gapped BLAST, 6 cases where motifs detected
by gapped BLAST are undetected by iSEAL. In the remaining cases,

both BLAST and iSEAL detected the same motifs. Therefore, ac-

cording to the results obtained, iSEAL gives 87% performance effi-

ciency in detecting motifs and BLAST gives 75%. The range for the

length of query sequences is [81..217]. In our independent dataset,

we have tried sequences whose length between about 60 and 700.

We have looked into a number of newer alignment programs. In

essence, they maintain the similarity of the traditional algorithms.

However, methods such as AlignMe, can use additional information

such as PSSM for alignment with low sequence identity. In our case,

we apply plain alignment comparison and compare with AlignM-

Fast. For the example provided in Fig. 4, AlignMe-Fast barely hits

both motifs. The size of alignments is almost half of what iSEAL

detects in Fig. 5. The aligned parts with respect to the blocks are

highlighted below:

SEAL combines the divide-conquer method with the maximum

contiguous sub-array solution. Locally best alignments are found

and combined to give a complete alignment between two sequences.

In this work, each sequence of a database of 45 query sequences is

aligned with a test database sequence using Dynamic

Programming, BLAST (without gaps), gapped BLAST, SEAL and

iSEAL sequence alignment methods. The alignment scores ob-

tained by SEAL and iSEAL are consistently higher than BLAST in

all 50 cases. In 60% of cases, all the motifs detected by the

BLOCKS program are detected by both SEAL and gapped BLAST.

In 28% of cases, SEAL detects motifs which are undetected by

BLAST and in 12% of cases BLAST detects motifs undetected by

SEAL. Therefore, SEAL is a better scoring method than BLAST

and produces good quality alignments. Table 1 provides the com-

parison of alignment methods for each sequence. We applied one-

tailed t-test, since we are interested in detecting motifs or sensitivity

of detection rather than accuracy. We have obtained a p-value of

0.048 and this is enough to reject the null hypothesis.

4.2 Complexity Analysis

In this section, we provide the complexity analysis for running al-

gorithm sequentially and in parallel. Since our method minimizes

the dependencies between steps of the procedure, it is possible to

reach low complexity when run in parallel with enough number of

query MSRKLKKTNLFNK-----DVSSLL----------------

db MAGHLASDFAFSPPPGGGDGSAGLEPGWVDPRTWLSFQGP

query ----TAQNSQRNKL---RLEDFKFALRKDPIKLG------

db KVEPTPEESQDMKALQKELEQFAKLLKQKRITLGYTQADV

SEAL: A Divide-and-Conquer Approach For Sequence Alignment

7

processors. We provide time complexity of sequential algorithm to

explain the complexity of the parallel algorithm.

Sequential Complexity

The complexity analysis includes two major computations. These

include finding the maximum contiguous sub-array of all the diago-

nals in a matrix and dividing the matrix into two sub-matrices. The

time complexity for finding the maximum contiguous sub-array for

a single diagonal is 𝑂(𝑛) using Kadane’s algorithm (Bentley;

1984).The complexity for finding the maximum contiguous sub-ar-

ray for all the diagonals in a n x n matrix and the highest scoring

segment among them is 𝑂(𝑛2).

SEAL finds the highest scoring segment and splits the matrix into

3 parts: the sub-matrix that holds the highest-scoring segment, the

sub-matrix before the segment and the sub-matrix after the segment.

In the worst case, matrix is split into two when the length of segment

is very small and the best maximum contiguous sub-array appears

close to the boundaries of the matrix. On the average, each sub-ma-

trix has the quarter of the matrix size before the split. The time com-

plexity of SEAL denoted by T(n), can be represented by the follow-

ing recursion:

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑐𝑛2 (1)

assuming that the split divides the matrix into roughly two equal-

sized partitions and assuming the length of maximum contiguous

array is 0 (i.e., in reality, it cannot be 0, this is just a case of worst

case for split). The time complexity of SEAL, after solving this

equation is 𝑂(𝑛2). Actually, in the recurrence part, the coefficient

b of 𝑇(𝑛/𝑏) can be more than 2 if the length of the common subse-

quence is a function of n.

Parallel Complexity

The advantage of SEAL is its parallelizable nature. The traditional

divide-and-conquer algorithms parallelize 𝑎𝑇(𝑛/𝑏) of the recur-

rence relation. If there are a number of processors, each processor

should execute 𝑇(𝑛/𝑏) and run concurrently. In such a case, if

𝑓(𝑛) ∈ Θ(𝑛𝑐), the time complexity becomes Θ(𝑛𝑐). The SEAL al-

gorithm does not only parallelize 𝑎𝑇(𝑛/𝑏) but also parallelizes

𝑓(𝑛). It parallelizes 𝑓(𝑛) at two levels. Therefore, three components

of SEAL are parallelizable: a) submatrices (aT(n/b)), b) the diago-

nals, and maximum contiguous subarray of each diagonal. a) The

divided sub-matrices can be processed independently by different

processors. b) The diagonals in each matrix also can be processed

independently for finding maximum contiguous sub-array. c) The

maximum contiguous subarray can be computed in parallel. When

SEAL is parallelized based on the parallel processing of sub-matri-

ces, the time complexity can be represented by the following recur-

rence tree.

The function f(n) should have low time complexity to lower the

overall time complexity. The complexity of finding maximum con-

tiguous subarray is 𝑂(log 𝑛) in the presence of (
𝑛

log 𝑛
) parallel pro-

cessors (Perumella; 1995). Since each diagonal can be executed in

parallel, the complexity of finding the maximum contiguous subar-

ray among all diagonals is 𝑂(log 𝑛). The previous recurrence rela-

tion in (1) turns into

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑐 log 𝑛.

Fig. 5. Recurrence tree for SEAL

Each sub-matrix can be computed in parallel further. Then the re-

currence relation becomes

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑐 log 𝑛

The complexity of this recurrence relation is Θ(log2 𝑛) in the

presence of satisfactory number of processors. In this expression,

the coefficient b is 2. As long as b>1, this Θ(log2 𝑛) time complex-

ity still holds. This indicates that the submatrices do not even need

to be split into half. The recurrence relation can be written as:

𝑇(𝑛) = 𝑇 (
𝑛

𝑏
) + 𝑐 log 𝑛

where b>1 and the complexity is still Θ(log2 𝑛). Our work shows

the open area for the research to be conducted for sequence align-

ment by reducing the dependencies among steps.

In terms of space complexity, each diagonal is processed inde-

pendently, and the total size of diagonals is the size of the complete

matrix. At least 𝑂(𝑀𝑥𝑁) space is required. The maximum contigu-

ous subarray problem requires linear space. The space complexity

of this system is 𝑂(𝑀𝑥𝑁).

5 DISCUSSION

SEAL detects and aligns the major similar segments between two

sequences and is also sensitive to small similar fragments in other

parts of the alignment. It gives a better alignment and score for

highly similar sequences when compared to other heuristic methods.

It is sensitive to distantly related sequences and therefore helps in

better function prediction of unknown proteins. SEAL provides an

ease of usage without the burden of specifying gap penalties. Gap

penalty parameters, namely, gap open and gap extension costs, need

not be specified for SEAL as they are implicitly introduced within

the alignment. This overcomes the disadvantages of using the gap

penalty threshold value, as used in other heuristic methods, which

may not be good for all alignments. The algorithm can be parallel-

ized to reduce time complexity.

In our experiments, we have obtained promising results for

SEAL. However, there is still space for improving SEAL. In the pro-

posed approach, we tried to keep the interaction between subprob-

lems minimal. We have used a Greedy approach: the segment with

the highest scores should be part of the final alignment. The borders

of the selected segment may eliminate some good matching seg-

ments. To avoid this problem, we introduced hard borders where re-

gions outside the hard borders can be reused in the subproblems.

This minimized the problem of intersecting diagonals. However,

this component is a heuristic component of our algorithm. We be-

lieve that this heuristic can be avoided and optimal results can still

be obtained. However, it may limit the parallelization of the algo-

rithm. Further research has to be done to study intersecting diago-

nals. Parallel methods may be developed to compute maximum seg-

ments on each diagonal concurrently with independently processing

sub-matrices. With enough number of parallel processors, it is pos-

sible to reduce the complexity to Θ(log2 𝑛) using our method. We

need high number of processors to truly evaluate the performance of

our system. In basic parallel environments, our system does not out-

perform the other techniques in running time. As future work, the

parallel implementation of our method should be evaluated on GPU-

based architectures or high-performance computing servers. Our

proposed algorithm can also be incorporated or used by other align-

ment algorithms.

REFERENCES

Jon Bentley. (1984) Programming Pearls: Algorithm Design Techniques, Communica-

tions of the ACM, 25(9), 865-871.

Choi, Y. (2012). A Fast Computation of Pairwise Sequence Alignment Scores Be-

tween a Protein and a Set of Single-locus Variants of Another Protein. In Pro-

ceedings of the ACM Conference on Bioinformatics, Computational Biology and

Biomedicine (pp. 414–417). New York, NY, USA: ACM.

http://doi.org/10.1145/2382936.2382989

Dong Dai; Xi Li; Chao Wang; Xuehai Zhou, "Cloud Based Short Read Mapping Ser-

vice," Cluster Computing (CLUSTER), 2012 IEEE International Conference on ,

vol., no., pp.601,604, 24-28 Sept. 2012

Díaz, D., Esteban, F. J., Hernández, P., Caballero, J. A., Dorado, G., & Gálvez, S.

(2011). Parallelizing and optimizing a bioinformatics pairwise sequence align-

ment algorithm for many-core architecture. Parallel Computing, 37(4–5), 244–

259. http://doi.org/10.1016/j.parco.2011.03.003

Huang, X., & Miller, W. (1991). A time-efficient, linear-space local similarity algo-

rithm. Advances in Applied Mathematics, 12(3), 337–357.

http://doi.org/10.1016/0196-8858(91)90017-D

D. Mathog, “Parallel BLST on split databases”, Bioinformatics, vol. 19(4), 2003.

Arun Krishnan. (2005) GridBLAST: a Globus-based high-throughput implementation

of BLAST in a Grid computing framework, Concurrency and Computation: Prac-

tise and experience, 17(13), 1607-1623.

Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., … Lopez, R.

(2015). The EMBL-EBI bioinformatics web and programmatic tools framework.

Nucleic Acids Research. http://doi.org/10.1093/nar/gkv279

Li, H. and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler

transform. Bioinformatics, 2010. 26(5): p. 589-595

Li, Y., Patel, J. M., & Terrell, A. (2012). WHAM: A High-Throughput Sequence

Alignment Method. ACM Trans. Database Syst., 37(4), 28:1–28:39.

http://doi.org/10.1145/2389241.2389247

Heshan Lin et al. (2008) Massively parallel genomic sequence search on the Blue

Gene/P architecture, Conference on High Performance Networking and Computing,

Proceedings of the 2008 ACM/IEEE conference on Supercomputing, article 33.

H. Lin, et al. (2005) Efficient Data Access for Parallel BLAST, IEEE International

Parallel & Distributed Processing Symposium

McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y. M., Buso, N., … Lopez,

R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Re-

search, 41(W1), W597–W600. http://doi.org/10.1093/nar/gkt376

Jones, N.C., Pevzner, P., 2004. An Introduction to Bioinformatics Algorithms. MIT

Press.

O’Driscoll, A., Belogrudov, V., Carroll, J., Kropp, K., Walsh, P., Ghazal, P., Sleator,

R.D., 2015. HBLAST: Parallelised sequence similarity - A Hadoop MapReduca-

ble basic local alignment search tool. J. Biomed. Inform. 54, 58–64.

doi:10.1016/j.jbi.2015.01.008

K. Perumalla and Narsingh Deo (1995), Parallel Algorithms for Maximum Subse-

quence and Maximum Subarray, Parallel Processing Letters 1995 05:03 , 367-

373

W. R. Pearson. (1995) Comparison of methods for searching protein sequence

 databases, Protein Sci, 4, 1147-1160.

Shpaer E. G. et al. (1996) Sensitivity and selectivity in protein similarity searches: a

 comparison of Smith-Waterman in hardware to BLAST and FASTA, Genomics.

 38(2), 179-191.

Soding, J. (2005). Protein homology detection by HMM-HMM comparison. Bioinfor-

matics, 21(7), 951–960. http://doi.org/10.1093/bioinformatics/bti125

Stamm, M., Staritzbichler, R., Khafizov, K., & Forrest, L. R. (2014). AlignMe—a

membrane protein sequence alignment web server. Nucleic Acids Research,

42(W1), W246–W251. http://doi.org/10.1093/nar/gku291

Soding, J., 2005. Protein homology detection by HMM-HMM comparison. Bioinfor-

matics 21, 951–960. doi:10.1093/bioinformatics/bti125

Stamm, M., Staritzbichler, R., Khafizov, K., Forrest, L.R., 2014. AlignMe—a mem-

brane protein sequence alignment web server. Nucleic Acids Res. 42, W246–

W251. doi:10.1093/nar/gku291

Stoye, J., 1998. Multiple sequence alignment with the Divide-and-Conquer method.

Gene 211, GC45–56.

Stoye, J., 1997. Divide-and-Conquer Multiple Sequence Alignment (Dissertation The-

sis). Universität Bielefeld, Forschungsbericht der Technischen Fakultät, Abteilung

Informationstechnik.

Stoye, J., Moulton, V., Dress, A.W., 1997. DCA: an efficient implementation of the

divide-and-conquer approach to simultaneous multiple sequence alignment. Com-

put. Appl. Biosci. CABIOS 13, 625–626.

Tönges, U., Perrey, S.W., Stoye, J., Dress, A.W.M., 1996. A general method for fast

multiple sequence alignment. Gene 172, GC33–GC41. doi:10.1016/0378-

1119(96)00123-0

Mingming Sun; Xuehai Zhou; Feng Yang; Kun Lu; Dong Dai, "Bwasw-Cloud:

Efficient sequence alignment algorithm for two big data with MapReduce,"

Applications of Digital Information and Web Technologies (ICADIWT), 2014

Fifth International Conference on the , vol., no., pp.213,218, 17-19 Feb. 2014
Tang, C. L., Xie, L., Koh, I. Y. Y., Posy, S., Alexov, E., & Honig, B. (2003). On the

role of structural information in remote homology detection and sequence align-

ment: new methods using hybrid sequence profiles. Journal of Molecular Biol-

ogy, 334(5), 1043–1062.
Hao Wang. et al. (2003) BLAST++: BLASTing queries in batches, Bioinformatics,

19(17), 2323-2324.

Jiren Wang and Qing Mu. (2003) SOAP-HT-BLAST: high-throughput BLAST based

on Web services, Bioinformatics, 19(14), 1863-1864.

White C.T. (1991) BioSCAN: a VLSI-based system for biosequence analysis, Com-

puter Design: VLSI in Computers and Processors, ICCD '91. Proceedings, 1991

IEEE International Conference, 14(16), 504-509.

http://portal.acm.org/author_page.cfm?id=81321488079&coll=GUIDE&dl=GUIDE&trk=0&CFID=34593196&CFTOKEN=16719497
http://doi.org/10.1093/nar/gkt376
http://www.labmeeting.com/papers/author/shpaer-eg
http://www.labmeeting.com/paper/21862402/shpaer-1996-sensitivity-and-selectivity-in-protein-similarity-searches-a-comparison-of-smith-waterman-in-hardware-to-blast-and-fasta
http://www.labmeeting.com/paper/21862402/shpaer-1996-sensitivity-and-selectivity-in-protein-similarity-searches-a-comparison-of-smith-waterman-in-hardware-to-blast-and-fasta
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=367
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=367
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=367

