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Abstract Multi-class classification is an important and 

challenging problem for biological data classification. 

Typical methods for dealing with multi-class classification 

use a powerful single classifier such as neural networks to 

classify the data into one of many classes. Alternatively, the 

binary classifiers are used in one-versus-one (OVO) and 

one-versus-all (OVA) classifier schemes for multi-class 

classification. However, it is not clear whether OVO or 

OVA yield good performance results. In this paper, we 

propose a greedy method for developing a hierarchical 

classifier where each node corresponds to a binary classifier. 

The advantage of our greedy hierarchical classifier is that at 

the nodes any type of classifier can be used. In this paper, 

we analyze the performance of the proposed technique using 

neural networks and naive Bayesian classifiers and compare 

our results with OVO, OVA, and exhaustive methods. Our 

greedy technique provided better and more robust accuracy 

than others in general for biological data sets including 3 to 

8 classes. 
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1  INTRODUCTION 

Binary classification is the problem of classifying a data into 
two classes where one class typically represents belonging 
to the target class (true or belongs to) or one of the two 
classes whereas the other one corresponds to not belonging 
to the target class (false or does not belong to). A binary 
classifier is actually a model to separate data into two 

classes. Multi-class classification is the problem of 
classifying data into one of many classes. If the dataset 
contains multiple classes, generating a model that separates 
the data of different classes becomes difficult. Multi-class 
classification is an important and challenging problem for 
biological data classification [Gupta K et al. 2012].  Some of 
the examples of multi-class biological datasets include 
breast tissue, iris, yeast, thyroid diseases, and protein 
crystallization. The multi-class classification has been 
studied in (Sánchez-Maroño et al. 2010; Wang Y and 
Casasent D 2006 ; El-Alfy E 2010; Casasent D and  Wang Y 
2005 ; Jain P et al. 2008, Nagi S and  Bhattacharyya D  
2013).  

Multi-class classification problem can be dealt with a) 
using a single multi-class classifier or b) merging the results 
of binary classifiers. Different feature selection 
methodologies are required to handle datasets with very 
high dimensionality [Hulse J et al. 2012].   A single multi-
class classifier such as neural networks may not meet the 
performance or accuracy goals of the classification problem, 
since it may be difficult to come up a single model to 
categorize dataset. Alternatively, the results of binary 
classifiers are merged for multi-class classification problem. 
The results of binary classifiers are considered as a vote for 
the final classification or these binary classifiers may be 
used in a hierarchical fashion to yield the class of a data 
item. Although there have been many research studies that 
use the results of binary classifiers for multi-class 
classification problem, the research on hierarchical binary 
classifiers has been limited [Sánchez-Maroño N et al. 2010]. 

A hierarchical binary classifier classifies the data into 
two macro-classes at each node. A macro-class is a set of 
classes. Depending on the output of the classifier at a node, 
either the right child node or the left child node is taken for 
further classification and this evaluation continues until a 
node classifies the data into a single class (not into a macro-
class). One of the decisions to be made for constructing 
hierarchical binary classifier is the choice of classifier to be 
used at the internal nodes. Although powerful binary 
classifiers such as support vector machines (Cortes C and 
Vapnik V 1995) have been used for hierarchical binary 
classifier, multi-class classifiers such as neural networks 
have also been used as a binary classifier at the internal 
nodes (El-Alfy E 2010). Casasent and Wang (Casasent D 
and Wang Y 2005) propose a balanced tree using SVM that 
has two equal-sized macro-classes to yield as a classifier at 
the internal nodes. However, splitting into two equal-sized 
macro-classes may not yield the best accuracy at each node. 
Tibshirani and Hastie (Tibshirani R and Hastie T 2007) 
propose SVM-based hierarchical margin trees for high-
dimensional classification and test it on cancer microarray 
data. They propose splitting by using the largest margin at 
each time, but this yields the separation of the most different 
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class each time. Therefore, their greedy technique mostly 
separates one class from the rest at each node and this is not 
useful for biological subgrouping. To alleviate this problem, 
they propose complete linkage approach but it requires the 
computation of distances of items in different partitions. In 
addition, their approach is not generalizable to other 
classifiers. Hierarchical binary classifiers are also applied on 
other types of data such as hand written numerals using 
hierarchical GMDH-based neural networks (El-Alfy E 
2010). The authors also consider the choice of features to be 
used at each node. 

In this paper, we propose a greedy hierarchical binary 
classifier construction approach for multi-class classification 
problem which is an extension of our previous work 
(Begum and Aygun, 2012). In this work, we propose a fast 
technique to construct a greedy hierarchical binary classifier 
that allows using any type of classifier at the internal nodes.   
Two types of greedy techniques are proposed: a) top-down 
and b) bottom-up. The top down construction starts with a 
macro-class that contains all classifiers and tries to split into 
two sub-macro-classes. The bottom-up construction starts 
with best one-versus-one classifier and merges other classes 
that would yield high accuracy. The performance in terms of 
accuracy and the complexity of building a greedy-based 
hierarchical classifier is also explained. The performance of 
the proposed greedy hierarchical binary classifier is 
compared with two commonly used methods that utilize 
binary classifiers: one-versus-one and one-versus-all. In 
addition, to determine where the actual performance stands, 
all possible binary classifiers are generated exhaustively, 
and error-correcting output codes (ECOC) are used in 
labeling the class of a data item. Exhaustive method is 
usually avoided due to its significant cost for training a large 
number of classifiers (Sánchez-Maroño et al. 2010). When 
creating all binary classifiers in exhaustive method, we 
make statistical analysis of different binary classifiers which 
can be helpful in research work. Various techniques have 
been used to combine the results of many binary classifiers 
including the majority vote (Friedman J1996), error 
correcting output code (ECOC) model (Escalera S et al. 
2010), the bradley–terry model (Hastie T and Tibshirani R 
1998), and the  directed acyclic graph model ( Platt JC, 
Cristianini N and Shawe-Taylor J 2000). In this paper, we 
pick ECOC for merging results for the exhaustive, OVO, 
and OVA classification results.  

This paper is organized as follows. The following 
section provides the background for ECOC and the basics of 
building a hierarchical binary classifier. Section 3 explains 
our greedy hierarchical binary classifiers including both top-
down and bottom-up versions. Experiments and the 
evaluation of our method are discussed in Section 4. The 
last section concludes our paper. 

2 BACKGROUND  

Multiclass classification problem is to map the data samples 
into more than two classes. There are two main approaches 
for solving multiclass classification problems. The first 
approach deals directly with the multiclass problem and uses 
algorithms like Decision Trees (Breiman L et al. 1984; 

Quinlan J 1993), Neural Networks (Bishop CM 1995), k-
Nearest Neighbor (Bay SD 1998) and naive Bayesian 
classifiers (Rish I 2001). The main problem with this 
approach is to determine features that will distinguish classes 
when the number of classes increases (Guyon I et al. 2006) 
As a result, this approach is likely to yield lower accuracy.  

The second approach solves the multiclass problem by 
converting it into a set of binary classification problems 
using binary classifiers such as Support Vector Machines. 
Several methods have been proposed to decompose the 
multi-class problem into binary problems. The one-versus-all 
(OVA) and one-versus-one (OVO) are the two popular 
methods of decomposition.  In OVA, K class problem is 
solved by K binary classifiers, where each classifier 
discriminates a given class from the other K−1 classes (Duda 
R et al. 2000). In OVO, a binary classifier is built to 
distinguish a class from each other class. This requires 
building  binary classifiers (Hastie T and 
Tibshirani R 1998). Dense (Allwein et al. 2002) and sparse 
random (Escalera et al.  2009) schemes are also introduced 
as a solution to decompose into binary classifiers. In dense 
scheme, the suggested number of classifiers to be learned is 
10logK. In sparse method, 15logK classifiers are created. 
Another scheme known as exhaustive method generates all 
possible binary classifiers for a given multiclass problem 
(Sánchez-Maroño N et al. V 2010).  A common criticism of 
these methods is that, they decompose the multiclass 
problem a priori, without considering the properties and 
characteristics of the data sets (Allwein et al. 2002).  

Solving multiclass problem using binary classifiers also 
has several drawbacks. The main problem is to integrate the 
results of binary classifiers to classify data. Error-Correcting 
Output Codes (ECOC) is a general framework to integrate 
the results of binary classifiers to address the multiclass 
problem (Escalera S et al. 2010). It consists of two steps: 
encoding and decoding. 

1. Encoding step 

In the encoding stage, a codeword is assigned for each of the 
classes. If there are n possible binary classifiers for a K- class 
problem, then a codeword of length n is obtained for each 
class where each position of the code corresponds to a 
response of a given binary classifier. Arranging the 
codewords as rows of a matrix, we define a ternary coding 
matrix M, where M is a  matrix and 

. In this matrix M, +1 and -1 are defined 

by the class membership of the left and right part (class) of 
binary classifiers. For example, +1 for 1-2 classifier indicates 
that data belongs to class 1, and -1 indicates that data belongs 
to class 2. The value 0 is used to indicate that the class is not 
considered as a member of the binary classifier (Escalera S et 
al. 2008). Fig. 1 shows an example of encoded coding matrix 
M for 3-class problem.  

2. Decoding step 

In the decoding step, applying the n trained binary 
classifiers, a code is obtained for each data point in the test 
set. This code is compared to the base codewords of each 
class defined in the matrix M, and the data point is assigned 



to the class with the ”closest” codeword. The most 
frequently applied decoding designs are: hamming 
decoding, inverse hamming decoding, and euclidean 
decoding (Escalera S et al. 2010). 

 

(a) OVO                   (b) OVA  

  

(c)  Exhaustive 

 
 
 
 
 
 
 
 
 

 

Fig. 1 Encoded Coding Matrix for ECOC 

The output space can also be divided in a hierarchical 

fashion where the classes are arranged into a tree where the 

path from the root node to a leaf node leads to a 

classification of a new pattern.  

In Hierarchical Binary Classifiers (HBCs), each node of 

a tree is a binary classifier that uses K−1 binary classifiers to 

classify a K-class problem (Wang Y and Casasent D 2006). 

Fig. 2 is an example of HBC for a 5-class problem where 

each node in the tree is a Binary Classifier (BC).  For testing 

a new pattern, a path is followed from the root to a leaf 

node, indicating the class label of an unknown sample. In 

the best case, it is possible to classify a sample at the top 

node and in the worst case, K−1 binary classifiers may be 

required depending on the tree structure of HBC. Thus, the 

tree structure affects the number of classifiers to be used for 

 

 
 

 

testing a data sample.  Various hierarchical tree structures 

are possible for a K-class problem. In one-versus-all 

version, the trees are organized in a linked list fashion, 

whereas balanced hierarchical tree structure may reduce the 

number of classifiers to be used. 

The tree structure may influence the classification accuracy 

of a test sample. Therefore, the hierarchical splitting (i.e., 

the macro-class selection) at each node in the hierarchy 

should not be done arbitrarily or by intuition. In literature, 

different clustering algorithms have been used for binary 

partition. A generalization of c-means clustering along with 

the ideas from simulated annealing can be used to obtain the 

binary partition of classes in the hierarchy (Kumar S et al. 

2002). In (Vural V and Dy JG 2004),  Vural and Dy 

suggested K-mean clustering method to define the binary 

partitions of the classes. Lorena and Carvalho proposed two 

general minimum spanning tree based algorithms to 

automatically produce the hierarchical tree structure using 

information collected from the multiclass data sets (Lorena 

A and Carvalho A 2008). In this way, hierarchical trees are 

organized in two different designs:  bottom-up and top-

down (Duda R et al. 2000). In this paper, these two 

approaches are used where macro-class selection is based on 

greedy technique of trained binary classifiers.  

3 PROPOSED APPROACH 

Our approach solves the multiclass classification problem 
by a hierarchical binary classifier. In this method, our major 
concern is to generate the best hierarchical tree in terms of 
accuracy. Since the number of all possible trees becomes 
high, we also propose two greedy techniques (top-down and 
bottom-up) to separate the classes at each node in the 
hierarchical tree structure.  This greedy tree construction can 
be done using any classifier. In this work, we build the 
hierarchical greedy trees using neural and naïve Bayesian 
classifier.  Our proposed method has the following major 
steps explained below. 
 

  
Classifiers 

 

Class 

Name 1-2 1-3 2-3 

1 +1 +1 0 

2 -1 0 +1 

3 0 -1 -1 

  
Classifiers 

  

Class 

Name 1-23 2-13 3-12 

1 +1 -1 -1 

2 -1 +1 -1 

3 -1 -1 +1 

  Classifiers 

Class 

Name 1-2 1-3 2-3 1-23 2-13 3-12 

1 +1 +1 0 +1 -1 -1 

2 -1 0 +1 -1 +1 -1 

3 0 -1 -1 -1 -1 +1 

Fig. 2 Hierarchical Binary Classifier   for 5 class 

problem 

 



1. Train binary classifiers 

First, the dataset is divided into two sets: training and 
testing. For training, we created all possible binary 
classifiers for multiclass problem. This approach includes 
the schemes OVA and OVO. The number of possible 
combinations for K-class problem can be obtained using the 
following formula: 
 
 
 
 

 

 

where  
 
     

 
 

  

if             

                                                                 

                                (1)  

For example, using (1), the number of possible binary 

classifiers for 5-class problem is given in Table 1. The 

expression f(K) iterates for all possible macro-class splits. 

Pi,j,K returns all possible number of classifiers when K 

macro-classes are split into i classes on one side and j 

classes on the other side. In Table 1, each row indicates a 

possible macro-class split and shows the number of 

classifiers for that split. 
 

Table 1 :  Possible binary classifiers for 5-class problem 

  

  
  

  

  
  

  

  
  

  

  
  

  

  
   

 
 
 

 
 
Table 2 depicts the number of possible classifiers for class 
3-8 problems.    
 
 
 
 
 

Table 2:  Possible binary classifiers of different multiclass problems 

(Begum S and Aygun R 2012) 

No. of  

Classes 
No. of Binary Classifiers 

3 6 

4 25 

5 90 

6 301 

7 966 

8 3025 

2. Generate all possible trees 

To understand and analyze the nature of binary hierarchical 
trees we generated all possible trees using the following 
recursive equation, 

  
 

 
 
 
where    
 
if             
                f(1)=1 , 

         f(2)=1  ,                                (2) 
 and  K is the number of classes.  

This is a recursive function and the number of possible trees 
becomes high with the increase in class number. According 
to (2), the number of possible hierarchical trees for 4-class 
problem is 15 (Begum S and Aygun R 2012). Table 3 shows 
the possible hierarchical binary trees for different number of 
classes.  

Table 3: Possible hierarchical binary trees of different multiclass 

problems (Begum S and Aygun R 2012) 

No. of  Classes No. of Trees 

3 3 

4 15 

5 105 

6 945 

7 10395 

8 135135 

 
These trees are evaluated and the best tree is obtained by 
measuring the accuracy of binary classifiers used at each 
node in the hierarchical design. For example, to get the best 
tree for a 3-class problem, we need to evaluate all 3 
hierarchical trees (Fig. 3). The comparative result of greedy 
approach with the best tree is also included in the 
experiments section.  
 

Binary 

Classifier 

Name 

Equation Classifier 

Number 

One-versus-
one (IBI) 2

  )1,4(C)1,5(C 
 

10 

One-versus-

two (IBII) 

)2,4(C)1,5(C   30 

One-versus-

three (IBIII) 

)3,4(C)1,5(C   20 

One-versus-

four (IBIV) 

)4,4(C)1,5(C   5 

Two-versus-

two (IIBII) 2

  )2,3(C)2,5(C 
 

15 

Two-versus-

three (IIBIII) 

)3,3(C)2,5(C   10 

Total 90 
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(a)Tree 1                    (b) Tree 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Develop a greedy hierarchical classifier  

Since training all the binary classifiers and building the 
hierarchical tree is computationally infeasible, we propose a 
fast algorithm to build the tree automatically while training. 
In this technique, the classes are separated into macro-
classes at each node based on the accuracy of the neural 
binary classifier in the training phase. In our greedy 
hierarchical model, the tree has K-1 binary classifiers and K 
leaf nodes for K-class problem. Two different greedy tree 
construction algorithms are proposed here: top-down and 
bottom-up. Fig. 4 shows the pseudo-code of top-down and 
bottom-up hierarchical binary tree generation algorithm. 
The provided pseudo-code is an updated version of our 
implementation to increase clarity. 
 
3.1 Top-down greedy tree construction 
 
For top-down approach, for a K-class problem at the top 
node it selects the best binary classifier i b j that splits into 

two macro classes i and j where and S includes 

all classes. (Fig. 4 (a) Line 4 to 8). This step is followed 
recursively for all the macro-classes from top to bottom and 
a hierarchical binary tree is built with K leaf nodes where 
each leaf node corresponds to a given class (Fig. 4(a) Line 9 
to 10). The iterative procedure of hierarchical tree 
generation for 4-class problem in top-down method is 
shown in Fig. 5 
In Fig. 5, at the top node the best binary classifier 2b134 ({2} 
in one macro-class, {1, 3, 4} in other macro-class) is 

selected from all classifiers in IBIII, and IIB II. Here IBIII 

represents the classifiers that split classes into two groups 
where the first group has one class and the other group has 
three classes. Since the left node has only one class, it then 
finds the best binary classifiers among the right macro 
classes. This recursive procedure stops when both the left 
and right node ends in one class.   

   
3.2 Bottom-up greedy tree construction 
 
For bottom-up approach a similar strategy is used starting 
from the bottom node. For a K-class problem at the bottom 
node it selects the best binary classifier i b j that splits into 

two macro classes i and j where   and  , 

i.e., the macro classes include only one class. In other 
words, it chooses the best one-versus-one classifier (Fig. 
4(b) Line 4 to 9).  By merging these two (macro) classes 
into one macro class, in the next step, this procedure again 
chooses or merges two macro classes whose binary 
classifier would perform better than the others(Fig. 4(b) 
Line 10 to 17). This recursive merging procedure stops 
when it finds a binary classifiers i b j that splits into two 

macro classes i and j where and S that includes 

all classes. This can also be stated as finding a binary 
classifier  i b j that merges macro classes i and j into a single 
macro class. The iterative procedure of hierarchical tree 
generation for 4-class problem in bottom-up method is 
shown in Fig. 6.  

 
In Fig. 6, for bottom-up greedy tree structure at the bottom 
node the best binary classifier 1b3 ({1} in one macro-class, 
{3} in other macro-class) is selected among all IBI, (one-
versus-one) classifiers. It then merges the classifier and 
considering this as one macro class recursively finds the 
best one among all one–versus-one. This procedure stops 
when it finds the best classifiers with two macro classes and 
the union of macro classes includes all classes.  
 
3.3 Comparison of top-down and bottom-up methods 
 

Top-down approach tries to find the best binary split for a 
set of all classes at the root node. If there are K classes, all 
the binary splits where one side has 1, 2,…, K/2 classes 

need to be considered. This leads to  classifiers 

for the root node if K is odd. This leads to exponential 
number of classifier generations. On the other hand, since 
the decisions are initially made at the root node, selecting a 
good classifier for the root node is important Bottom-up 
approaches start building the tree from the leaf nodes. 
Initially, all binary one-versus-one classifiers need to be 

trained. This leads to  binary classifiers. In 

the worst case, the tree will look like a chain. In the worst 

case,  classifiers will be trained. The total cost of 

training in the worst case is close to the summation of cost 
for OVO and OVA. The complexity for the bottom-up is at  
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3 2 
 

 

  (c) Tree 3 
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12 

1 2 3 

 

3 

2 1 
 

Fig. 3 All hierarchical binary trees for 3-class 
problem 

 



a) Greedy-Top-Down Algorithm:  

 

Greedy-Top-Down (S, K,node) 

//IN: S=The set of all classes 

//IN: K=The number of classes 

//OUT: node contains the corresponding node in the tree 

//BC=a binary classifier 

//bsLeft=best left child of macroclasses 

//bsRight=best right child of macroclasses 

//maxacc=the best accuracy of classifiers so far 

 

 

1. begin 

2.    maxacc=0 

3.    if K>1 then 

4.       for i=1 to K/2 do 

5.          Q=(all i combinations of K classes) 

6.          for each element in Q do 

  a.             Left=Q.current 

  b.             Right=S-Left 

  c.             BC=train(tset(Left),tset(Right)) 

  d.             if BC.accuracy>maxacc then 

  e.                maxacc=BC.accuracy 

  f.                (bsLeft, bsRight) =(Left,Right) 

  g.                Node.classifier=BC 

  h.             endif 

7.          endfor 

8.       endfor 

9.       Greedy-Top-Down(bsLeft,||bsLeft||,node.left) 

10.       Greedy-Top-Down(bsRight,||bsRight||,node.right) 

11.    endif 

12. end 

 

The function is called with the following parameters: 

Greedy-Top-Down(S,K,root). 

// train :   This function  is called with two  parameters; left and right 

macro classes. It returns a binary classifier after training.  

//tset: This functions returns the training set for a macro class  

           

(b) Greedy –Bottom-Up Algorithm:  
         

Greedy-Bottom-Up (S, K,node) 

//IN: S=The set of all macroclasses 

//IN: K=The number of classes 

//OUT: node contains the corresponding node in the tree 

//BC=a binary classifier 

//MCi=ith macroclass in set S 

/MCi.node: the tree node for macroclass MCi 

//MCi.node.classifier: the classifier for macroclass MCi  

//bsLeft=best left child of macroclasses 

//bsRight=best right child of macroclasses 

//maxacc=the best accuracy of classifiers so far 

 

 

1. begin 

2.   maxacc=0 

3.   if K>1 then 

4.     for i=1 to K-1 do // create all OVO classifiers 

5.       for j=i+1 to K do 

6.          BC=train(tset(MCi),tset(MCj)) 

7.          if BC.accuracy>maxacc then 

  a.            maxacc=BC.accuracy 

  b.            (bsLeft, bsRight) =(MCi,MCj) 

  c.            bsClassifier=BC 

  d.          endif 

8.       endfor 

9.     endfor 

10.     S=S-{bsLeft}// remove children 

11.     S=S-{bsRight} 

12.     MCnew=(bsLeft U bsRight) // new MC as union 

13.     MCnew.node.classifier=bsClassifier 

14.     MCnew.node.left=bsLeft.node 

15.     MCnew.node.right=bsRight.node 

16.     S=S U{MCnew} 

17.     Greedy-Bottom-Up(S,K-1, MCnew.node) 

18.   endif 

19. end 

 

The function is called with the following parameters:  

Greedy-Bottom-Down (S,K,root) 

// train :   This function  is called with two  parameters; left and 

right macro classes. It returns a binary classifier after training 

 //tset: This functions returns the training set for a macro class  

Fig. 4 Algorithm for greedy top-down and bottom-up tree structure 



One-Vs-Three:  

 

 

 

 

 

 

Two-Vs-Two: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)-(2,3,4) 90% 

(2)-(1,3,4 ) 95% 

(3)-(1,2,4) 92% 

(4)-(1,2,3) 89% 

(1,2)-( 3,4) 90% 

(1,4)-(2,3) 94% 

(1,3)-(2,4) 78% 

Size of Left= ‖(2)‖ =1 

Size of Right= ‖(1,3,4)‖ >1 

One-Vs-Two:  
 

(1)-(3,4) 96% 

(3)-(1,4) 95% 

(4)-(1,3) 88% 

Size of Left, ‖(1)‖ =1 

Size of Right, ‖(3,4)‖ >1 

One-Vs-One:  

 (3)-(4) 91% 

Fig. 5: Top-down greedy hierarchical tree construction for 4-class problem 

 

 

 

One-Vs-One:  

 

 

 

 

 

 

 

 

 

 

 

(1)-(2) 90% 

(1)-(3) 95% 

(1)-(4) 92% 

(2)-(3) 89% 

(2)-(4) 93% 

(3)-(4) 91% 

Remaining class , 

                      S'={2,4} 
                      

 
 

One-Vs-One( ): 

 
(2)-(4) 93% 

(1,3)-(2) 77% 

(1,3)-(4) 88% 

Remaining class  ,  

               S'={} 

             

 
   
 

One-Vs-One( ): 

                   

 

 

(1,3)-(2,4) 78% 

Fig. 6: Bottom-up greedy hierarchical tree construction for 4-class problem 
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an acceptable level. However, since the tree is built from the 
leaf node to the root node, when the method reaches to the 
top nodes, the accuracy for those binary classifiers might be 
low.  The decisions at the top nodes are critical and 
misclassification at the top nodes cannot be fixed later even 
though there could be very good binary classifiers close to 
the leaf nodes. 

3.4 Improved greedy bottom-up(IGBU) HBC testing 

The bottom-up method is fast; however, if the binary 
classifier at the root node has a low accuracy, the 
performance of the hierarchical binary classifier is also low. 
This is a significant limitation. We overcome this problem 
by skipping the classifier at the root node when the accuracy 
of the classifier at the root is low (e.g., below 80%). 
Whenever a new data sample is provided, the sample is fed 
into both left and right classifiers of the root note. As a 
result, the tree will produce two class labels: one for the left 
sub-tree and the other one for the right sub-tree. For these 
two class labels, we apply one-versus-one classifier to 
determine which class the sample belongs to. For example, 
in Fig. 7, since the accuracy of the root binary classifier 13b24 
(13 in the left macro class and 24 in the right macro class) is 
less than 80%, rather than providing data at root node we 
provide a data sample to both sub trees. If the output of a test 
sample from the left binary tree 1b3 is 1 and from the right 
binary tree 2b4 is 4, we again test the sample with the one-
versus-one classifier 1b4 to get the desired label of test 
sample.  
Since the accuracy of classifiers close to the leaf nodes is 
high, the overall accuracy is improved. We avoid the 
problem of misclassifying at the root node. Actually we are 
replacing the classifier at the root node with a one-versus-
one classifier. This does not add any complexity to training 
since one-versus-one classifiers were already generated 
while building the bottom-up greedy tree. 

4. HBC testing  

After the construction of HBC, we test each sample to 
get the class label of sample. In general, for Hierarchical 
Binary Classifiers, we start testing the samples with the 
binary classifier at the root node of the tree. Each node 
actually corresponds to a binary classifier. Depending on the 
output of the binary classifier, the right branch or left branch 
is taken.  Then we test the sample with the next classifier 
along the left or right path of the tree structure. This process 
is continuously followed until a leaf node of the tree where 
desired class of the sample is obtained.  

 
 
 
 
 
 
 
 
 

 

(1,3)- (2,4) 78%  
 

Fig. 7  Improve Greedy Bottom-Up (IGBU) HBC 
testing 
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5. Generate encoding codeword for ECOC framework  

 After decomposing into binary classification problem, we 
trained all the binary classifiers with the training datasets 
and store the corresponding accuracy. Since the number of 
samples in each class is not equally distributed, we also 
measure the number of misclassified images to evaluate the 
performance of each classifier. To combine the results of 
binary classifiers, a coding matrix M for these strategies 
(OVA, OVO, greedy, and exhaustive) is generated during 
the training stage (Fig. 1). In this matrix M, each row 
represents a code for a class which will be compared in the 
decoding stage.   
 

6. Apply hamming decoding strategy  

Finally, to determine the final class label for each of   OVA, 
OVO, greedy and exhaustive approach, hamming decoding 
technique is used. In this method, a coding matrix M' is 
obtained by testing the samples in the test set with all 
possible trained binary classifiers.  In the matrix M', ith row 
represents a codeword for samples i in the test set and 
column j is the result class value of test samples. For 
example, if there are 200 samples in test dataset and 6 
possible binary classifiers for a 3-class problem [Table 2], 
then 200x6 M' is generated in exhaustive approach. In the 
matrix M' , for example, 198th row represents the codeword 
for 198th data sample. This codeword is compared with each 
base codeword generated in the encoding step by finding the 
hamming distance (Escalera S et al. P 2010). The minimum 
distance codeword is considered to be the result class of the 
sample dataset. The equation for hamming distance is as 
follows: 
 

                                          (3) 

 Here x is a test codeword from M' and  is a base               
codeword from M corresponding to class Ci.  
 
 

4 EXPERIMENTAL RESULTS AND ANALYSIS  

To solve the multiclass classification problem with different 
strategies and make a comparative study, we used various 
datasets (Asuncion A and Newman DJ 2007). 5 different 
sets of data of different classes were experimented using 
MATLAB (Demuth H and Baele M 1994).  The number of 
samples and features of different biological data for both 
training and testing is shown in Table 4. Among the 
datasets, only Protein Crystallization and Iris are equally 
distributed, i.e., each class has the same number of samples.  
 
 
 
 
 
 
 
 

 

 
 
 
 
We provide brief analysis and comparison in the following 
subsections. 
 

4.1 Complexity of training and testing  

In this section we compare the training and testing 

complexity of greedy methods with other methods for 

multiclass problem. Table 5 shows the number of classifiers 

required for different strategies.  
 
 
 
 

 

 

 

 

 

 

 

 

 

Table 4: Experimented biological dataset (Begum S and Aygun R 2012) 

No Data set Classes Images Features 

1 Iris 3 150 4 

2 Thyroid 3 2978 22 

3 
Protein 

Crystallization 
5 100 45 

4 Breast Tissue 6 106 9 

5 Ecoli 8 336 7 

Table 5:  Number of classifiers in testing for different strategies to 

solve multiclass classification problem 

Name (3 class) ( 5 class) (6 Class) (8 class) 

Greedy 
(Worst case) 

2 4 5 7 

Greedy 

(Best  case) 

1 1 1 1 

MLP 1 1 1 1 

OVO 3 10 15 28 

OVA 3 5 6 8 

EX 6 90 301 3025 

𝑯𝑫 𝒙,𝒚𝒊 =   𝟏− 𝐬𝐢𝐠𝐧 𝒙𝒋𝐲  𝒊  
𝒋
  

𝟐

𝒏

𝒋=𝟏

 



From Table 5 it is clear that, in exhaustive method (EX), the 

number of classifiers for testing phase increases 

dramatically with the increases in number of classes. Notice 

that, greedy strategy requires less number of classifiers than 

OVA, OVO and exhaustive approach. In the best case, 

greedy strategy (top-down and bottom-up) requires only one 

classifier to classify an unknown sample. The number of 

classifiers to be used for testing is significantly low with 

respect to OVO method. Though multi-layer perceptron 

(MLP) requires only one classifier solving multiclass 

problem, this strategy has quite lower performance than the 

greedy techniques discussed in section 4.3 (especially for 

breast and protein crystallization problems).  

 

The MLP is used as the base classifier in this set of 

experiments. The complexity of MLP depends on the 

structure of the neural network, the number of samples, and 

the number of epochs. The number of epochs is the number 

of times that the samples are fed into the neural network. 

One of the advantages of high epochs is to remove the 

dependency of the weights of the neural network on the 

order of the samples. Our MLPs have two layers: hidden 

and output layers. The number of neurons in the output layer 

is equal to the number of classes. The number of neurons in 

the hidden layer is user defined. Every feature is linked to 

all neurons in the hidden layer; and every neuron in the 

hidden layer is linked to all neurons in the output layer. The 

weights of those links and the bias value for each neuron 

need to be updated for each sample. Figure 8 shows a 

sample MLP for 3 input features and 3 output classes. The 

hidden layer has 4 neurons, and the output layer has 3 

neurons. Such a neural network has 3*4 (from features to 

the hidden layer) + 4*3 (from hidden layer to output layer) 

weights to be computed. In addition, 4+3 (the total number 

of neurons) bias values for each neuron needs to be 

computed. For this example, the total number of weights (or 

values) that need to be computed is 3*4+4*3+(4+3)=31. 

 

 

 
               Fig 8. A sample MLP 

 

This computation is performed per sample and repeated for 

the complete training set by a number of epochs. We have 

used 10 neurons for the hidden layer in our experiments. 

Assuming that the training set has N samples, e epochs, f 

features per sample, K classes, 10 neurons in the hidden 

layer, and K neurons in the output layer, the complexity of 

building MLP is 

 

K)w(f,*N*e=K)f,N,Cost(e,               (4) 

where 

 

10)+11K+(10f=K)+10+K*10+10*(f=K)w(f,  

and w(f,K) represents the number of weights to be 

computed. 

 

The number of epochs is not provided as a parameter for the 

training. We rather stop when there is no improvement on 

the performance of the accuracy. So, the number of epochs 

is a variable number depending on how quickly the neural 

networks learn the model. For the MLP classifier, the 

number of epochs for one set of experiments for 3, 5, 6, and 

8 classes was 45, 30, 47, and 59, respectively. After defining 

the cost of a general MLP, we may compute the cost of 

other strategies. 

 

For comparison purposes, assume that the total number of 

training samples is N. Therefore, the cost of training a single 

MLP is Cost(e,N,f,K). OVA method generates K number of 

classifiers and uses all the training set per classifier. The 

cost of OVA can be represented as 

 


K

1)=(i

iOVA
f,2)N,,Cost(e=K)f,(N, Cost                  (5) 

 

 

 

where ei represents the number of epochs for the ith 

classifier. If we assume the same number of epochs per 

classifier, we reach 

 


K

1)=(i

iOVA
f,2)N,,Cost(e=K)f,(N, Cost                  (6) 

w(f,2)*N*e*K=
OVA

 

32)+(10f*N*e*K=
OVA

 

 

OVO method generates K(K-1)/2 classifiers. Since OVO 

focuses on two classes, the training set only includes the 

samples for relevant classes. If each class has equal number 

of classifiers, the training set for OVO classifiers has 

(N/K)*2 samples. The cost of OVO can be represented as 

 



-1)/2)(K(K

1)=(i

iOVO
f,2)2,(N/K)*,Cost(e=K)f,(N, Cost   (7) 

 

Again if we assume the same number of epochs per 

classifier,  
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

-1)/2)(K(K

1)=(i

iOVO
f,2)2,(N/K)*,Cost(e=K)f,(N, Cost   

w(f,2)*2*(N/K)*e*1))/2-(K(K=
OVO

 

 

32)+(10f*N*e1)*-(K=
OVO

                       (8) 

 

 

Our greedy techniques generate a variety of classifiers at 

different complexities. Let’s start analyzing greedy top-

down classifier. We should note that it is a recursive 

method. For the root node, 2K-1-1 classifiers are generated if 

K is odd, and 2K-1-1+C(K,K/2)/2 classifiers are generated if 

K is even. So, the number of classifiers for the root node,  

rK, is defined as  

 



  odd is K if                   1-(2

otherwise    K/2)/2C(K,+1-2

K

 1)-(K

1)-(K

=r      (9) 

 

The cost of greedy top-down algorithm can be computed as 

 

                  B)-Kf,M,*M)N/K-((K Cost+

B)f,M,*(N/KCost+f,2)N,Cost(e,*r=K)f,(N,Cost

GT

GTKGT

                            (10) 

 

 

 

where  K/2B1   and represents the best possible 

binary split for K classes. For example, if B=2, one branch 

has 2 classes and the other branch has K-2 classes after split. 

 

For 3 classes, its cost is computed as 

 

f ,2)(2N/3,Cost+

f,3)(N, Cost*r=f,3)(N, Cost

OVO

OVA3GT

 

 

32)+(10f*N)*e(2/3)*+e*(9=

32)+(10f(2N/3)**e1)*-(2+

32)+(10f*N*e*3*3=

OVOOVA

OVO

OVA

 

                                  (11) 

 

 

Let’s analyze the greedy bottom algorithm for 3-class 

problem as follows: 

f,2)Cost(N,+f,2)(2N/3,Cost*3=f,3)(N,Cost
OVOGB

 

 

32)0f1(*N*)e+e*(2=

32)0f1(*N*e+

32)0f1(*(2N/3)*e*1)-(2*3=

OVAOVO

OVA

OVO







 

(12) 

 

The cost expression for the greedy bottom-up is not as 

straightforward as the greedy top-down. We should note that 

when we build one-versus-one classifier, it is possible to 

have classes that have varying samples. We represent it with 

CostOV2 as follows: 

 

f,2)),N+(NCost(e,=f)},N,({N Cost
 2121OV2

  (13) 

 

 

where N1 and N2 correspond to the number of samples of the 

participating classes. We may compute the generic one-

versus-one classifier using CostOV2 as follows: 

 


K

1)+i=(j

jiOV2

-1)(K

1)=(i

*

OVO
 f)}, N,({N Cost=K)f,(N Cost  

                               (14) 

 

 

where N* indicates that classes may have different number 

of samples. 

 

We may represent the cost of Greedy bottom-up strategy as 

follows: 

 

1)-Kf,(N,Cost+K)f,,(N Cost=K)f,(N, Cost
GB

*

OVOGB
 

                                (15) 

 
Table 6 represents the number of binary classifiers for 
different approaches. Though the number of binary 
classifiers in training depends on the selection of best binary 
classifiers at each node of hierarchy, from our experimental 
result we can see that the number of classifiers for bottom-up 
greedy technique is lower than top-down.  
 



 

 
 

For example, for 8 class problem greedy bottom-up 
requires 49 binary classifiers in training to build the tree 
whereas it is 180 for greedy top-down [Table 6]. The number 
of classifiers for greedy top-down and bottom-up 
hierarchical trees depend on the architecture of selected best 
binary classifier in training. From Tables 5 and 6, we can see 
that , the number of classifiers in training and testing is same 
for MLP, OVO, OVA and also for EX approaches whereas 
its different  for greedy approaches. This factor  (number of 
classifiers) mainly determines the time to classify a sample. 
(Table 7 lists the training time of different strategies for 
different multiclass problems.  We can see that MLP requires 
least training time among all strategies since it uses only one 
classifier during training. It is also noticeable that, training 
time for the exhaustive approach is significantly high for 
high number of classes. There are four factors that affect the 
complexity of the base classifier (MLP, in this case): the 
number of epochs, the number of training samples, the 
number of features, and the number of classes. Because of 
these varying factors, the running time may not increase 
consistently as the number of classes’ increases.  

 
The size of training set also has impact on training time. 

This is one of the the reasons why training time is almost the 
same for  OVA  and OVO method for 8-class problem. For 
8-class problem, differences in the number of classifiers are 
20, but OVA method uses the whole training dataset for each 
8 classifiers. On the other hand, training set for OVO varies 
based on the distribution of sample in each class. Mostly, 
OVO uses the smallest training dataset. Greedy top-down 
method initially uses the whole dataset as this method uses 
one-vs-all binary classifiers at the root node. Training time 
falls down when this method goes downward and uses one-
vs-one binary classifiers. For Greedy top-down, the number 
of classifiers at the root node is high since possible 
combination among all classes is high. In case of greedy 
bottom-up, training set is small at the bottom node as this 
method starts from bottom and all the classifiers are one-vs-
one. Considering the size of training data set and required 
number of binary classifiers for training, our proposed 
greedy bottom-up approach is faster than greedy top-down 

for 3 to 8 class problems [Table 7]. Note that the number of 
epochs, the number of samples, the number of features, the 
number of classes, and the number of classifiers to be built 
influence the running time and running time may not always 
consistently increase.. 

 

 
 

4.2 Analysis of accuracy of binary classifiers  

 
This section provides accuracy analysis for different neural 
binary classifiers for 5-class problem. For neural binary 
classifier, 80% of the data are used for training and 20% for 
validation/testing. First, for each dataset all possible binary 
classifiers based on neural networks are trained using (1). In 
order to compare statistical analysis of neural binary 
classifiers with different macro classes, we use a histogram 
plot of each multiclass problem.  For example, Fig. 9 shows 
the histogram plot of different classifiers for 5-class problem 
(Protein Crystallization).  It represents that, binary classifier 
one-versus-two has the highest number of binary classifiers 
and most of its classifiers have 90% to 100% accuracy. It is 
also noticeable from Table 8 that the performance of IBIII 
(one-versus-three) binary classifier is the best binary 
classification (considering min, max and mode) for this 
dataset.  
 
As different macro classes of binary classifiers may have 
different number of samples for each class, we also consider 
misclassified samples (MS) to measure the performance 
which is shown in Table 9.  From these results it can be 
concluded that, only IBI (one-versus-one) and IBII (one-
versus-two) binary classifiers are on the top positions of the 
rank. On the other hand,    most of the IBIII (one-versus-
three) binary classifiers are in the bottom ten.   
 

Table 6:  Number of classifiers in training for different strategies to 

solve multiclass classification problem 

Name (3 class) ( 5 class) (6 Class) (8 class) 

Greedy –Top-
Down 

 

4        ~ 27 ~44 ~180 

Greedy 

Bottom-up 

4 ~16 ~25 

 

~49 

MLP 1 1 1 1 

OVO 3 10 15 28 

OVA 3 5 6 8 

EX 6 90 301 3025 

Table 7:  Training time (in minute) for different strategies to solve 

multiclass classification problem 

Name  Iris Protein 

Crystallization 

Breast 

Tissue 

Ecoli 

(3 Class) ( 5 class) (6 Class) (8 class) 

Greedy top-
down 

~.4 ~3  ~5 ~8  

Greedy 

bottom-up 

~.4 ~2.5 ~4 ~6 

MLP ~.3 ~.5 ~.5 ~.5 

OVO ~1 ~2.22 ~4 ~5 

OVA ~.3 ~1 ~2.3 ~3 

EX ~2 ~20 ~120 ~1080 



 
 

 
 

4.3 HBCs with different classifiers 

 

4.3.1 Using neural networks as binary classifiers 

 
We have initially used neural networks for the internal nodes 
of the HBC. Table 10 shows the performance comparison of 
greedy strategy with OVO, OVA, exhaustive and multi-layer 
perceptron (MLP) network for different datasets of different 
classes.  
 
To integrate the results of OVO, OVA and exhaustive 
approach, ECOC with hamming decoding method has been 
used. We also generate all possible binary hierarchical trees 
for Thyroid, Iris and Protein Crystallization using (2) and 
make comparison of the best and the worst tree with other 
strategies. Note that, for 3-classes the performance accuracy 
is almost the same for all strategies. From the third row in 
Table 10, we see that the best hierarchical binary tree 
outperforms greedy, MLP, OVO for 5-class problem. We 
provide the performance of the best HBC to check how good 
greedy algorithms are good at building HBCs. It can be also 
seen from Fig. 10 that, performance accuracy of greedy 
strategy is high for most multiclass problems comparing to 
MLP, OVO and OVA and this strategy is significant for 8-
class problem (93% accuracy). When the number of classes 
becomes higher we can expect larger differences between 
greedy and other strategies (MLP, OVO and OVA).  
 
Based on the performance of trained classifiers, both top-
down and bottom-up greedy hierarchical trees are created for 
all datasets. As it is not possible to show all greedy 
hierarchical trees, we only compare top-down and bottom-up 
greedy    structure for Protein Crystallization dataset [Table 
11]. 
 
 In this table, b is the binary classifier and MS is the 
misclassified samples at that level of the tree. Note that, both 
the hierarchical top-down and bottom-up trees start with one-
versus-all and go downward in this way. It can be also seen 
that, the number of misclassified samples are less in top-
down structure than bottom-up for this dataset. 
 
 
 
 

Table 9: Performance results of binary classifiers for protein 

crystallization dataset 

Top 10  Bottom 10 

Binary 

Classif

ier 

Name 

Accurac

y 

No. of 

Misclass

ified 

Samples 

 

 

 

Binary 

Classifier 

Name 

Accura

cy 

No. of 

Misclassi

fied 

Samples 

1 b 2 100 0  3 b 1  2  4  5 80 20 

1 b 5 100 0  4 b 1  3  5 80 16 

2b 5 100 0  4 b 3  5 76.66 14 

2 b 1  3 100 0  1 b 2  3  5 82.5 14 

2 b 3  4 100 0  4b 2  5 81.66 11 

1 b 3 97.5 1  4 b 2  3  5 86.25 11 

1 b 4 97.5 1  3 b 5 75 10 

2b 4 97.5 1  4 b 2  3 85 9 

1 b 2  3 98.33 1  1 b 2  3  4 88.75 9 

2 b 3  5 98.33 1  3 b 1  2  4 88.75 9 

Binary 

Classifier 

Name 

Min Max Mode 

IBI (One- 
Versus -One) 75 100 97.5 

IBII(One- 
Versus -Two) 76.6 100 95 

IBIII(One-
Versus-Three) 80 100 97.5 

IBIV(One-

Versus-Four) 80 98 95 

IIBII(Two-
Versus-Three) 88.75 97.5 93.75 

IIBIII(Two-

Versus-Three) 90 95 95 

Table 8: Performance comparison of binary classifiers in accuracy 

for protein crystallization dataset 

 



 
Fig. 9.  Histogram plot of binary classifier of protein crystallization dataset 

           
 

Table 10:  Comparison of test results for different strategies to solve multiclass classification problem 

 
No. of 

Classes 

Best 

Hierarchical 

Binary Tree 

Worst 

Hierarchical 

Binary Tree 

Greedy 

 Bottom-

Up 

Greedy 

Top-

Down 

MLP OVO OVA 
Exhaustive 

Approach 

3(Thyroid) 100 97.84 100 100 99.7 97 99.8 99.8 

3 (Iris) 98.7 98.7 98.7 98.7 97.3 100 98.7 100 

5(Protein 

Crystallizatio
n ) 

92 68 89 90 82 79 82 99 

6(Breast 
Tissue) × × 89.6 89.6 78.301 68.9 92.5 100 

8(Ecoli) × × 91.17 93.79 91.667 79.5 89.3 96.42 



 

 
 

 
Fig. 10. Comparative results of GBU (Greedy Bottom-Up), 

GTD (Greedy Top-Down), MLP (Multi-Layer Perceptron), 

OVO (One-Versus-One), OVA (One-Versus-All) and EX 

(Exhaustive) approach 

 
 

 
 

4.3.2 Using naïve Bayesian classifier as binary classifiers 

In this work, we also build the greedy hierarchical tree using 
naïve Bayesian classifier for 5 to 8 class problem which is 
shown in Table 12. Though the bottom-up technique is fast 
enough, greedy top-down outperforms bottom-up 
considering accuracy. From Table 12 we can see that, the 
performance of greedy for Ex (exhaustive) using naïve   
Bayesian classifier is not high for all cases.  Among OVO 
and OVA, OVO gets better accuracy and it’s significant for 

8–class problem. Since for greedy bottom-up hierarchical 
tree using naïve Bayesian classifier, the performance of root 
node is less than 75% for 5 to 8 class problem, we use the 
improved greedy bottom-up to improve the performance.   
The improved greedy bottom-up (IGBU) provides around 
10% better accuracy than OVA using the naive Bayesian 
classifier. The results for IGBU are almost the same as the 
OVO. If we compare the results of the hierarchical classifier 
against OVO and OVA, our proposed technique provides 
more stable results than OVO and OVA. When using neural 
classifiers, OVO method generated very low accuracy results 
for 5- class, 6-class, and 8-class problems [Table 9]. On the 
other hand, when naive Bayesian classifiers are used, the 
accuracy of OVA was very low. However, our hierarchical 
classifier provided better results in general than OVO and 
OVA if MLP neural networks are used. While OVA method 
performs low using naïve Bayesian classifier, our improved 
hierarchical classifier performs as good as OVO. 
 

 
 

5 CONCLUSION 

The multi-class classification techniques such as one-
versus-one and one-versus-all have been used in the 
literature assuming that they will outperform a single multi-
class classifier. In this paper, we propose a greedy technique 
for building hierarchical binary classifiers for the multi-class 
classification problem. We compare our greedy techniques 
with OVO and OVA techniques.  
We have tested and compared our method using 5 different 
biological datasets. In our analysis, we realize that greedy 
bottom-up produces less number of classifiers to be tested 
than the top-down greedy version. Although the number of 
classifiers is for bottom-up greedy classifier is close to the 
summation of the number of classifiers in OVO and OVA. 
In terms of accuracy, greedy top-down usually 
outperformed the greedy bottom-up version, and in general 
these greedy classifiers outperformed OVO and OVA. If the 
hierarchical binary classifier is based on the MLP at the 
internal nodes both greedy techniques outperformed the 
OVO and OVA. When naïve Bayesian classifier at the 
internal nodes, the top-down version performs better than 
OVA but performs similarly as OVO. Our improved 
bottom-up greedy technique also performs similarly as the 

Table 11:  Top- down and bottom-up tree structures for protein 

crystallization dataset (Begum S and Aygun R 2012) 

Name Greedy (Top-Down) Greedy (Bottom-Up) 

Tree Structure 

 

2 b 1345  ( MS-2) 

 

           5 b 134 ( MS-3) 

 

                  3 b 14 ( MS-4) 

 

                              1 b 4 ( MS-1) 

 

4 b 1235  ( MS-6) 

 

        3 b 125 ( MS-5) 

 

                 5 b 12 ( MS-0) 

 

                       1 b 2 ( MS-0) 

 

Misclassified 

Samples 

10 11 

Table 12:  Comparison of test results for different strategies using 

naïve Bayesian classifier to solve multiclass classification problem 

No. of 

Classes 
 

Greedy 
Bottom-

Up 

Improved 

Greedy 

Bottom-

Up 

Greedy 
Top-
Down 

OVO OVA EX 

5(Protein 
Crystalli
zation ) 

73 88 89 87 69 86 

6(Breast 
Tissue) 

65.01 75 76 78.3 67.92 80.3 

8(Ecoli) 81.84 89 89.5 90.17 83.61 87.5 



top-down method. The exhaustive method should provide 
the optimal method. With the MLP classifier, the exhaustive 
method can produce high accuracies. However, with the 
naïve Bayesian classifier, the exhaustive method did not 
generate the best results. 
In this paper, without adding significant cost with respect to 
OVO, we have shown that our greedy hierarchical 
classifiers can outperform widely used OVO and OVA 
techniques. Due to the design and use of the greedy logic, 
we minimize the number of classifiers to be built at the 
training stage. Since the number of classifiers for testing is 
at most equivalent to the number of classifiers in OVA, our 
greedy hierarchical binary classifiers can be used in many 
applications. As future work, our proposed method can be 
tested with other types of classifiers such as support vector 
machine at the internal nodes. 
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