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Abstract 
 

We present an indexing method for spatiotemporal data: semantic sequence state graph (S3G). S3G maintains objects 

with their locations as states and events as transitions. The spatial information is maintained in states while the 

semantic events result in temporal ordering between the states. If the objects visit the same locations repeatedly, we 

call such databases as recurrent databases. Our querying interface supports queries based on spatio-temporal logic 

(STL) that includes operators such as ‘next’ and ‘eventually’. The interactive querying interface enables the user to 

build the query interactively and see the intermediate results of the query.  

1. INTRODUCTION  

With the growing interest in spatio-temporal data for more than a decade, the indexing and retrieval of 

spatio-temporal data has been a challenging research area. Multimedia data plays a key role in today’s 

world including but not limited to education, advertisement, entertainment, communication, and 

information retrieval. Especially, videos have been the most intriguing media since videos have 

multimodal features along with spatio-temporal properties. Everyday many videos are uploaded on 

websites such as You Tube [YouTube 2011] and Google Video [Google Video 2011]. Various strategies 

have focused on modeling of different aspects of videos such as modeling fuzzy information [Aygun 

2004] and spatio-temporal features of the objects in a video [Pissinou 2004; Li 1997]. 

The goal of our research is to model, store, query, and index the semantic contents of the videos. We 

classify spatio-temporal querying (STQ) into two based on how STQ can be executed: 

 Split STQ: This query usually targets objects that satisfy some spatial constraints within a period 

of time or vice versa. The data satisfy the spatial constraints independent of historical data as 

long as the data belong to the given time domain. A sample query is as follows: “Give a list of 

regions, where the ball appears between 5th and 10th minutes” [Koprulu 2004]. 

 Coupled STQ: This query usually targets objects that satisfy some (sequential) spatial constraints 

over a period of time. Series of consecutive or nonconsecutive constraints are part of a query. A 

sample query is “return videos having a Delta plane take-off right before United plane take-off 
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but after Continental plane landing in Huntsville, Alabama.” Complex spatio-temporal patterns 

(STP) [Hadjieleftheriou 2005] are an example of coupled STQ. 

Without generalization, the spatio-temporal indexing methodologies can be divided into two: tree-

based and sequence matching. Tree-based methods require that a hierarchical organization of data is 

possible. In most cases, this hierarchical organization is achieved with respect to spatial properties. Tree-

based approaches are effective for split STQ. The coupled STQ with tree-based indexing can be achieved 

by linking subqueries of a STQ. However, tree-based indexing may lose its efficiency if sequence 

information is queried rather than time interval due to comparing the data for all time intervals. Sequence 

matching approaches can deal with temporal sequence matching. However, a proper indexing 

methodology is required before starting sequence matching otherwise the number of sequence matchings 

may be significantly high. 

A good indexing structure should address the requirements of the data model as well as querying. We 

define a recurrent database as a database where the content or objects of interest with corresponding 

actions are repeated frequently.  In other words, objects are associated with spatial locations, and a 

possible event (or an action) causes the change of these locations. If the domains of spatial locations, 

events, and actions that cause the change of locations are finite, the objects are likely to appear at the 

same locations (due to some actions) in the database. The camera is usually mounted on an almost static 

platform for capturing the environment. In this sense, almost all sports videos are a subset of recurrent 

databases. Other examples include news-anchor, distance-learning education, and surveillance videos. 

Our goal in this paper is to index such recurrent databases.  

We believe that spatio-temporal content of video is important for querying. Rather than a semantic 

instantaneous event (e.g., “missed shot”) in a clip, we are interested in a sequence of actions and objects 

with their locations. When we compare various spatio-temporal techniques, a general assumption on the 

database is the presence of a single timeline. However, it is likely that there may be more than one 

timeline. For example, each timeline maybe set for a different day. In such a case, the ordering of 

timelines may not be an important factor for STQ. The tree-based and sequence matching methods should 

adapt to the presence of multiple timelines. 

Traditional indexing methods cannot achieve the goals of semantic databases that maintain high-level 

information since they are usually designed based on non-semantic properties. Most common indexing 

techniques use comparison operators to retrieve the requested data from the database. The semantic 

querying can only be achieved by having additional layer on top of traditional indexing methods.  

Our Approach. In this paper, we propose an indexing and search method that directly targets coupled 

STQ in a recurrent database. In order to provide an efficient storage and retrieval of video data, a 
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semantic modeling and retrieval system, SMART [Jain 2008; Jain 2009] was proposed. In this paper, the 

SMART system is improved by providing a novel indexing method, named as S3G: a Semantic Sequence 

State Graph. An early version of S3G was introduced in [Naik 2008]. The major difference between this 

indexing method and the traditional ones is that in S3G the links between states have semantics where 

states maintain the discrete information about the spatial properties of objects. The events correspond to 

the transitions in S3G graph. Since transitions correspond to semantic events, it is possible to perform 

queries based on semantic concepts following the transitions in S3G. We should note that we are not 

interested in the shapes of the objects. We are rather interested in where and when they appear. We are 

interested in spatio-temporal events that can be denoted at discrete times. We assume that a semantic 

event causes the difference between two states. The spatial queries are performed with respect to the 

object-location pairs. Temporal queries based on Linear Temporal Logic are performed by following the 

transitions in S3G graph. Spatio-temporal queries use Spatio-Temporal Logic. The spatio-temporal 

queries, such as what will be the next state (i.e., the spatial properties of objects following a transition on 

a given state) and whether a particular state eventually occurs in future after a given state has occurred, 

are implemented using S3G. Graphical viewing of the query construction is implemented to facilitate easy 

building complex queries. 

The contributions of our approach can be summarized as follows: a) provides a compact representation 

of a video database, b) supports recurrent databases, c) indexes a database that has multiple sequences 

with different timelines onto a single data structure, d) links the states with semantic events (or actions), 

and e) provides an interactive querying interface where the intermediate results are provided and help the 

user refine his query. 

This paper is organized as follows. The following section provides the background and discusses about 

related work. Section 3 describes the S3G. Section 4 explains building S3G. The interface and querying 

are explained in Section 5. The last section concludes the paper. 

2 BACKGROUND AND RELATED WORK 

In this section we firstly describe the related work; secondly, provide background on our SMART 

system; and finally, explain the spatio-temporal logic used in this paper. 

2.1 Related Work 

Significant research has been performed on indexing temporal and spatial databases [Jensen 1999; Min 

2001]. A good survey on indexing temporal data appears in [Salzberg 1999].  A recent survey on spatio-

temporal video retrieval is presented in [Ren 2009]. STP [Hadjieleftheriou 2005] provides indexing based 

on spatial locations. For each spatial location, objects are sorted based on their identifiers. If an object 
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visits the same location, then visits of an object are sorted based on the time they visit the location. 

Lagogiannis et al. [Lagogiannis 2009] improve this approach if an object does not visit the same location 

again. Indexing spatio-temporal data is mostly based on traditional database indexing techniques such as 

R-trees [Saltenis 2002] and B+-trees [Lin 2005]. One of the major problems of indexing based on these 

indexing methods is the lack of necessary semantics to build queries that require semantic information. 

Therefore, semantic retrieval on top of these indexing methods can only be implemented by an upper 

layer of semantic operations. This puts an additional burden on the retrieval. If the indexing method could 

capture semantic properties, the retrieval efficiency could be improved. 

2.1.1 Tree-Based Indexing 

Tree-based methods cannot be used for semantic querying directly since tree-based methods assume 

that hierarchical organization of data is possible. However, no order can be imposed between the semantic 

values. The indexing strategy should be able to order semantic components of the database. The ordering 

between data at different time instants is not necessarily before-after relation. The ordering may also 

include the cause or event between different time instants. Traditional temporal querying includes storing 

starting and stopping time of clips and then comparison of these starting and ending points for querying 

based on Allen’s temporal logic based on intervals [Allen 1983]. 

A survey of indexing methods for multimedia databases that includes spatial data indexing is provided 

in [Böhm 2001]. The most common way of indexing spatio-temporal data is based on tree indexing. The 

RS-Tree [Park 2001], X-tree [Berchtold 2002], weR-Tree [Bozanis 2007], NV-tree [Lejsek 2009], 

SMILe-tree [Lee 2008], Bx-tree [Jensen 2004], ST2B –tree [Chen 2008], TPR-tree [Saltenis 2000], TPR*-

tree [Tao 2003], and 2n index tree [Ye 2007] are tree-based indexing methodologies.  

R-TREE-BASED INDEXING. RS-tree [Park 2001] uses R-tree for spatial properties. The non-spatial 

properties are indexed with respect to R-tree using an S-tree which has the same structure to prune the 

results of querying the R-tree given non-spatial properties. X-tree [Berchtold 2002] improves R-trees by 

incorporating supernodes to deal with overlaps in R-trees. Supernodes avoid splits in the directory that 

would cause inefficient directory structure. Hence, X-tree looks like a combination of R-tree like and 

linear array like directory. Weighted R-trees (weR-trees) [Bozanis 2007] propose weight-balanced R-trees 

for dynamic manipulation of large datasets. The weight is based on the number of values and fanout of a 

node. The goal is to produce a partial rebuilding by gradual construction of subtrees. Time-parameterized 

R-tree (TPR-tree) [Saltenis 2000] uses spatial positions and velocities in each dimension to index data. 

An object that can move in 2D space will have 4 four parameters. Moving points are bounded by time-

parameterized rectangles and then indexed by R-trees. The queries are assumed to be applied for a 

window of time. TPR*-tree [Tao 2003] improves TPR-tree by reducing the cost of insertions and 
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deletions. These methods can aim either past or future but not both since outdated objects are deleted [Tao 

2003]. SMILe-tree [Lee 2008] is based on K-d trees and R+ trees. At the first level, the data is organized 

according to the K-d tree with corresponding dimensions at each level. For hierarchical organization of 

overlapping components, R+ trees are used to avoid overlappings. 

B-TREE-BASED INDEXING. Bx-tree [Jensen 2004] is based on B+-tree. Object locations are 

mapped to single-dimensional values using space filling curves. The maximum time between two updates 

is partitioned into n phases. An object with its location is mapped to the corresponding partition of Bx-tree 

based on its timestamp. It allows queries after the current time. Old partitions of Bx-tree are removed by 

appending new partitions. Bx-tree returns false hits as it only uses location of the objects. Bdual-tree [Tao 

2008] partitions data in dual space, i.e., both location and velocity, to reduce the number of false hits. So 

it uses location and velocity to obtain the one-dimensional key. Each internal entry of a Bdual-tree 

maintains a set of moving rectangles, which leads to use of R-tree like query algorithms. Maintaining 

moving rectangles leads to high computation overload by slowing down the update operations. A self-

tunable spatio-temporal B+-tree (ST2B-tree) [Chen 2008] partitions the space with respect to reference 

points (similar to Voronoi diagram). Each Voronoi cell is assigned a grid, and an object is assigned to the 

grid of the closest reference point. It has two phases for time; and different reference points are used to 

deal with data diversity. It supports range queries for space only. In multicurves [Valle 2008], each curve 

is responsible for a subset of the dimensions to reduce the boundary effects inside each curve. The 

dimensions of data elements are split among a number of space-filling curves. The projections of data are 

mapped to curves and the one dimensional coordinates of data are computed and stored in a sorted list. 

OTHER TREE-BASED INDEXING. STRIPES index [Patel 2004] maps 2D moving objects to 4D 

points using Hough-X transform and then stores them in a PR bucket-quad tree. The objects are 

represented in a dual transformed space. The trajectories in (d+1) dimensional space are mapped to 2D 

dual space. STRIPES has high query cost and storage size. Nearest-Vector-tree (NV-tree) [Lejsek 2009] 

projects data on a line and segments the data and then re-projects data recursively until each segment has 

enough number of data points. NV-tree allows overlapping of boundaries to overcome the problem of 

nearest-neighbor search when two close neighbors may belong to different partitions. 2n index tree [Ye 

2007] has states that include 3D positions, orientation, and speed of objects. Objects are represented as 

states with timestamps. Objects with limited number of timestamps can be indexed by 2n index tree.  

2.1.2 Sequence Matching 

Sequence matching techniques try to find the closest sequence given a proper sequence without gaps. 

It is also possible that the query sequence can be partially described with some gaps in the sequence. For 

example, the beginning and ending of a query sequence might be provided. In addition, some sequences 
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might have a cyclic nature where some parts of the sequence may be repeated several times. However, 

most sequence matching methods use proper sequence matching without any gaps.  

Embedded-based subsequence matching (EBSM) method [Athitsos 2008] maps a query to a sequence 

of vectors and then closest vectors are searched in the database. Further exploration for close sequences is 

handled by dynamic time warping based on subsequence matching algorithm without gaps. 

Spatiotemporal sequence matching is used for video copy detection in [Kim 2005]. Two distances are 

obtained: spatial distance using ordinal measures of 2x2 partitions of the video frames and temporal 

distance based on the changes in the subsequent frames. This method targets exact match between 

sequences (i.e., copy detection). 

2.1.3 Representation 

In [Hongeng 2004], an activity is considered to be composed of action threads. A single thread action 

is represented by a stochastic finite automaton of event states. Events are represented as Bayesian 

networks (which are acyclic graphs) and event constraints such as "event (or sub-event) A should occur 

before event (or sub-event) B; and B should occur before event (or sub event) C" are used to identify an 

event (not for retrieval). While Hongeng et al [Hongeng 2004] deal with event recognition, our S3G is 

used to retrieve the clips with desired state (object location values). In [Wattamwar 2008], an extension to 

MPEG-7 is proposed to detect actions such as “A follows B.” Assfalg et al. [Assfalg 2002] propose a 

system that semantically annotates the sports videos at different layers of semantic significance. It 

however uses semantic annotations for multimedia indexing and retrieval without using a graphical 

representation of the semantic data. Lay and Guan [Lay 2006] propose the use of a grammar for video 

retrieval. They use an adjacency matrix to determine the behavior of player such as baseline player and 

inverted index to retrieve clips based on object locations. They mention about the use of operators such as 

ADJ (temporally adjacent), W (within as a spatial operator), and temporal ordering with < operator. 

However, there is no information about the interface for providing queries or the complexity of 

implementing queries using these operators based on the proposed indexing structures.  

2.2 Background on SMART 

SMART [Jain 2008; Jain 2009] represents semantic information as a grammar-based string that 

enables spatio-temporal queries in SQL query language. The player names in sports video, the shots given 

by the players, and their score are the examples of the semantic content of a video. This semantic 

information is represented as a grammar-based string that enables spatio-temporal queries in SQL query 

language. The major semantic contents of video are considered as objects, events, locations, and cameras 

in SMART. SMART can be applied to most sports games. We use tennis game as an example since it has 
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an important advantage over most sports videos: the complete view of the game can be captured with one 

almost-static camera.  Three main objects, as ΣO = {U, V, b}, were identified. Here, U and V represent the 

players, and b is the ball. Two events, as ΣE = {F, B}, were identified. Here, F represents the forehand 

shot and B represents the backhand shot. The tennis court was divided into various regions as shown in 

Figure 1(a): ΣL = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, N} where N represents the net. Six different camera 

views are considered for tennis videos: A: Gives a close view of the player at locations 7 and 8 in Figure 

1(a); B: Gives a close view of the player at locations 9 and10; C: Court view; D: Action Replay; and R: 

Rest time; Com: Commentators. Since we focus only actions in the game, rest time and commentators are 

not included in our strings. 

An Example. Figure 1(b) shows initially the close view of the player1 is captured by camera A. The 

play is then captured by the court view. The player1 and player2 are at locations 8 and 9 respectively. 

This sequence can be represented as {A [U] C [U8 b8 V9 b3 Bv9 b5 BU8 b4 FV10 b5] D[ ]}. The 

player1 serves and the ball hits location 3 (Figure 1(c)). The player2 hits a backhand shot and the ball hits 

location 5 (Figure 1(d)). Again the player1 hits a backhand shot at location 8 returning the ball to location 

4. The player2 hits a forehand shot at location 10 (Figure 1(e)) and the play ends with the ball going to 

location 5. This sequence is then replayed by camera D.  

     
a) Tennis Court 

Segmentation 

b) Close view of 

player 

c) Player1 serving d) Player2 hits a  

backhand shot 

e) Player2 hits a forehand 

shot 

Figure 1. Locations of a tennis court and sample sequences [Internet Archive 2011] 

Grammar for Tennis Game. SMART’s generic grammar was extended to incorporate the 

semantics of tennis game. Figure 2 provides a grammar for the tennis videos: video is a sequence of clips;  

a sequence of clips has many clips; a clip has a camera view and a sequence of spatiotemporal instances; 

a sequence of spatiotemporal instances has a spatiotemporal instance; and a spatiotemporal instance (spt) 

is represented with an object (obj), location (loc), and an optional event. 

 

Figure 2. A grammar for tennis videos. 
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2.3 Spatio-Temporal Logic (STL)  

 Temporal Logic allows to analyze the properties of a system with respect to time. Linear Temporal 

Logic (LTL) [Vardi 2001] is a type of temporal logic, that is used to analyze a system that is considered 

to be composed of a vertex-labeled path S0,S1,…,Sn, where each vertex Si corresponds to a point in time as 

shown by Figure 3(a). We plan to use the spatio-temporal logic (STL) notation provided in [Del Bimbo 

1995] with some modifications. Temporal assertion, Θ, on a state diagram (or state graph) σ, for a set of 

scene sequences is expressed as Θ:=(σ, S) ╞ θ where S is a state in the state graph, σ, and θ is a temporal 

formula which is formed by combining spatial assertions Ф with Boolean connectives such as , , ¬,  Ą 

and temporal operators. A state is a set of object, location pairs. The temporal operators are global (□), 

next (○), eventually (◊), until (U), and releases (R) operators. The temporal formula can be expressed as: 

 θ:= Ф | □Ф |○Ф |◊ Ф | Ф1UФ2 | Ф1RФ2 |¬ Ф| Ф1 Ф2| Ф1 Ф2| Ф1Ą Ф2 

For a given state a graph, S,  these temporal operators are briefly explained as follows: 

ü Global/ Always. This operator is denoted as “G” or “□”.  GΦ or □Φ, where Φ represents a 

propositional formula, implies that the condition specified by Φ should be satisfied through the 

path of vertices. (S, S1) ╞ □Ф implies that Ф is true for all states starting from state S1 in graph S 

(Figure 3(b)). 

ü Eventually/Finally. This operator is denoted as “F” or “◊”.  FΦ or ◊Φ implies that the condition 

specified by Φ should be satisfied eventually at a point of time in the given path of vertices. (S, 

S1) ╞ ◊Ф implies that Ф becomes eventually true after state S1 in graph S (Figure 3(c)).  

ü Next. This operator is denoted as “X” or “○”.  XΦ or ○Φ implies that the condition specified by 

Φ should be satisfied by the next vertex in the given path of vertices. (S, S1) ╞ ○Ф implies that Ф 

becomes true in the state following state S1 in graph S (Figure 3(d)). 

ü Until. This operator is denoted as “U”. ψUΦ, where ψ and Φ  represent propositional formulae, 

implies that the condition specified by ψ should be satisfied  until a particular vertex in the given 

path of vertices has Φ satisfied. (S, S1) ╞ ψUФ implies that ψ is true until Ф becomes true starting 

from state S1 in graph S (Figure 3(e)). 

ü Releases. This operator is denoted as “R”. ψRΦ implies that the condition specified by Φ should 

be satisfied through the path of vertices, until the first vertex in the given path of vertices, has  ψ 

satisfied. (S, S1) ╞ ψRФ implies that Ф is true until ψ becomes true starting from state S1 in graph 

S (Figure 3(f)). If there is no vertex that satisfies the condition specified by ψ, then the condition 

specified by Φ will be satisfied throughout the path of vertices. 
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In this research, the temporal operators ‘Next’ and ’Eventually’ have been implemented for supporting 

the spatio-temporal querying on the S3G, while ‘Global’ concept is used for optimizing the indexing of 

S3G states built for a tennis video database as an application. 

 
Figure 3. Temporal Operators (a) a sample sequence, (b) globally operator, (c) eventually operator, (d) 

next operator, (e) until operator, and (f) releases operator. 

3. S3G – A SEMANTIC SEQUENCE STATE GRAPH 

S3G is a graph where the events, objects, and locations are maintained as states and transitions. S3G 

resembles to a non-deterministic finite state machine. An S3G can be defined as M=[S,Σ,δ,s0,F] where S is 

a set of internal states, Σ is a finite input alphabet, s0 is the initial state, F is a set of external states, and δ 

is a transition function mapping S × Σ to SF. An internal state s (s S) is a set of object-location pairs. 

An internal state is a subset of cross product of objects spatial locations (S ΣO×ΣL). An external state 

f F corresponds to a decision in a sequence of events. The alphabet (Σ) is a subset of the cross product 

of the object-event pairs (Σ ΣO×ΣE). It should be noted that not all objects are associated with an event. 

S3G is cyclic in nature. Each of its nodes represents a state giving the locations of the objects involved in 

the video. Each node has also a list of clips displaying the corresponding state.  

3.1 Components 

The components of SMART grammar have events, objects, locations and camera view as the alphabet. 

The most important part in building an S3G is the identification of transition function and the states. 

States. A state is identified by objects and their corresponding locations. In addition to object-location 

pairs, states also maintain pointers for quick retrieval of objects. For each state, there is a list of clip 

pointers to retrieve the corresponding clips having that state. The maximum number of states for a video 

is determined by ||
||

1

|||)(| O

O
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 . 

Transitions. The transitions are determined by the semantic events. In our applications, the semantic 

events result in the displacement of objects. An action is generally continuous. Dividing an action into 
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discrete steps is critical in building an S3G. Determining discrete steps is decided by semantic 

events/actions.  

3.2 An Example: Tennis Video 

A video can be considered as a collection of a series of events and a series of states due to these 

events. Some videos such as a sports video can have finite types of states and events. Since the details of 

S3G can be expressed in a simple way using a tennis video, it is chosen as an S3G application in this 

paper. For example, in a tennis game the most important object is the ball. Each event causes the ball to 

move from one location to another location. Whenever a player hits the ball, the ball changes its position. 

To reduce the number of states, we are interested only in specific situations. For example, we are 

interested in whenever a player hits the ball or the ball hits the court or net. 

States of Tennis. In a tennis game, there are three objects: two players and the tennis ball. At a given 

instance, the objects with their locations define a state in the video. Since there are 3 objects and 13 

locations identified for a tennis video, the total number of states is 133. However, it is unlikely to have 

these many states for a tennis game. Therefore, we create a state as long as that state exists in the 

database. The start states are generated based on the initial player positions. Each tennis video has a 

corresponding player 1 and another corresponding player 2. 

Each SMART string corresponds to point level. Tennis game can be composed of five hierarchical 

levels as shown in [Gan 2006]: match-level, set-level, game-level, point-level, and stroke-level. Our 

strings correspond to the point-level but are composed of stroke-level information. Therefore, each state 

sequence for a string starts from a serve until one of the players make a mistake. While indexing a clip, 

we are interested in the plays. Therefore, other parts of the game such as commentators and slow motion 

replays are not indexed by S3G.   

Transitions of Tennis (Semantic Events). Now, principally, we can say that there can be two types of 

shots that the tennis players can make, i.e., the forehand shot and the backhand shot. Thus, we can define 

four types of events for a tennis video, namely a forehand shot by player1, a backhand shot by player1, a 

forehand shot by player2 and a backhand shot by player2. Hence,  there are four types of transitions in a 

tennis video. 

We can thus define a tennis video in terms of a series of states where each state consists of a value for 

the locations of player1, player2, and the tennis ball. Corresponding to the four types of events possible 

there can be four types of transitions. 

Each transition changes a state with a set of location values for the players and the ball before that 

transition to another state with a new set of location values after the transition (Figure 4). The next state is 

represented as Snext=t(A(O,Sold)) where an event/action A by object O from state Sold leads to state Snew. 
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Figure 4. States and types of transitions of S3G   Figure 5. A transition  

for a tennis video     that causes a new state 

Example. Consider an initial state that has the values for spatial locations as 7, 10, and 7 for the 

player1, the player2, and the ball, respectively.  This means that the player1 and the ball were in location 

7, while the player2 was in location 10. Now, if the player1 hits a forehand shot and the ball goes to 

location 4 and so does the player2 to hit the ball back, then we will have a new state with values 7, 4, and 

4 corresponding to the new location values of the player1, the player2, and the ball, respectively. In this 

case, the transition for the initial state to the new state should be defined as “player1 hits a forehand shot” 

(F(p1)) (Figure 5). 

Cyclic Nature. Consider a state with the values for spatial locations as 5, 6, and 5 for the player1, the 

player2, and the ball, respectively. Now, there can be a transition where the player1 hits a forehand shot 

and the ball goes to location 6 reaching a S3G state with location values as 5, 6, and 6 for the player1, the 

player2, and the ball locations, respectively. In return to this player1’s shot the player2 may hit a 

backhand shot hitting the ball to location 5, thus going back to the initial state in the S3G as shown in 

Figure 6. Thus, S3G is a cyclic graph.  

List of States. A transition from a state can result in one of the multiple possible states. In the tennis 

video example, a transition from a state or a set of location values, such as a forehand shot by player1 can 

result in one of the multiple possible states. For example, the player1 may retain his position after hitting 

the shot or move to another position. Similarly the player2 can be in any of the locations in his court side. 

Also the player1 has multiple location options for hitting the ball. Hence for a given state, there should be 

a list of states for each of the four transitions as in Figure 7. 

List of Clips. Now there can be many video clips for a given set of locations values for the player1, 

the player2, and the ball. So each state can have many video clips corresponding to it. Therefore an array 

of these clip ids should be maintained for the corresponding clips (Figure 8). In addition, the rank of the 

state in a clip is also stored along with the clip number. For simplicity, we do not show the ranks in the 

figures. 

Si+1=t(F(p1,<b,p1,p2>) Si=<b,p1,p2> 

Si+2=t(F(p2,<b,p1,p2>) 

Si+3=t(B(p1,<b,p1,p2>) 

F(p1) 

F(p2) 
B(p1) 

B(p2) 

<b=7,p1=7,p2=10> 

<b=4,p1=7,p2=4> 

F(p1) 

Si+4=t(B(p2,<b,p1,p2>) 
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Figure 6. Cyclic nature of S3G             Figure 7. S3G with a list of states for the different transition types 

     

Finally each state in the S3G will of the form: State Si :[< A 1,A2,…An >,<C i>] . Here Ai is an action 

pointer for next S3G states and Ci is pointer pointing to a list of clips with ranks having the state Si. For a 

tennis video, we have 4 action pointers. PP1f and PP1b point to the list of states that are possible after the 

player1 hits a fore-hand shot and a backhand shot, respectively. Similarly, PP2f and PP2b point to the list of 

states that are possible after the player2 hits a forehand shot and a backhand shot, respectively. 

Complexity. The number of states may look like it grows exponentially with respect to the number of 

objects and locations. However, the number of states cannot be more than the number of frames in a video 

in the worst case. A state indicates possible positioning of objects at various locations in many video 

clips. 

 
Figure 8. S3G with a list of Clips 

4. BUILDING S3G 

We build a S3G from SMART [Jain 2008; Jain 2009] strings. For example, consider a string as 

U7V10b4FV10b8 that states that initially player1 and the ball are in location 7 and player2 is in location 

10. The player1 serves the ball that goes to location 4. The player2 in location 10 hits the ball that goes to 

location 8. Two states can be defined as follows. The initial state has location values 7, 10, and 7 for 

player1, player2, and ball locations, respectively. The ‘following’ state has location values as 7, 10, and 8 

for player1, player2, and ball locations, respectively. A transition from the initial state to the following 

state is defined as “player1 hitting a forehand shot”.  

 
 

Si=<b,p1,p2>  
F(p1)  

 Si+1 F(p2) 
B(p2) 

)  
 Si+2 

Si+4 

 
 Si+3 

B(p1) 

) 

<b=5,p1=5,p2=6> 

<b=6,p1=5,p2=6> 

F(p1) 

B(p2) 
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The assumption used in string representations to reduce string sizes should be taken care of during 

converting them to state representation. For example, the ball location will be the same as the player 

location who is serving the ball. The players change their location 7 and 10 to 8 and 9 in alternating 

fashion, which will not be expressed explicitly in the string representations. For example, if the beginning 

of the video clip has player locations as 7 and 10, the ‘next’ play will have the player locations as 8, 9 and 

vice versa. 

4.1 Insertion into S3G  

The S3G is built in an incremental order as strings are being parsed. This is done by reusing the 

existing states in the S3G and creating new states and transitions if required. 

Assume that an S3G as in Figure 9 is already built and we need to process a new substring as 

“U7b10FV10b7” for a clip with id C2134. This defines an initial state with location values as 10, 7, and 

10 for the tennis ball, the player1 and the player2, respectively. Since a corresponding state in Figure 9 

does not exist, a new state (S4 in Figure 10) has to be created. Next, player2 hits a forehand shot and the 

ball goes to location 7. This corresponds to an existing state (S1 in Figure 9) with location values 7, 10, 

and 7 for the tennis ball, the player1, and the player2, respectively. The clip id C2134 is added to the clip 

list of state S1 as in Figure 10. In the second case, instead of creating a new state, initial state (S4) for clip 

C2134 is made to point to the existing state S1. The clip C2134 is added to the list of video clips of S1.  

      

 
Figure 9. An S3G graph before inserting clip C2134       Figure 10. S3G graph after inserting clip  

       C2134 into a new state and an existing state 
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Algorithm 1. Algorithm for converting strings to states. 

Algorithm 1 provides the pseudo-code for converting from string to state. Here each alphabet from the 

SMART [Jain 2008; Jain 2009] string is read. If the alphabet represents an object (players or ball) and the 

object location is not implied, then the successive alphabets are read to get its location value. Once all the 

three object locations are determined, a state with these location values is searched using the indexing 

structure in Section 4.2.1. If the state is found, then it is linked with the previous state with suitable 

transition type represented by the alphabets in the string denoting the event, else a new state is created and 

added to the S3G by linking it with the previous state using the transition specified by the event denoting 

alphabet. When the strings are parsed, the initial event is ‘serve’ (not explicitly represented in the string) 

and represented as a forehand shot as a transition in the graph. 

Algorithm 2 determines whether an existing state, OP, in S3G is reachable from an initial state S. First 

the system checks the presence of state OP. If OP is present, the set of common clip lists are found. If the 

intersection of clip lists is empty, state OP is not reachable from state S. If the intersection of clips is non-

empty, the ranks of the same clips are compared. If the rank of a clip in state OP is more than the rank of 

String2State (StrClip) 

IN: string StrClip // applied for each string in the database 

OUT: S3G graph 

begin  

  while  not end of string 

    read new alphabet  

    if  (alphabet   (ΣO-{b})) // its location is not implied 

Parse the location of  
    endif  

    if  (alphabet   {b}) // ball is the last object for a state 

       if  location of  is implied 

  Compute it from another object β // a player 

  OP1 ← object-location pairs  

           if  no state for OP1 

              create a state for OP1 

              currentState ← OP1_state 

           endif  

       else  

          parse the location of  
          OP2 ← object-location pairs 

       endif  

    else if  (alphabet   ΣE) //  is an event (transition) 

       // for serve, the event is assumed to be with forehand 

       if  no state is created for OP2 

 create a new state for OP2 

       endif  

       nextState ← OP2_state 

       Link currentState through  to nextState 

    endif  

  end while  

end  
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the clip in S, the state OP is reachable from state S. In the algorithm, C(S) returns the rank of a clip C in 

state S. This reachability function is used in querying. 

 
Algorithm 2. Algorithm for searching states in S3G. 

 

A S3G can grow significantly depending on the number of states and actions involved in a given video. 

The recursive algorithm for finding states discussed in the previous subsection may no longer be efficient 

for a S3G with a large number of states. We use hashing for determining whether a state is present in the 

graph or not. States may not need to be created ahead of time. They may be created as those states are 

encountered in video clips. This will avoid the construction of an unnecessary large graph. 

5. QUERYING 

This section describes the interface to build S3G and perform spatio-temporal querying on a S3G. We 

generate one S3G for the complete tennis video database.  Information other than spatio-temporal content 

about the tennis games is stored in other tables in the database. The irrelevant clips can be eliminated as 

the states are visited. The user interface snapshots are provided in the Appendix. 

5.1 Input, Backup, and Storage for S3G 

The string representation of the video according to SMART [Jain 2008; Jain 2009] is used as an input 

for building the S3G states. The strings can be given as input by (a) manually typing the strings or (b) the 

SMART [Jain 2008; Jain 2009] strings stored in the GSMART database (Figure A1 in Appendix). S3G 

can be mapped to a relational model and stored in the database. When the system restarts, it can easily be 

bool Reachable (OP,S)  

IN: Objects with Positions OP={(o1,p1), (o2,p2), …, (on,pn)} 

IN: An initial state S 

OUT: a boolean value reachable 

begin  

check if OP is present using hashing 

reachable=false 

if  OP is present then   

CLop = clip list of OP; 

CLs =  clip list of S; 

if  (CLop ∩ CLs)=ø then  

   reachable = false; 

else  

   foreach C in (CLop ∩ CLs) 

      if C(OP) > C(S) then  

         reachable = true; 

      endif  

   endfor  

endif  

   endif  

  return reachable 

end  
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built without processing the strings in the database. If the S3G index is no longer needed, it can be 

removed from the database. 

5.2 Searching a State 

Once a S3G is formed, a particular state can be queried with respect to object positions. If a state is 

present in the S3G, the corresponding clips in the state can be viewed. The ‘Location Selector’ interface 

(Figure A3 in Appendix) helps to retrieve clips that are associated with a state. The location of an object 

is selected by first choosing the object (the player1, the player2, or the ball) and then clicking the location 

on the tennis court image corresponding to the required object’s location. If a state exists in the S3G, the 

details of that state (Figure A4 in Appendix) are displayed with a list of the clips associated with the state.  

5.3 Querying 

We can apply STL on the S3G and construct spatio-temporal queries. In this paper, we provide examples 

of ‘next’ and ‘eventually’ operators that are applied on the tennis video database. When searching for a 

state sequence, it is important that the states in the sequence have the common clips. Moreover, the rank 

of a state for the clip should increase by one in a consecutive state. For example, if a sequence has states 

S1 and S2 that are searched, S1 and S2 must have at least one common clip. For the common clips, the rank 

should increase. For example, consider a partial S3G in Figure 11 where ranks of states are provided as 

subscripts of clip numbers. Clip C1 has ranks 1 and 3 for state S1, and rank 2 for state S2. This indicates 

that the states of C1 are in the order of S1-S2-S1. For C7, the order is S2-S1. For a sequence from S1 and S2 

with a backhand shot by player 1, clip C5 will not be retrieved since clip C5 is not common in both clips. 

Clip C7 is common in both states, but the order of states is not correct. Clip C1 is retrieved because it has 

a rank 1 for state S1 and rank 2 for state S2. This means that S2 follows S1 with a backhand shot by player 

1 in clip C1. 

In the following subsections, we do not delve into ranks assuming that rank conditions are satisfied. 

We put more emphasis on how temporal operations are handled. 

 

Figure 11. A partial S3G.    Figure 12. An instance of S3G 

5.3.1 ‘Next’ State Query  

The ‘next’ query helps us retrieve all the possible next states from a given state in the S3G. Each state 

in the S3G can have multiple next states for each of the four kinds of transitions. 



 

 17 

Example. In the given instance of S3G in Figure 12, the state S2 occurs following S1 when player1 hits 

a backhand shot. The state S3 occurs following S1 when player1 hits a forehand shot. Therefore, a ‘next’ 

query for state S1, should fetch states S2 and S3: 

(S,S1)╞ ○ (S2) and (S,S1)╞ ○ (S3). 

For each of the four transitions types (player1 hitting forehand shot, player2 hitting forehand shot, 

player1 hitting backhand shot and player2 hitting backhand shot), the ‘next’ possible states will be 

retrieved. The interface for querying ‘next’ states are provided in Appendix A.5. The ‘next’ state query 

can also be applied multiple number of times in succession to obtain the clips with all the selected states. 

 

Figure 13. An instance of S3G    Figure 14. An instance of S3G 

Example. In Figure 13, if S4 is selected as the current state, its next states will be S1 and S5. The states 

S4 and S1 have clip C7 as a common clip, while the states S4 and S5 have clip C1 as common. If S5 is 

selected as the required ‘next’ state and the ‘next’ state is applied to S5, the state S2 will be obtained as 

they have clip 11 as common, but state S4 does not have this clip. Hence, no clips are retrieved. 

5.3.2 ‘Eventually’ State Query  

The ‘eventually’ query helps users check if a state eventually occurs in future after a particular state 

has already occurred in the S3G. For given two S3G states, an initial state and a final state, it can be 

checked if the final state eventually occurs after the initial state has occurred by checking if it is possible 

to  reach the final state from a given start state in the S3G .  

Example. Figure 14 provides an instance of S3G where S1 occurs following the state S4 when player2 

hits a forehand shot. The state S2 occurs following state S1 when player1 hits a backhand shot. The state 

S3 occurs when player1 hits a forehand shot after the state S2. Therefore, running an ‘eventually’ query 

with S4 as a start state and S3 as a final state succeeds while an eventually query with S2 as a start state 

and S4 as a final state does not: 

(S,S4)╞ ◊ (S3) but (S,S2) ╞ ◊ (S4) is false. 

Consider the example shown in Figure 15 where a state with locations 7, 10, and 4 are set for the 

player1, the player2, and the ball positions, respectively for the initial state. When the user clicks “Set as 
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initial state”, this initial state is shown as a thumbnail in Figure 15. To check if a state ‘eventually’ occurs 

after the initial state chosen, the ‘Eventually Check’ in Figure 16 is selected (see Appendix A.6 for more 

information). 

5.3.3 Combining ‘Next’ and ‘Eventually’ Queries 

The ‘next’ and the ‘eventually’ state queries can be called multiple times in any order.  In Figure 17, 

an instance of S3G is given where S1 is a state that is directly reachable from the state S4 after player2 hits 

a forehand shot. The state S2 is directly reachable from S1 after Player1 hits a backhand shot. The states S5 

and S3 are directly reachable from the state S2 after the transitions resulting from “player1 hitting a 

forehand shot” and “player2 hitting a backhand shot” respectively. Therefore, an ‘eventually’ query with 

S4 as the start state and S2 as the final state will succeed. A ‘next’ query on the state will retrieve states S3 

and S5.  

(S,S4)╞ ◊ (S2)  (S,S2)╞ ◊ (S3)  and (S,S4)╞ ○ (S2)  (S,S2)╞ ○ (S5)   

Similarly a ‘next’ query on the state S4 gives the state S1 and then an ‘eventually’ query with S1 as the 

start state and S5 as the final state will also succeed.  

(S,S4)╞ ○ (S1)  (S,S1)╞ ◊ (S5) 

Our application has the feature of graphically displaying the states of a query to simplify the process of 

long queries that result from a series of eventually & next state queries as shown in Figure 18. When a 

new query is submitted, the image of previous state will be retrieved from a location where all possible 

state images are stored. This image is then displayed.  Thus, S3G application helps to develop queries 

interactively. The user can continue building queries on the results obtained from his previous sub-

queries, thus enabling creation of lengthy queries dynamically instead of running just a fixed query. 

  
Figure 15. Initial state is set. Figure 16. ‘Eventually’ checking. 
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Other query types using ‘releases’ or ‘until’ operator can also support queries such as “retrieve clips 

where both players are at the baseline until one player runs to the net.” In our application, these queries 

can be represented with a sequence of ‘next’ queries. So, this type of queries is not implemented 

separately. 

 

 

 
Figure 17. An instance of S3G 

 

 

 

 
Figure 18. Query building history. 
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6 EXPERIMENTS 

In this section, we first provide experimental results and then provide discussion on extendibility for other 

videos. 

6.1 Performance 

Comparison. We compare our method with Spatio-temporal Query Patterns (STP) (Hadjieleftheroui, 

2005).  There are improvements to STP method with assumptions (Lagogiannis, 2010) which are not 

applicable to our case (e.g., an object should not visit the same location again). STP provides indexing 

based on positions usually divided into grids. STP index keeps the time when objects visit a specific 

location. There are several issues with STP: a) STP supports querying the trajectory of a single object, b) 

there is a single timeline for trajectories, c) there are no semantic events between changing positions, and 

d) the gap between any consecutive steps could be anything. To compare our method with STP, the 

following changes are made for STP. 1) Our queries include multiple objects. Therefore, we first need to 

query STP for each object and check the results are synchronized (i.e., check whether objects appear at 

the corresponding positions at the same time). 2) After each tennis point (tennis match is composed of 

sets, which are composed of games, which are composed of points), the positions of players are reset. 

There is no need to check the positions of objects across points. We need to keep STP index structure for 

each point. A sequence of positions across multiple points is not related to each other and meaningless. 3) 

We consider all semantic transitions (all types of shots) for S3G since STP does not support transitions. 4) 

We consider eventual queries to compare S3G with STP since STP is not designed to support next-

querying. 

Building S3G. Since a small number of games are not enough to check the performance of indexing 

structures, we have simulated tennis games to measure the complexity of building S3G and querying using 

S3G. We have generated around 10,000 points (sequences or strings or clips). Each game has around 100 

points. Table I shows the statistics for building S3G and STP index structures where |IS| is the number of 

input sequences (or strings) and |s| is the number of states (note |s| is only applicable to S3G). These 

timings only include the time for building the index structures and ignore the time for decoding the input 

strings since strings are decoded differently for each index structure.  
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|IS| 
or 
|q| 

 

S3G 
Indexing 

STP 
Indexing 

S3G Searching STP Searching 

|s| 
3 

states 
2 

states 
3 

states 
2 

states 

1 10 0.003 0.003 0.001 0.001 0.020 0.015 

2 13 0.003 0.003 0.001 0.001 0.028 0.024 

4 19 0.003 0.003 0.001 0.001 0.047 0.040 

8 27 0.003 0.003 0.002 0.001 0.076 0.087 

16 52 0.003 0.003 0.002 0.002 0.132 0.140 

32 82 0.003 0.003 0.003 0.003 0.245 0.248 

64 129 0.003 0.003 0.006 0.005 0.473 0.461 

128 178 0.003 0.003 0.010 0.008 0.932 0.866 

256 217 0.004 0.004 0.019 0.010 1.876 1.638 

512 249 0.005 0.006 0.037 0.015 3.735 3.143 

1024 287 0.010 0.009 0.073 0.025 7.570 6.175 

2048 332 0.014 0.016 0.145 0.049 15.082 12.446 

4096 370 0.021 0.029 0.297 0.085 30.104 24.672 

8192 387 0.035 0.070 0.600 0.153 59.882 49.496 

 

Table I. Time for building index structures and searching with 2 and 3 states for S3G and STP.   

 
Figure 19. Time for building index structures. 

 

Complexity. It takes 35ms to build S3G for 10,000 points. Table I shows that the number of states 

reaches saturation when 4096 input sequences are processed and barely increases after that. Our 

experimental results indicate that the time complexity is O(|IS|)+O(|s|). Since |IS|>>| s| and the number 

of states reaches a saturation point, the complexity of building S3G is O(|IS|) for large databases. The time 

complexity of inserting a state into S3G is O(1). Similarly, the time complexity of inserting a clip into a 

state in S3G is O(1): finding the state using hashing and adding the clip to the end. Figure 19 shows the 

comparison of building index structures. Building S3G is faster than STP despite S3G also includes the 
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time to build the index structure with respect to the player shots whereas in STP those transitions are 

ignored. Although a separate STP index is built for each clip (this results in simple STP index structures), 

building a complex and single S3G index was faster than building STP index structures. If a single STP 

index structure had been built, the querying would not complete in a reasonable time for STP index. 

Querying. We compare the performance of S3G and STP on ‘eventually’ queries. Table I provides the 

experimental results when 10,000 points are inserted into the database where |q| indicates the number of 

queries. A query returns the clips where a destination state is reachable from an initial state. We provide 

the results with 2 and 3 states (or predicates) for ‘eventually’ queries. S3G significantly outperforms STP 

that we cannot put them into a single graph. Using S3G, 8196 queries for 3 states are completed in 600ms 

whereas it takes around 60 seconds for STP. Using S3G for queries where there is an initial state and a 

final state just took 153ms. Figure 19 shows the results of querying for S3G. Note that the time for 

querying provides the total time for |q| queries. The cost of a ‘Next’ query is O(1)+O(1). The first part 

locates the current state using hashing and the second part locates the next state using the corresponding 

event.  

6.2 Discussion on Extendibility 

The domain of applications should have the following properties: a) the video data should be 

discretizable in both spatial domain and temporal domain; b) the states should be repeated to get benefit 

from this indexing method, and c) there should be preferably semantic events (or transitions) that indicate 

change from one state to another state. The transitions and discretization are closely related to each other. 

Now, we give examples of these in several different domains. 

We may group sports based on the layout of the field, instruments involved in the game, the number of 

players, and so on. In some sports ranking is important: auto racing, swimming, and cycling. The events 

or transitions include completion of a lap, taking a pit stop, or passing of a player by another player. The 

states may involve the rank of players, the lap, and their locations on the field. A combination of lap and 

rank could be a better option for auto racing rather than the exact locations of cars. Another set of group 

of games include games where the field is divided into multiple sections. Examples include tennis, table-

tennis, volleyball, and badminton. Tennis example is already covered with some detail. For volleyball the 

events could be passing, block, or spike etc. Another set of games include games that are played on a 

board (e.g., chess). In chess, player moves are transitions, and pieces on board make the states. In a single 

game, it may be rare to repeat states but it is possible to have states repeated in multiple games. 8 moves 

of a chess game by Kasparov against World Team are: “1.e4 c5 2.Nf3 d6 3.Bb5+ Bd7 4.Bxd7+ Qxd7 5.c4 

Nc6 6.Nc3 Nf6 7.0-0 g6 8.d4 cxd4. “ 
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Another set of games include games where players have almost no restriction to move on the field. 

These games include soccer, football, basketball, ice hockey, etc. The research on these games includes 

video processing, game summary processing, and commentator speech processing. Not all players might 

be involved at a play during the game. The positions of players as well as their actions might be 

important. We investigated games from National Football League (NFL). The critical parts of the state 

are: the ball location, team having the ball, down-and-distance, and optional team formation (e.g., 

State(Team: GB; Ball: NO-37; Down; 1-10; Formation: shotgun)).  Events have more information about 

the event type such as rushing, passing, sacks. Events may also have information who is involved in the 

event (e.g., player A passes the ball to player B which is then stopped by player X of the opponent team). 

In baseball, the players at the bases, pitcher, batter, catchers, etc. form the states. Home-run, strike, ball, 

etc. correspond to transitions. In the golf, the player follows holes. The position of the ball after each hit 

and the hole number may correspond to a state. The hit may correspond to a transition. 

If the number of states grows significantly, we propose two ways of reducing the number of states: a) 

decrease the number of locations by increasing the sizes of locations and b) use only players who are 

active in the play for that state.  

7 CONCLUSION 

In this paper, we introduced a new indexing method, semantic sequence state graph (S3G), for spatio-

temporal data using the semantic contents of the video. S3G utilizes semantic events as transitions in the 

events while the spatial information is maintained in states. The semantic events result in temporal 

ordering among the states. The states are indexed with an indexing structure similar to K-d trees. The 

‘next’ and ‘eventually’ operations of LTL have been implemented using the S3G platform on the tennis 

video database. Both these types of queries can be applied multiple times in combination to form a 

complex query. A sample application of S3G is shown for a tennis video database application. As future 

work, we plan to apply S3G in other domains. We also plan to provide more efficient ways of managing 

temporal queries of S3G. We also intend to create new scenarios of events, objects, and locations by 

reusing the video clip contents and traversing S3G. S3G can handle coupled STQ with combination of 

‘next’ and ‘eventually’ queries. S3G suits well for applications where there is a finite domain of objects, 

events, and locations where repetitions are frequent. S3G also helps the user develop the temporal 

components of a query by a user interface that shows a history of the built query. The user can see 

whether his query will lead to any result or not while building his query. 
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APPENDIX 

In Appendix, we provide information about our user interface for querying.  

A USER INTERFACE 

In this section, we provide some snapshots from our user interface.  

A.1 Building S3G 

Figure A1 displays the user interface where SMART strings are read from the database. When “Proceed 

to State Conversion” button is clicked, the S3G is built. 

 
Figure A1. Interface showing the strings obtained from GSMART database 

A.2 Displaying States 

The interface is prepared based on design in Figure A2 where player1, player2, and the ball images are 

placed on all possible locations on the tennis court image. All these object images are hidden except the 

ones that represent the location values for the given state when displaying a state. 

A.3 Location Selector Interface 

Figure A3 shows Location Selector interface filled with location values for a desired state. In this 

example, player1 location has a location as 7, player2 has a location as 10, and the ball has a location as 4. 

To search for a particular state with corresponding location values in the ‘Location Selector’ interface, the 

search option in Figure 15 is selected. To retrieve states based on an event, the user needs to follow the 

links to retrieve the corresponding links. For example, if the user wants to retrieve the clips that result 
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after an event such as forehand shot by player1, the transition for this event followed and the clips from 

the relevant states are retrieved. 

A.4 Viewing Clips 

A particular clip can be selected to view from the list of clips given for that state (Figure A4). The clip 

will be displayed after pressing the view button. If the selected state does not exist in the S3G, a message 

will be displayed saying that the specified state does not exist. Figure A4 also shows player1, player2, and 

ball locations.  

 

 

 

 

Figure A2. Player1, player2 and ball images on all 

possible locations on the tennis court 
Figure A3. Location Selector interface 

State with entries filled for player1, player2 

and ball locations 

 



 

 

 
Figure A4. Interface showing details of 40710 Figure A5. Location Selector interface with 

next ‘state’ 

 

A.5 Interface for Querying Next States 

A state can be chosen by selecting the player1, the player2 and the ball locations in the tennis court 

and then corresponding ‘next’ states in the S3G can be obtained (Figure A5). The aim is to obtain the clips 

having the current state and the selected next state. 

Figure A6 shows an interface showing the possible ‘next’ states in the S3G for the transition, when 

player2 hits a forehand shot. A ‘next’ state can be selected by choosing the ‘Select State’ Options button 

associated with that state. If the next state does not exist in the S3G for a transition then a message will be 

displayed stating that there is no next state for that transition. Once a current state and a next state are 

selected, the relevant clips can then be viewed (Figure A7).  

Only the next states that have common clips with the relevant clip set (clips common to all selected 

states) are displayed to select. There may be a case where there can be a next state existing for a state in 

the S3G but the next state has no common clip with all previously selected states. In such a case, a 

message stating that “the next state exists in the S3G, but no common clip exists” is displayed. 

A.6 Interface for Querying Eventually  

The result, whether the ‘eventually’ link exists between the chosen initial and final states in the S3G or 

not, is obtained by selecting the “Result” option as in Figure A8. Figure A8 shows that an ‘eventually’ 

link exists for the chosen initial and final states in the S3G. 
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Figure A6. Interface showing ‘next’ states when player2 hits a forehand shot 
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Figure A7. Interface showing the relevant clip having the two states (current and ‘next’ states on top right 

corner) 

 

 
Figure A8. Result of ‘eventually’ check. 

 


