

Sprite Generation Using Sprite Fusion

Y. CHEN, A.A. DESHPANDE, AND R.S. AYGÜN* Computer Science Department, University of Alabama in Huntsville

There has been related research for sprite or mosaic generation for over 15 years. In this paper, we try to understand the methodologies
for sprite generation and identify what has not actually been covered for sprite generation. We firstly identify issues and focus on the
domain of videos for sprite generation. We introduce a novel sprite fusion method that blends two sprites. Sprite fusion method produces
good results for tracking videos and does not require object segmentation. We present sample results of our experiments.

Categories and Subject Descriptors: I 2.10 [Artificial Intelligence] – Vision and Scene Understanding – Video Analysis.

General Terms: video processing

Additional Key Words and Phrases: Sprite generation, video processing, video standards

ACM Reference Format:

CHEN, Y., DESHPANDE, A.A., AND AYGÜN, R.S. 2011. Sprite Generation Using Sprite fusion. ACM Trans. Multimedia Computing,
Communications, and Applications, X, X, Article X (X 2011), 20 pages.

DOI=X

1. INTRODUCTION

Sprite (or mosaic) generation plays an important role in object-based coding, video compression, security,
object recognition, and behavior analysis. The sprite generation has gained significant importance as the
introduction of MPEG-4 Visual Standard [MPEG4-2; Sikora 1997], since it provides efficient video
compression and interactivity with objects. The latest standard for video compression is H.264 / Advanced
Video Coding (AVC) MPEG-4 Part 10 [H264; Ostermann 2004] while upcoming standard, H.265 [H.265;
2009] is being developed. It has been shown experimentally that H.264/MPEG4-10 provides better
compression (around 50% bit savings) than MPEG4-2 [Ostermann 2004]. This may lead to the
misconception that H.264 will replace MPEG4-2 at all levels. In fact, the comparison tests usually evaluate
H.264 against MPEG-4 Simple Profile. In [To 2005], it has been shown that when sprites are encoded using
JPEG-2000 Region-of-Interest [Taubman 2002] and motion-compensated predicted image differences are
coded with H.264, the compression and quality of sprite coding is better than the compression and quality of
H.264. Sprite coding with H.264 has also been studied in recent research [Kunter 2008]. The sprite coding
only exists in the Main Visual profile of MPEG-4. Although there are (commercial) MPEG-4 encoders
available, to the best of our knowledge none of them implements the Main Visual Profile.

1.1 Issues

There are crucial issues related to sprite generation: accuracy, performance, robustness, and domain.
Accuracy. Accuracy (or quality) of sprite is measured in two phases in general: subjective and objective. In
subjective evaluation, an expert decides whether the sprite is a correct sprite for the video or not. In objective
evaluation, an objective measure such as Peak Signal-to-Noise Ratio (PSNR) is computed for frames that
are regenerated from the sprite against the original frames. In [Chen 2010], we used synthetic

* This material is based upon work supported by the National Science Foundation under Grant No. 0812307.
Authors’ addresses: Y. Chen, Computer Science Department, University of Alabama in Huntsville, Huntsville, AL, USA E-mail:
yichen@cs.uah.edu ; A. Deshpande, Computer Science Department, University of Alabama in Huntsville, Huntsville, AL, USA E-mail:
adeshpan@cs.uah.edu ; R.S. Aygün, Computer Science Department, University of Alabama in Huntsville, Huntsville, AL, USA E-mail:
raygun@cs.uah.edu
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen
of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work
in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2
Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
@2012 ACM 1544-3558/2010/05-ART1 $10.00
DOI http://dx.doi.org/10.1145/2168996.2169002

videos to check the accuracy of sprite generation. Performance. There is inherent complexity of sprite
generation since it includes three major steps: global motion estimation, warping, and blending. The sprite

9

© ACM, (2012) This is the author’s version of the work. It is posted by permission of ACM for your personal use.

Not for redistribution. The definitive version was published in ACM Transactions on Multimedia Compuring,

Communications, and Applications 8, 2, May 2012 http://dx.doi.org/10.1145/2168996.2169002

mailto:yichen@cs.uah.edu
mailto:adeshpan@cs.uah.edu
mailto:raygun@cs.uah.edu
mailto:permissions@acm.org
http://dx.doi.org/10.1145/2168996.2169002

generation process has limitations due to: a) motion models, b) scene depth, and c) moving objects. The
algorithms to overcome these limitations should not introduce significant burden on the system since sprite
generation could be part of an encoder. Domain. The features that affect the domain are the presence of
global motion, magnitude of global motion, presence of moving objects, and mobility of these objects. The
domain is related to the identification of videos suitable for generating sprites. Robustness. If a sprite can be
generated for a domain of videos, a robust sprite generation algorithm should be able to generate sprites for
all videos in the domain not just a set of specific videos.

The most general way to detect the camera motion is to detect the global motion between consecutive
frames. If an appropriate motion model is used, the scene depth can also be described properly. However,
there is no clear and robust way to ignore moving objects during sprite generation. Under (background) sprite
generation context, moving objects are considered as foreground and the rest are considered as the
background. The most general approach is that the long-time aggregation of aligned pixel values from frames
by eliminating pixels that yield error over a threshold will remove the moving objects from the sprite. However,
these long-term aggregation methods cannot eliminate the moving objects thoroughly, and thus, produce
inaccurate sprites. The statistical approaches like Kalman filter are able to reduce the effect of moving
objects. The object occlusion problem worsens the object segmentation problem. The sprite coding cannot
be done in real time because of object segmentation [To 2005]. The limitations can be summarized as: no
object removal; conditional object removal; necessity of segmentation masks; necessity for (rough)
foreground segmentation; necessity of all frames; temporal integration, and visually improper sprite
generation.

1.2 Related Work

There are various definitions for sprites, background, and mosaic. The (background) sprite (or mosaic) can
be defined as the stable background where the moving objects are replaced with the original background
pixels. The mosaic generation process requires the integration of background pixels that are spanned over
frames. The sprite is not only generated for the background but it can be generated for any object.

Sprite generation research has been studied under panoramic image, salient stills [Teodosio 1993],
mosaic, background extraction, sprite coding, and image alignment-stitching [Szeliski 2006]. Sprite
generation has 3 steps: global motion estimation (GME) [Dufaux 2000; Smolic 1999; Smolic 2000; Lu 2001;
Lee 1997], warping, and blending.

Sprite (mosaic) generation methods mostly differ in the ways motion estimation and features used to
create the mosaic. In [Irani 1998], different representations (or types) of mosaics like static, dynamic and
synopsis mosaic have been investigated. Depending on camera motion, different types of mosaic are
generated: planar mosaic [Irani 1998; Szeliski 1997; Smolic 1999; Smolic 2000; Zoghlami 1997; Salembier
1998], the cylindrical mosaic [Zoghlami 1997], and the spherical mosaic is generated when camera is both
panning and tilting [Coorg 2000]. Alternative methods such as pipe projection [Peleg 2000] and salient stills
[Teodosio 2005] are proposed to deal with forward motion and zoom, respectively. Multiple static cameras
[Geys 2006], multi-sprites [Farin 2006], and high resolution mosaic [Smolic 2000] are various techniques for
mosaic or sprite generation. Work on estimation of motion parameters and generation of sprites has been
presented in [Smolic 1999]. The blurring that may be caused by inaccurate segmentation masks is dealt with
in [Lu 2003]. In our prior work [Aygun 2002], we developed a high-resolution mosaic (sprite) to reduce blurring
in the sprite. We introduced a histemporal filter for blending. In [Lai 2009], spatial correlation is used to further
increase the accuracy since most probable values for a region may not actually be spatially correlated. There
is also some research that use additional resources such as availability of multiple views or multiple shots
etc. Some applications target coding and they just try to reduce the number of bits for compression.

Most of the test videos (except standard test sequences) are not available to the community. Table I
provides a summary of sequences that are used in the literature. The limitations can be summarized as: a)
no object removal; b) conditional object removal; c) necessity of segmentation masks; d) necessity for (rough)
foreground segmentation; e) necessity of all frames; f) temporal integration; and g) visually improper sprite
generation. Some applications do not deal to remove moving objects (or they target object-free videos).
Sometimes applications require that last or first frame should not have objects for total object

Table 1 Sequences used in the literature

References Sample Video sequences used Limitations

[Lu 2003] Stefan, Coastguard
Applies rough foreground segmentation; partial coastguard
sprite

[Cheung 2008] Stefan Relies on availability of segmentation masks

[Shen 2004] Coastguard Rough foreground segmentation; partial coastguard sprite

[Lu 2001] Stefan, Coastguard, Foreman Rough foreground segmentation; no coastguard sprite

[Aygun 2002] Coastguard, Foreman No object removal

[Cherng 2007] surveillance video like hall qcif Temporal integration; no coastguard sprite

[Ye 2005] Stefan, Mobile Calendar Requires availability of segmentation masks

[Grammalidis 1999] Claude Multiview is required

[Cheung 2007]
Stefan, Coastguard, Foreman,
ZoomIn

Relies on availability of segmentation masks

[Krutz 2008] Stefan, Race-1 Temporal integration; no coastguard sprite

[Asif 2008] Lab Sequence, Outdoor Sequence Applies rough foreground segmentation

[Ye 2008] Stefan Computes overlaps with every frame in a cluster

[Aygun 2004] Lecture Video No object removal

[Kunter 2008] Stefan, Mountain Sequence Correct sprite is not an issue

[Krutz 2006]
Stefan, Mobile Calendar, Horse
Sequence

Temporal integration; requires availability of all frames for
determining middle frame ; no coastguard sprite

[Zhu 1999] Library, Main building sequence Objects removed only if last frame does not have objects

[Teodosio 1993]
video zoom featuring the cellist Yoyo
Ma. Also referred as Ma sequence

Temporal integration; no coastguard sprite

[Dasu 2004] Stefan Temporal integration; no coastguard sprite

[Parikh 2007] Aerial Video over a Desert No object removal

[Steedly 2005]
AC1, AC5, AC8, AGP2, GP1, GP4,
GP5, WF, LK

No object removal

[Marzotto 2004] S. Zeno, Map Of Europe No object removal

[Bevilacqua 2005]
S1, S2 (indoor panning), S3 (Outdoor
strong and with changes in depth)

Applies clustering to determine foreground & background
pixels; likely to fail for tracking videos

[Hsu 2004]
Coastguard, Golf, Festival, Basketball,
Football-1, Football-2

Requires object segmentation; computation intensive

[Dufaux 2000]
Stefan, Coastguard, Foreman, Table
tennis, MIT, Coast_shore

No object removal

[Smolic 1999]
Stefan, Foreman, Mobile Calendar,
Bus, Horse

Removes objects only if first frame does not have objects

[Smolic 2000] Stefan Removes objects only if first frame does not have objects

[Irani 1998]
Baseball, Airport, Flying plane,
Parachuters

Temporal integration; no coastguard sprite

[Teodosio 2005]
Ma sequence, Fastball, Basketball,
Football, Street surveil., Gymnastics

Temporal integration; no coastguard sprite

[Farin 2006] Stefan, table tennis, Rail Requires availability of all frames; not real-time

[Chen 2006] Skater Requires multiple similar shots; low-quality sprite

[Salembier, 1998] Coastguard Improper object elimination

[Lai 2009] Tennis Spatio-temporal integration; no coastguard sprite

removal. Some applications assume that segmentation masks are already available. Rough foreground
segmentation relies on local object motion different from global motion. This might fail as objects start to act
static. Almost-reliable foreground segmentation is also computation intensive. Some applications assume

the availability of all frames at once. This limits the real-time use of the method. Temporal integration methods
basically assume that frequency of background pixel is dominant over the frequency of a foreground pixel at
a specific location. They fail for videos such as ‘coastguard’ video. All temporal integration methods either
avoid using coastguard video or just show partial coast-shore of the video. They cannot cope with the pattern
of the boat in the video. In some research, we have observed that sprite is basically (visually) not correct and
full of artifacts. Sample problems are significant blurring, shadows or ghosts of objects, missing parts on
sprite, etc.

1.3 Our Approach

In this paper, we firstly classify the videos into six classes based on moving object presence, object
displacement, camera motion, and object location in a frame. We show that in some videos (tracking) even
though they may have moving objects or object occlusion, it is possible to generate sprite without any object
segmentation. If moving objects follow a pattern, there is no need to segment objects. We describe our
pattern informally as: “If moving objects do not appear at the border of frames, the sprite can be generated
without using object masks or detection of object pixels”. We call such videos as tracking videos since the
camera is tracking objects.

We introduce the sprite fusion that is able to generate the sprite by ignoring the moving objects without
any segmentation and detection of object pixels. Our sprite fusion method employs merging on two types of
sprites: assertive and conservative sprite. In assertive sprite generation, a pixel from a new image is
integrated into the sprite whether a previous pixel was integrated onto that location or not whereas in
conservative sprite generation a pixel is only integrated if no pixel was integrated to that location before. Our
fusion is different from fusion techniques for semantic multimedia information retrieval [Atrey 2010]. These
techniques fuse unimodal features obtained from each modality. These are usually classified as early or late
fusion depending on when learning is applied [Snoek 2009]. We fuse assertive sprite onto conservative one
or vice versa. In each sprite there is a region that contains the object. However, the other sprite does not
have the object at that location. If pixels of a region containing object are replaced with the corresponding
pixels in the other sprite, the objects can be removed. Conservative sprite has the object in the region of first
frame whereas assertive sprite has the object in the region of the last frame.

For each video, two sprites are generated and then integrated to yield the final sprite of the video. In our
method, as long as objects do not appear at the borders of a frame and the scene in the last frame is different
from the scene in the first frame, it is possible to generate sprite without any object segmentation. We
experimented our methods on standard test sequences like coastguard and stefan. To the best of our
knowledge, sprite fusion is the first method that can ignore moving objects without object segmentation or
detection of object pixels during sprite generation. We have developed an open database of videos that are
accessible through http://sprite.cs.uah.edu/. Interested users may access the database and perform their
experiments. In addition, we also present results on a set of challenging videos for sprite generation. Our
goal in this paper is not to increase the accuracy of sprite generation. If accuracy can be computed, it means
there are already some algorithms that can generate the sprite at an acceptable level. Our goal is to generate
sprites for videos which are difficult to handle. Since we target videos that sprites were not generated in the
past, our research is not incremental but a transformative one. We explain the challenges and future
directions for sprite generation.

Our contributions can be summarized as follows:

 Increasing domain of videos where sprite can be generated,

 Sprite generation without object segmentation for partially-tracking and tracking videos, and

 Introducing the novel sprite fusion technique for partially-tracking and tracking videos by fusing
assertive and conservative sprites.

This paper is organized as follows. The following section explains the classification of videos for sprite
generation. Our sprite generation methods are described in Section 3. Our experimental results are provided
in Section 4. The last section concludes our paper.

2. CLASSIFICATION OF VIDEOS BASED ON MOTION INFORMATION

To determine which domain a video belongs, the videos need to be classified. Firstly, we provide features
for video classification and then explain how videos are classified.

http://sprite.cs.uah.edu/

2.1 Features for Video Classification

It is necessary to classify videos based on camera motion, presence of objects, object displacement, and
object appearance at the borders of a frame. Sprite coding can benefit from the sprite if there is a significant
camera motion. The objects in the foreground should be eliminated. To generate the background behind an
object, the object should displace its location. Objects at the borders of a frame may aggravate object
elimination.

Our feature set for classifying videos for sprite generation is composed of 5 features: {G, Cg, N, P, M}
[Deshpande 2009]. These correspond to global motion (G), cumulative global motion (Cg), the number of
objects in motion (N), presence of objects at the borders of a video frame (P) and the number of macroblocks
in motion (M). We briefly explain these features.

2.1.1 Global Motion and Cumulative Global Motion. Global motion parameters (G). The global motion
estimation is the first step of sprite generation. The perspective motion has 8 parameters and the new
coordinates of a pixel at (x, y) is computed as:

1
76

210'





ymxm

mymxm
x

1
76

543'





ymxm

mymxm
y (1)

where (x’, y’) is the position of the same pixel in the reference frame (i.e., next frame).
Cumulative maximum global motion (Cg). Consider Fig. 1 for cumulative global motion. The pixels that

are marked correspond to the same locations with respect to the size of a frame. The distance between them
on the sprite indicates the cumulative global motion between frames 0 and 299 with respect to the selected
pixel. Note that generating sprite is not needed for this feature. The sprite is used merely to explain the
concept.

Fig. 1. Cumulative Global Motion for a selected point

2.1.2 Objects. In order to extract the features like the number of objects in motion, the number of
macroblocks in motion and presence of object at the border of the image, we compute the local motion
present in the video. The local motion is subtracted from the global motion. We estimate the following features
based on the local motion.

Number of objects in motion (N). We eliminate the macroblocks that do not have any neighboring
macroblock having the motion. The number of the objects is estimated by region growing algorithm from
macroblocks having motion. Note that we do not require an accurate estimation of the number of objects.

Presence of objects at the borders of a frame (P). We also determine whether an object appears at the
borders of a frame or not. This helps us identify the type of video. Especially, in tracking videos, the objects
are maintained close to the center of a frame.

Number of macroblocks in motion (M). This feature counts the number of macroblocks that have motion.
The number of objects might be misleading if there are multiple moving objects that have a neighboring
macroblock with another object. All these features are identified for each frame in the video.

2.2 Video Classes

In this section, we first describe the general classes and then focus one of the classes.

2.2.1 General Video Classes. We have determined six classes based on these four properties. These
classes can be briefly described as follows:

 Static Video (StV). Any frame of a video is equivalent to an image (and also sprite) captured by a static
camera from a scene without objects.

 Scenery Video (ScV). The scenery class does not have moving objects in the videos. Based on the
structure of the scene, the sprite can be generated based on selected motion model that defines the
scene. For example frames 230 through 300 of ‘foreman’ sequence belongs to scenery class.

 Commercial-like Video (CommV). This class of videos usually does not have any significant camera
motion. Even in the presence of global motion, it may be hard to detect any pattern in the global motion.
There may also appear some objects.

 Earthquake-like Video (EV). This class of videos does not have any significant camera motion. The
camera might be shaken due to natural events or by the cameraperson. It may be possible to detect a
pattern in the motion of the camera. There might be some moving objects in the scene.

 News, Educational and Surveillance like Video (NES). The videos in NES class have objects that do
not change their locations. Therefore, the background behind the objects is not visible, and it may not
be possible to generate the sprite. News (or anchor) videos are in this class. MPEG test sequence
‘akiyo’ belongs to this class. If a video has too many moving objects, even though objects in the video
displace their locations, the background may not be visible because of occlusion. Videos captured from
a camera that monitors a very crowded street fits to this category.

 Complex Video (CompV). In complex videos, the camera might be tracking multiple objects or there
might be more than one object but the camera is tracking one of them. Some sports applications like
soccer fall under this category. MPEG test sequence coastguard belongs to this class. The tracking
subclass emphasizes that there should not be any moving object at the borders of a frame. In other
words, there is an object being tracked. Some sports videos like tennis fall under this category. The
MPEG test sequence stefan belongs to this class.

The most representative video type is used for naming the classes. For example, earthquake-like class
does not have only earthquake videos, but it is named so because the earthquake video best represents this
class. We use a decision-based classifier using these features to classify videos. In addition, we also tried
to determine the number of frames that can help to determine the type of a video. Our accuracy for video
classification is 82% [Deshpande 2009]. Further information about the dataset and classification can be found
in [Deshpande 2009].

2.2.2 Tracking and Partially-Tracking Videos. The complex videos can be further classified as tracking
and crowded classes. In crowded class, the camera may be tracking a set of objects but there may be also
many other moving objects that may enter the field of view. It may be impossible to generate the background
sprite for the crowded class. Therefore, we focus on tracking videos. Before giving a formal definition on
tracking videos, we would like to define aligned frame difference and intersection. Assume that there are n
frames in the sequence where f1 and fn are the first and last frames in the sequence.

Aligned frame intersection. The aligned frame intersection of frames fi and fj is represented as fi j ∩ fj and
corresponds to the overlapping area after frames are aligned on top each other where fi j represents the
alignment of fi over fj without integration.

Aligned frame difference. The aligned frame difference of frames fi and fj is represented as (fi j− fj) and
corresponds to difference of frame fi from fj after frames are aligned where fi j represents the alignment of fi

over frame fj without any integration. For a pixel p,)(
j

j

i
ffp  if and only if the following case occurs (Fig.

2):

)()(
j

j

i
fpfp 

Tracking Videos. Let O = {o1, o2, ..., om} represent the set of moving objects in the video where m
represents the number of moving objects. The cardinality of O is represented with |O|. We do not detect or
extract moving objects, but we use it to explain the concept. In tracking videos, the camera tries to locate the
target object in the middle of a frame. The goal is to keep the object away from the borders of frames.
Theoretically, a video is considered to be a tracking video if

niffoOokinot
i

i

ikk





2 where)))(((

1

1
 .

In other words, objects should not appear in the new areas.

Fig. 2. The aligned frame difference.

(a) (b)

Fig. 3. Example of an object at borders of a frame a) frame 255 of stefan, b) segmentation mask for frame 255.

Partially-Tracking Videos. Based on the definition of tracking videos, any video that has objects in the
frame differences is not considered as a tracking video (Fig. 3). The appearance of objects at the borders is
not a problem as long as the border having moving object is covered in a previous frame. Also note that it is
permissible for an object to appear as long as it is not in the aligned difference. This type of videos is classified
as partially-tracking videos. In this type of videos, the cameraperson cannot maintain the target object
completely in some of the frames of the video. The partially-tracking videos can be expressed as follows:

nifffoOokinot
m

m

i

m

i

i

i

ikk









2 where)))(((

1

2

1

11
 .

Figure 3 (a) and (b) shows the frame 255 and the corresponding object mask of stefan sequence where the
player appears at the border. Stefan test sequence is actually partially-tracking video.

2.2.4 Relevance for Classes for Sprite Generation. We analyze videos in two parts: eligibility for sprite
generation and contribution to compression through sprite coding (Table II). For sprite generation, we inspect
whether all components of the background are visible some time throughout the video. We look into two
conditions to analyze the usefulness of sprite generation for compression: presence of significant camera
motion and motion of objects such that background behind the objects becomes visible.

TABLE II. Classes and Suitability for Sprite Generation & Coding

Class Name Sprite Generation Sprite Coding

Static video Yes Not advantageous

NES-like video Mostly No Not advantageous

Earthquake-like Yes Not advantageous

Commercial-like Mostly No Not advantageous

Scenery videos Yes Advantageous

Complex videos Yes for tracking videos Advantageous

3. SPRITE GENERATION

The sprite generation has three steps: global motion estimation (GME), warping, and blending. Since GME
is the most costly step [MPEG4 Software; Nagaraj 2001], GME is performed once per frame. It is likely that
GME between frames may yield error. The accumulation of errors due to frame-to-frame GME may yield
poor sprites [Smolic 1999]. We extract the previous frame from the sprite and apply GME on the extracted
frame and current frame as in [Smolic 1999]. This avoids accumulation of errors.

Let S be the sprite where the frames are warped and blended into it. All pixel values of S are assigned to
0 initially. Let S(i, j) denote the pixel value at location (i, j) of the sprite. Let f(i′, j′) be the corresponding pixel
on frame f. However, because of real numbers produced in GME, i′ and j′ are unlikely to be integer values.
To estimate f(i′, j′), we use bilinear interpolation as follows:

f(i′, j′) = (1 − b) * (1 − c) * f(p, q) + b * (1 − c) * f(p, q + 1)
+b * c * f(p + 1, q + 1) + (1 − b) * c * f(p + 1, q);

where    ',' jqip  , b = i′ − p, and c = j′ − q.

We propose two new types of sprite termed as conservative and assertive sprites.

3.1 Conservative and Assertive Sprite Generation

Conservative Sprite. In conservative sprite generation, a pixel from the new (or consecutive) image is
integrated into the sprite if no pixel was integrated onto that location before. The temporal integration for
conservative sprite is as follows:

S(i′, j′) = fk(i′, j′) if S(i, j) = 0.
Figure 4 shows the conservative sprite generated from frames 226 to 245 of stefan video.

Fig. 4. Conservative sprite generated from
frames 226 to 245 of ’stefan’.

Fig. 5. Assertive sprite generated from frames 226
to 245 of ’stefan’.

Assertive Sprite. In assertive sprite generation, a pixel from the new (consecutive) image is integrated into
the sprite whether a previous pixel was integrated onto that location or not. In dynamic sprite generation
[Irani 1998], the sprite is generated with traditional temporal integration methods and then the last frame is
integrated into the sprite. In terms of temporal integration, the assertive sprite generation is different from the
dynamic sprite. The temporal integration for assertive sprite is: S(i, j) = fk(i′, j′)

Fig. 6. Assertive and conservative sprite generation.

Figure 5 shows the assertive sprite generated from frames 226 to 245 of ’stefan’ video. The differences
between conservative and assertive sprite generation is depicted in Figure 6.

3.2 Sprite Fusion

We propose the sprite fusion technique by merging two types of sprites: assertive and conservative. In our
system, we keep the motion parameters based on the first frame in the sequence. During sprite generation
process, we need to know where the first frame is located. As long as the camera is panning right and/or
tilting down, the location of the initial frame on the sprite does not change. The location on the sprite only
changes if the camera is panning left or the camera is tilting up. To integrate the new areas, the sprite needs
to be shifted right or down. In that case, the location of original frame is relocated on the sprite image.

3.2.1 Fusing assertive sprite onto Conservative Sprite. Initially, the origin of the initial frame is located at
(width/2, height/2) of the sprite where width and height are the width and height of the frames, respectively.
If a shift is required after motion estimation, the origin of the initial frame is moved to (width/2 + shiftx, height/2
+ shifty) where shiftx and shifty represent the shift in the horizontal and vertical directions, respectively. Let
shiftx[i] and shifty[i] be the shifts in horizontal and vertical direction after motion estimation between frames fi
and fi−1, respectively. At the end of the sprite generation,

 

n

y

n

xx
ishiftshiftyishiftshift

22

][][

Eventually, the top-left corner of the initial frame can be located as (shiftx, shifty). Notice that the
conservative sprite maintains the initial frame on the sprite. The area of initial frame in conservative sprite is
replaced by the corresponding area in the assertive sprite. Figure 7 displays where the initial frame 226 in
conservative sprite (Figure 4) is replaced with the corresponding area from assertive sprite (Figure 5).

3.2.2 Fusing Conservative Sprite onto Assertive Sprite. The fusion on assertive sprite needs to be handled
carefully. The assertive sprite maintains the last frame on the sprite. However, the last frame is warped onto
the sprite based on the motion parameters obtained after motion estimation. Therefore, the last frame on the
sprite is unlikely to have the size and borders of the original last frame.

Although the replacement of the region of the last frame looks simple, the detection of all pixels must be
handled carefully. One way is actually to replace the pixels in a (affine) region with the pixels of the
conservative sprite. This requires the scanning of pixels (some of them outside the region) and then
determining whether a pixel resides in the region. However, this method continuously checks whether a pixel
is in the frame or not.

Fig. 7. Fusion on conservative sprite for frames
226 to 245 of ’stefan’.

Fig. 8. Fusion on assertive sprite for frames 226
to 245 of ’stefan’.

The alternate method (the one we use) is to apply sprite fusion during warping the last frame onto the
sprite. In this case, we generate a sprite that is equivalent to the assertive sprite. However, when warping
the new frame, we rather get values from the conservative sprite and then incorporate those new values.
The algorithm for sprite fusion on assertive sprite is given in Algorithm 1. Figure 8 displays where the initial
frame 245 in assertive sprite (Figure 5) is replaced with the corresponding area from conservative sprite
(Figure 4).

Algorithm 1. Algorithm for fusion on assertive sprite

// IN: Assertive sprite ASn−1
// IN: Conservative sprite CSn−1
// IN: frames fn and fn−1 of the video
// OUT: Fused sprite FSA on assertive sprite
estimate motion parameters Mn between frames fn and fn−1
apply the necessary shift operations on ASn−1 and CSn−1
copy ASn−1 to FSA
for i = 1 to height do
 for j = 1 to width do
 compute the estimated pair (i′,j′)on frames based on Mn
 AS(i, j) = fk(i′, j′)
 if CS(i, j) = 0 then
 CS(i, j) = fk(i′, j′)
 end if
 FSA(i, j) = CS(i, j)
 end for
end for

3.3 PROOF

Our claim is that (informally) if the object does not appear at the frame borders, the sprite can be

generated without object segmentation. We assume that global motion is estimated correctly. When two

frames are overlapped where the first frame is warped onto the second frame, there may be new areas that

were not included in the sprite (Figure 9). Assume that we apply conservative sprite, and the shaded areas

(region A) are new regions that are not covered in the previous frames (Figure 10).

General Idea. We are going to prove our claim in two steps using Figure 10: a) region A can be generated

without objects, and b) region B can be generated without objects. We use conservative sprite to generate

region A without objects. We assume that the new regions that are contributed by a frame do not have

objects. Fig. 9 shows 4 (shaded) regions (that was not covered by the previous frame) where the new frame

contributes to the sprite: R1, R2, R3, and R4. Possible overlappings for two rectangular frames are provided

in the Appendix A.1. The sprite is expanded by using these 4 regions as long as these regions are not

covered in the sprite. Since sprite expansion is based on regions that do not have moving objects, region A

can be generated without objects.

Assume that there is frame (fx) that corresponds to an area in region A but does not intersect with region

B. Region B corresponds to the region of first frame in the sequence. By using the same logic but starting

from frame fx, we expand the sprite again without objects. Region B is in the expanded area and it does not

have moving objects.

Fig. 9. New areas for sprite Fig. 10. Sprite is equivalent to (A U B)

We do not want to make two passes for sprite generation: one pass for region A (in forward direction)

and one pass for region B (in reverse direction). We are going to show that conservative sprite in reverse

direction is equivalent to assertive sprite in forward direction. Thus, region A and region B can be generated

without objects simultaneously. These three steps will complete our proof.

Notation. We are going to use different notations for the purpose of proofs. ¤(R) represents a predicate
that indicates the absence of moving object in region R. Let fi represent the ith frame in a video (0≤i≤n). Si

represents the sprite after i frames are warped and blended. Let i
f̂ represent the frame after warping onto

sprite Si-1. i
f represents the region of frame fi on the final generated sprite Sn whereas i

f
~

 represents the

alignment of frame fi on the previous frame fi-1. The new areas that are presented in a frame with respect to

a previous frame is represented by ∆i= i
f
~

-fi-1. Let δi= i
f̂ - Si-1 and represent the new regions of fi to be blended

onto Si-1. Note that
ii

 since 11
ˆ



ii

fS . If sprite is generated by processing frames in reverse order: Sn

is the first sprite after processing the first frame fn; i
f̂ represents the frame after warping onto sprite Si+1; and

i
 = i

f̂ - Si+1.

Constraint 1.)(
0

 ffi
i where 1≤i≤n. There is at least one frame that does not overlap with the first

frame.

Constraint 2. (i ¤(δi) Λ ¤(
i

)) where 1≤i≤n. The new regions in new frames do not have moving objects.

Lemma 1. For two regions Ri and Rj, if ¤(Ri) Λ ¤(Rj) → ¤(Ri U Rj) for the union of Ri and Rj.
Lemma 2. Using Lemma 1, for a region δi, ¤(δi) Λ ¤(Si-1) → ¤(Si). In other words, if the sprite Si-1 before

blending fi does not have any moving objects, the sprite Si after blending fi will not have any moving objects.
Also note that δi ∩ Si-1=Ø.

A B

R1

R2

R4

R3

Proof by induction for region A. Let Ak represent the area A in Fig. 10 by generating sprite using frames
f1 through fk. B is initially equivalent to f0. According to conservative sprite a frame may contribute at most 4
regions: R1, R2, R3, and R4. Let R = (((R1 U R2) U R3) U R4). Our claim is that if R1, R2, R3, and R4 are free of
objects for each frame, then the region A in Fig. 10 will not contain objects, since the sprite is expanded by
using these 4 regions only.

Basis: The region B is equivalent to frame f0. The next frame, f1, will contribute at most 4 regions: R = R1
U R2 U R3 U R4 is free of objects. Therefore, A1 cannot have any objects.

Assume that Ak does not contain any object (1≤k≤m). We have a new frame fk+1 to be warped and blended
onto Ak. We would like to induce that Ak+1 does not contain any objects (i.e., ¤(Ak+1) given ¤(Ak)). We know

that δk+1= 1
ˆ

k
f - Ak; thus we can infer ¤(δk+1) using constraint 2. Hence, we have i) ¤(δk+1) and ii) Ak+1=Ak U

δk+1. Using Lemma 1, ¤(Ak) Λ ¤(δk+1)→ ¤(Ak U δk+1). Therefore, ¤(Ak) Λ ¤(δk+1)→ ¤(Ak+1).
Proof for equivalence of assertive and conservative sprites.
Lemma 3. The sprite that is generated using two sequential frames fi and fi+1 by utilizing conservative

sprite is equivalent to the sprite that is generated by the same sequential frames in the reverse order by
utilizing assertive sprite (Fig. 11).

Lemma 4. The conservative sprite that is generated for a sequence from fn to f0 is equivalent to assertive
sprite that is generated in the reverse order of frames.

Fig. 11. Equivalence of conservative sprite and assertive sprite.

Basis is provided by Lemma 3. Assume that the conservative sprite for f1 to fk is equivalent to assertive
sprite for fk to f1.We need to show that if a new frame fk+1 needs to be blended, the conservative sprite and
assertive sprite should be equivalent. Note that fk+1 is the first frame for assertive sprite. In conservative
sprite, fk+1 will not affect the previously generated sprite but new unvisited regions of fk+1 will be added to the
sprite (based on definition of conservative sprite). New unvisited regions will also have a similar case in
assertive sprite. The overlapping area would be overwritten by the other frames since fk+1 is the first frame
for the assertive sprite. The only difference is the new regions which are not covered in any of the other
frames. We should note that each frame corresponds to same area on each sprite since the global motion
estimation is the same for each sprite.

Proof for region B. We are going to prove that region B can be generated without objects using the
previous proof for region A and Lemma 4.

Constraint 1 states that there is at least one frame (e.g., fm) that does not intersect with frame f0. If a
conservative sprite is generated starting from fm to f0, region B will not have any moving objects based on
the previous proof for region A. This sprite is equivalent to assertive sprite for frames starting f0 to fm using
Lemma 4.

Since both regions A and B can be generated without objects, the final sprite is free of moving objects.
The constraints can be relaxed further but this complicates the proof. Actually, absence of moving objects at
borders is not the absolute requirement. Moving objects at the borders are allowed as long as they do not
appear in the new visible areas (regions) when compared to previous frames.

3.4 Discussion and Optimization

At first sight, it might be thought that generating two sprites at a time would be costlier than traditional sprite
generation based on object segmentation. As mentioned at the beginning of this section, the three steps of
sprite generation are GME, warping, and blending. Our algorithm does not add any significant complexity
due to:

 GME is the most expensive component of sprite generation [MPEG4 Software; Nagaraj 2001]. In our
method, GME is only performed once using conservative sprite. The obtained parameters are used for
assertive sprite. In terms of GME complexity, there is no additional cost in our algorithm.

fi (Conservative) sprite
after blending fi+1

fi+1 (Assertive) sprite
after blending fi

 Warping and blending need to be applied twice since there are two sprites in our case. Note that
assertive sprite only adds new pixels to the sprite. Hence, bilinear interpolation only needs to be applied
for regions corresponding to new areas in this sprite. In [Nagaraj 2001], it is assumed that only 10% of
pixels correspond to new areas for a frame. Our experience is compliant with this assumption.

 For fusion on conservative sprite, the pixel values of the assertive sprite only update the region for the
first frame in the sequence. Instead of maintaining two sprites, the warping and blending for assertive
sprite just needs to be performed if a frame is overlapping with the first frame in the sequence. Once
pixel values are obtained for the region of first frame on conservative sprite, the warping and blending
for assertive sprite generation can be ignored.

 Fusion can be performed whenever a frame does not intersect the first frame. After the fusion, the
sprite evolves like a conservative sprite.

4. EXPERIMENTS

We developed a database of a variety of videos. These videos are accessible at http://sprite.cs.uah.edu/.
We have implemented our sprite generation system using Microsoft Visual C# under Windows. We have
experimented our technique on a variety of sequences including stefan and coastguard. If the test sequences
have noise at the frame borders (i.e., black border on the sides of a frame), we try to eliminate them during
sprite generation. We discuss our results on these videos.

In our experiments mentioned in this paper, we used 300 frames for Stefan, 300 frames for Exploring
Turkey videos, 181 frames for coastguard video, 214 frames for frame for tracking boat video, and 117
frames for tracking field video. Typically, the number of frames is between 100 and 500.

4.1 EXPERIMENTS ON TRADITIONAL TEST SEQUENCES

4.1.1 Stefan Video. Without careful analysis of the frames of stefan sequence, the stefan video would be
considered as a tracking video. In other words, the cameraperson tries to locate the object

(a)

(b)

(c)

(d)

Fig. 12. Sprites for stefan sequence (a) conservative, (b) assertive, (c) sprite fusion, and (d) traditional sprite using segmentation masks

(tennis player) in the middle of a frame. Actually, the cameraman was not successful in achieving this goal.
This becomes obvious in the assertive sprite where the sprite has parts of the object when the cameraman
was not successful (Figure 12 (b)). Hence, the stefan sequence is partially-tracking video rather than a

http://sprite.cs.uah.edu/

tracking video. It has also been noticed that the object in the initial frame does not appear in the assertive
sprite.

The conservative sprite of stefan sequence is generated as expected (Figure 12 (a)). The conservative
sprite as an artifact only has the initial frame in the sequence. This also means that no object is visible in
new areas (after camera motion) in the scene. The final sprite is generated by fusing assertive sprite on
conservative sprite (Figure 12 (c)).

To compare our result with traditional sprite by using traditional sprite generation, we also provide this
sprite in Figure 12 (d). Visually, our
fused sprite is almost the same as
the regular sprite generated by
using segmentation masks. In the
fused sprite, it is possible to see
discontinuities in the lines. On the
other hand, the lines of the field
sometimes are blurred in the
traditional sprite.

Although PSNR is not always a
good indication of human visual
judgment, we provide PSNR
results for Stefan. Stefan is one of
the most common examples for
sprite generation. We provide the
PSNR values for the sprite fusion,
the traditional sprite without using
segmentation masks, and the
traditional sprite using available segmentation masks for the stefan sequence. The average PSNR values
for sprite fusion, traditional sprite w/o segmentation masks, and traditional sprite with segmentation masks
are 22.69, 23.67, and 24.68, respectively (Figure 13). We implemented the algorithms suggested by [Lu
2003] and [Cheung 2007] based on our sprite generation. We get average PSNR values 24.37 (for [Lu 2003])
and 25.22 (for [Cheung 2007]). The first one applies rough object segmentation whereas the second one
requires object masks. The average PSNR for stefan is mentioned as 22.315 in [Cheung 2007]. This shows
that just using the final quality score is not enough that a method is better than the other. This indicates that
our basic sprite generation algorithm performs better than the other previously proposed techniques.

4.1.2 Coastguard Video. Although there are many experiments performed on coastguard sequence, this
sequence has the least satisfactory results. The problems in the coastguard sprite can be listed as follows:
a) the sprite for the coast shore generated only, b) the shadows of the boat cannot be removed from the
water, and c) the texture of the water is removed during averaging. To the best of our knowledge, the only
research that was able to generate the coastguard sequence properly was presented in [Hsu 2004].
However, their method relies on object segmentation.

We are going to provide the results for coastguard video in two parts. We firstly, investigate the sequence
from frame 120 through frame 300. In this part, the coastguard boat is the only moving object in the scene.
This section of the video can be considered as a tracking video. Figure 14 displays the conservative,
assertive, and sprite fusion. In this case, the sprite is generated as in Figure 14 (c). However, this introduced
an artifact. This is due to the changing illumination towards the end of the sequence. However, this problem
can be resolved with image enhancement techniques like gamma correction (Figure 14 (d)). Figure 14 (e)
shows the results of traditional sprite generation method with artifacts.

Fig. 13. Our PSNR results for Stefan video.

P
S

N
R

Stefan Video

19

20

21

22

23

24

25

26

27

28

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Frame number

P
S

N
R

No object mask

With object mask

Sprite fusion

[Lu 2003]

[Cheung 2007]

 (a) (b) (c)

 (d) (e)

Fig. 14. Sprites for coastguard sequence (from frame 120 through frame 300) (a) conservative, (b) assertive, (c) sprite fusion, (d)
corrected sprite, and (e) traditional sprite.

In the complete video of the coastguard sequence, the camera (pans-left) tracks a black boat as another
white boat enters the scene. As the white boat becomes visible, the camera (pans-right) starts tracking the
white boat. The coastguard sequence is a type of complex video. The major problem with sprite generation
for coastguard sequence is the black pattern on the bottom of the white boat. Although the boat moves, the
pattern stays stable because of the continuity of the pattern. To the best of our knowledge, the traditional
sprite generation methods that rely on temporal integration cannot cope with this since the pattern is the
dominant area for that region (in other words, the pattern of the boat is observed more than the background
water for some regions in the scene). In the literature, sprites for coastguard usually cover the land and not
the water due to this.

It is possible to overcome this problem by enhancement on sprite fusion. The conservative and assertive
sprites for coastguard sequence are shown in Figures 15 (a) and (b), respectively. Since this is a complex
video, applying the sprite fusion on assertive or conservative sprite would not yield the correct sprite. In this
case, we match the pixels of both sprites and choose the one that is closer to the surrounding pattern. We
then get the sprite in Figure 15 (c). This method covers some of the complex videos. As future work, this
pattern comparison method needs to be validated against different types of sequences. Here, we just show
that sprite fusion is still possible with some enhancement.

In the literature, it is mentioned global motion estimation is the most time-consuming process [Nagaraj
2001]. However, optimized algorithms are developed for global motion estimation. For example, average
time to compute global motion estimation of a frame of a tennis video in CIF format is 9ms using pixel
subsampling method [Alzoubi 2008]. The average time to process a frame in CIF format is 12-15ms [Richter
2001]. We compute the time taken for each component of our sprite generation algorithm. The major
difference in our algorithm is the blending part of the sprite generation algorithm. In our algorithm, we used
a compact sprite. Whenever camera pans, all pixels on the sprite should be shifted to right. Alternate way is
to use a large sprite and this shifting can be avoided. Blending part is the time to blend pixels on these
sprites. Average time taken for blending for Stefan video is 21.39ms with traditional blending and 24.19ms
with sprite fusion. On the other hand, average time taken for blending for coastguard video is 19.87ms with
traditional blending and 18.39 with sprite fusion. Since coastguard video can be represented with
translational motion, its blending is faster than the blending of Stefan video. For Stefan video, sprite fusion
added 2.8ms on the average. On the other hand, for coastguard video, sprite fusion finished 1.5ms earlier
than the traditional blending. Our fusion method does not any major burden on the system. Our algorithms
are used for debugging purposes now. Our code can further be optimized for performance.

We maintain 3 sprites in the memory: one for assertive sprite, one for conservative sprite, and one sprite
for global motion estimation. For fusion, conservative and assertive sprites are fused onto a sprite. After
fusion, conservative and assertive sprites are not needed. The memory is allocated dynamically and initially
their sizes are equivalent to the size of a frame. In addition, we maintain the previous frame and current
frame in the memory.

 (a) (b) (c)

Fig. 15. Sprites for coastguard sequence (a) conservative, (b) assertive, and (c) sprite fusion based on pattern comparison.

4.2 CHALLENGING VIDEOS and FUTURE WORK

In this section, we introduce 3 types of videos where sprite generation is difficult but still can be achieved at
a level. We introduce the problems and show sprites that could be generated.

4.2.1 Tracking Boat Video. This sequence is stored as tracking boat in our data set. Sample frames of
this sequence are shown in Figure 16. The earlier frames appear on the right-hand side of the figure. In this
sequence, there is a large boat that moves to the left. The camera tracks this boat.

Fig. 16. The tracking boat sequence.

Firstly, this is not an easy sequence to generate a sprite since there is a large object in the scene. The
background is only visible on the left-hand side of the frames. It is also difficult to perform GME due to static
patterns in the scene and large moving object with the camera (Figure 17).

There are two separate motions in this sequence: the static motion of the boat with respect to camera
and the camera motion that can be determined from the shore. After enhancing our sprite generation method,
we get the sprite in Figure 18. We deliberately maintained the first frame to see the complete picture. We still
work on this type of videos.

Fig. 17. Difficulties for sprite generation Fig. 18. The sprite for tracking boat.

4.2.2 Tracking Video -2. Tracking video-2 is a sequence for tracking athletes in a competition. Sample
frames from the sequence are shown in Figure 19. It is also difficult to generate sprite for such a video. The
problems for this sequence are: a) static logos, b) constant occlusion of the middle of the scene by athletes,
and c) almost static appearance of the track. Figure 20 shows these problems. After enhancing our sprite
generation method, we get the sprite in Figure 21. Although the accuracy of the sprite is low, we were able
to generate a sprite for the sequence. We still work on this type of videos.

Fig. 19. The tracking athletes sequence.

Fig. 20. The problems with tracking athletes sequence.

Fig. 21. The sprite for tracking athletes.

4.2.3 Exploring Turkiye-3 Video. Exploring Turkiye-3 video is a sequence with many objects in the scene.
The difficulty for this sequence is the quantity of moving objects. Sample frames from the sequence are
shown in Figure 22. The sprite obtained by sprite fusion is shown in Figure 23. The artifacts at the bottom of
the sprite are due to noise at frame borders.

Fig. 22. The sample frames for exploring Turkey.

Fig. 23. The sprite for exploring Turkey.

4.3 SUMMARY

Firstly, we showed that sprite fusion produces acceptable results for traditional test sequences such as stefan
and coastguard. In addition, sprite fusion can still produce good results even in the presence of many objects.
We show that sprite fusion can generate acceptable results for challenging videos such as Exploring Turkey
– 3 video. We introduced two examples of videos (tracking boat and tracking video-2) where sprite generation
is very difficult. We show that the sprite can be generated by enhancing our method. We still work on
enhancement so that our improvements are applicable to any video in this category. We tried to maintain our
methods not computationally intensive. Our results indicate good and promising results for future sprite
generation methods.

5. CONCLUSION AND FUTURE WORK

In this paper, we have provided some of the issues for sprite generation. Then, we focused on the domain
of videos. We have classified the types of videos and then mentioned which classes of video would benefit
from our approach. We introduced sprite fusion method for sprite generation. Sprite fusion can be used in
tracking and partially-tracking videos. The advantage of sprite fusion is that it does not rely on object
segmentation or determination of object pixels. Moreover, it has returned comparatively good results with
respect to sprite generation methods that rely on object segmentation masks. We also showed how it is
useful for generating the sprite on videos that are difficult for sprite generation. It should also be noted that
our algorithms are not computationally complex since they do not require object segmentation. Our target in
this research is to extend the domain of videos where the sprites can be generated. As the domain of these
videos increases, the accuracy of the sprites can also be improved. After satisfactory results are obtained in
uncompressed domain, sprite generation should be performed in compressed domain by benefiting from
Discrete Cosine and Discrete Wavelet Transforms.

REFERENCES

Alzoubi, H and Pan, W. D., 2008. Fast and accurate global motion estimation algorithm using pixel subsampling. Inf.
Sci. 178, 17 (September 2008), 3415-3425.
ASIF, M. AND SORAGHAN, J. J. 2008. MPEG-7 Motion Descriptor Extraction for Panning Camera Using Sprite Generated. In Proceedings
of the 2008 IEEE Fifth international Conference on Advanced Video and Signal Based Surveillance (September 01 - 03, 2008). AVSS.
IEEE Computer Society, Washington, DC, 60-66
ATREY, P.K. HOSSAIN, M.A. SADDIK A.E. AND KANKAHALLI, M.S. 2010. MULTIMODAL FUSION FOR MULTIMEDIA ANALYSIS: SURVEY. IN

MULTIMEDIA SYSTEMS, VOLUME 16, ISSUE 6 (2010), PAGE 345-379.
AZZARI, P. DI STEFANO, L. AND BEVILACQUA, A. 2005. An effective real-time mosaicing algorithm apt to detect motion through background
subtraction using a PTZ camera. In Advanced Video and Signal Based Surveillance, (September 2005). AVSS 2005. IEEE Conference
on , vol., no., pp. 511-516, 15-16.
AYGÜN, R. S. AND ZHANG, A. 2002. Reducing blurring-effect in high resolution mosaic generation. In Multimedia and Expo, 2002. ICME
'02. Proceedings. 2002 IEEE International Conference on, vol.2, IEEE Computer Society, Washington, DC, 537-540.
AYGÜN, R. S. AND ZHANG, A. 2004, Integrating virtual camera controls into digital video. In Multimedia and Expo, 2004. ICME '04.(June
2004)IEEE Int. Conference on , vol.3, no., pp.1503-1506 Vol.3, 30-30.
AYGUN, R.S. AND ZHANG, A. 2004. Sprite pyramid for videos and images having finite-depth scenes. In Multimedia and Expo, 2004.
ICME '04.(June 2004) IEEE International Conference on , vol.2, no., pp.795-798 Vol.2, 30-30.
CHEN, Y. AND AYGUN. R.S. 2010. Synthetic Video Generation for Evaluation of the sprite generation. In International Journal of
Multimedia Data Engineering & Management.vil. , no. 2, pp. 34-61, April-June 2010
CHEN, SY. CHEN, CY. HUANG, YW. AND CHEN, LG. 2002. Multiple sprites and frame skipping techniques for sprite generation with high
subjective quality and fast speed. In Multimedia and Expo, 2002. ICME '02. Proceedings. 2002 IEEE Int. Conference on , vol.1, IEEE
Computer Society, Washington, DC, 785-788.
CHEN, L., LAI, Y., AND LIAO, H. 2006. Video Scene Extraction Using Mosaic Technique. In Proceedings of the 18th international
Conference on Pattern Recognition - Volume 04 (August 20 - 24, 2006). ICPR. IEEE Computer Society, Washington, DC, 723-726.
CHEUNG, H.-K. AND SIU W.-C. 2007. Robust global motion estimation and novel updating strategy for sprite generation. In Image
Processing, IET (March 2007), vol.1, no.1, pp.13-20.
CHERNG, DC. AND CHIEN SY. 2007. Video Segmentation with Model-Based Sprite Generation for Panning Surveillance Cameras. In
Circuits and Systems,(May 2007). ISCAS 2007. IEEE International Symposium on , IEEE Computer Society, Washington, DC, 27-30.
CHEUNG, H.K. AND SIU, W.C. 2002. Fast global motion estimation for sprite generation. In Circuits and Systems, 2002. ISCAS 2002.
IEEE Int. Symposium on, vol.3, IEEE Computer Society, Washington, DC.
CHEUNG, H.K. SIU, W.C. AND FENG D. 2008. New Block-Based Motion Estimation for Sequences with Brightness Variation and Its
Application to Static Sprite Generation for Video Compression. In Circuits and Systems for Video Technology (April 2008), vol.18, IEEE
Computer Society, Washington, DC, 522-527
COORG, S. AND TELLER, S. 2000. Spherical mosaics with quaternions and dense correlation, International Journal of Computer Vision
37 (3) (2000) 259–273.
DASU, A.R. AND PANCHANATHAN, S. 2004. A wavelet-based sprite codec. Circuits and Systems for Video Technology (February 2004),
IEEE Transactions on , vol.14, no.2, pp. 244-255.
DESHPANDE, A. AND AYGUN, R.S. 2009. Motion-based video classification for sprite generation. Database and Expert Systems
Applications, International Workshop on, pp. 231-235, 2009 20th International Workshop on Database and Expert Systems Application,
2009
DUFAUX, F. AND KONRAD, J. 2000. Efficient, robust, and fast global motion estimation for video coding, IEEE Transactions on Image
Processing 9 (3) (2000) 497–501.
FARIN, D. AND DE WITH, P. H. N. 2006. Enabling arbitrary rotational camera motion using multisprites with minimum coding cost., IEEE
Trans. Circuits Syst. Video Techn. 16 (4) (2006) 492–506.
FRAUNHAUFER, http://www.iis.fraunhofer.de/amm/download/mpeg4 (June 2009).
GRAMMALIDIS, N. BELETSIOTIS, D. AND STRINTZIS, M.G. 1999. Multi View sprite generation and coding. In mage Processing, 1999. ICIP
99. Proceedings. 1999 International Conference on , vol.2, IEEE Computer Society, Washington, DC,477-481.
GEYS, H. AND GOOL, LUC VAN, 2006. On-line, interactive view synthesis and augmentation, Signal Processing: Image Communication
21 (9) (2006) 709–723.
H264. Iso/iec 14496-10:2003, information technology: Coding of audio-visual objects - part 2, also itu-t recommendation h.264 advanced
video coding for generic audiovisual services.
H. 265. http://www.h265.net (2009)
HSU, C.-T. TSAN Y.-C. TSAN (2004) Mosaics of video sequences with moving objects, Signal Processing: Image Communication, Volume
19, Issue 1, January 2004, Pages 81-98, ISSN 0923-5965, DOI: 10.1016/j.image.2003.10.001.
IRANI, M. AND ANANDAN, P. 1998. Video indexing based on mosaic representations, in: Proceedings of IEEE, 1998, pp. 905–921.
KRUTZ, A. GLANTZ, A. HALLER, M. DROESE, M. AND SIKORA, T. 2008. Multiple Background Sprite Generation Using Camera Motion
Characterization for Object-Based Video Coding. In 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D
Video (May 2008), vol., no., pp.313-316, 28-30.
KRUTZ, A. GLANTZ, A. SIKORA, T. NUNES, P. AND PEREIRA, F. 2008. Automatic object segmentation algorithms for sprite coding using
MPEG-4. In ELMAR, (September 10 – September 12, 2008. 50th International Symposium , vol.2, no., pp.459-462.
KRUTZ, A. FRATER, M. KUNTER, M. AND SIKORA, T. 2006. Windowed Image Registration for Robust Mosaicing of Scenes with Large
Background Occlusions. In Image Processing, (October 2006) IEEE International Conference on, vol., no., pp.353-356, 8-11.
KUNTER, M. KREY, P. KRUTZ, A. AND SIKORA, T. 2008. Extending H.264/AVC with a background sprite prediction mode. In Image
Processing, (October2008). ICIP 2008. 15th IEEE International Conference on, vol., no., pp.2128-2131, 12-15.
LAI, J., KAO, C., AND CHIEN, S. 2009. Super-resolution sprite with foreground removal. In Proceedings of the 2009 IEEE international
Conference on Multimedia and Expo (New York, NY, USA, June 28 - July 03, 2009).

http://www.h265.net/

LEE M-C; CHEN W-G; LIN, C.B.; CHUANG GU; MARKOC, T.; ZABINSKY, S.I.; SZELISKI, R., "A layered video object coding system using sprite
and affine motion model," Circuits and Systems for Video Technology, IEEE Transactions on , vol.7, no.1, pp.130-145, Feb 1997
LU, Y., GAO, W., AND WU, F. 2001. Fast and Robust Sprite Generation for MPEG-4 Video Coding. In Proceedings of the Second IEEE
Pacific Rim Conference on Multimedia: Advances in Multimedia information Processing (October 24 - 26, 2001). H. Shum, M. Liao, and
S. Chang, Eds. Lecture Notes In Computer Science, vol. 2195. Springer-Verlag, London, 118-125.
LU, Y. GAO, W AND WU, F. 2001. Sprite generation for frame-based video coding. In Image Processing, 2001. Proceedings (2001). 2001
International Conference on, vol.1, no., pp.473-476 vol.1, 2001.
LU, Y., GAO, W., AND WU, F. 2003. Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction
techniques, IEEE Trans. Circuits and Systems for Video Technology 13 (5) (2003) 394–405.
MARZOTTO, R. FUSIELLO, A. AND MURINO, V. 2004. High resolution video mosaicing with global alignment. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the (27 June-2 July 2004) IEEE Computer Society Conference on , vol.1, no., pp. I-
692-I-698 Vol.1.
MPEG4-2, Iso/iec 14496-2:2004, information technology: Coding of audio-visual objects - part 2.
MPEG4 SOFTWARE, Iso/iec 14496-7:2001, information technology: Coding of audio-visual objects - part 7: Optimized software for mpeg-
4 visual tools.
NAGARAJ, R. C., DASU, A. R., AND PANCHANATHAN, S. 2001. Complexity analysis of sprites in mpeg-4, in: Proc. SPIE Vol. 4313, 2001,
pp. 69–73.
OSTERMANN, J., BORMANS, J., LIST, P., MARPE, D., NARROSCHKE, M., PERREIRA, F., STOCKHAMMER, T. AND WEDI, T. 2004. Video coding
with h.264/avc: tools, performance, and complexity, IEEE Circuits and Systems Magazine 4 (1) (2004) 7–28.
PARIKH, P. AND JAWAHAR, C. V. 2007. Enhanced Video Mosaicing using Camera Motion Properties. In Proceedings of the IEEE
Workshop on Motion and Video Computing (February 23 - 24, 2007). WMVC. IEEE Computer Society, Washington, DC, 26
PELEG, S., ROUSSO, B., RAV-ACHA, A., AND ZOMET, A. 2000. Mosaicing on adaptive methods, IEEE Trans. on Pattern Analysis and
Machine Intelligence 22 (10) (2000) 1144–1154.
PRODYS, http://www.prodys.com/ (June 2009).
Richter, H., Smolic, A., Stabernack, B. and Müller, E., Real Time Global Motion Estimation for an MPEG-4 Video Encoder,
Proc. PCS'2001, Picture Coding Symposium, 25.-27. April 2001, Seoul, Korea.
SALEMBIER, P., PUJOL, O., AND GARRIDO, L. 1998. Connected operators for sprite creation and layered representation of image
sequences, in: IV European Signal Processing Conference, 1998, pp. 2105–2108.
SHEN, Y. AND ZHANG, L. 2004. A Novel Method of Sprite Generation Based on Pixel Similarity. In Proceedings of the Third international
Conference on Image and Graphics (December 18 - 20, 2004). ICIG. IEEE Computer Society, Washington, DC, 560-563.
SIKORA, T. 1997. The mpeg-4 video standard verification model, IEEE Trans. Circuits Syst. Video Technology 7 (1997) 19–31.
SMOLIC, A., SIKORA, T., AND OHM, J.-R. 1999. Long-term global motion estimation and its application for sprite coding, content description
and segmentation, IEEE Transactions on Circuits and Systems for Video Technology 9 (8) (1999) 1227–1242.
SMOLIC, A. AND OHM, J.-R. 2000. Robust global motion estimation using a simplified m-estimator approach, in: Proc. ICIP2000, IEEE
International Conference on Image Processing, 2000.
SNOEK, C. G., WORRING, M., AND SMEULDERS, A. W. 2005. Early versus late fusion in semantic video analysis. In Proceedings of the
13th Annual ACM international Conference on Multimedia (Hilton, Singapore, November 06 - 11, 2005). MULTIMEDIA '05. ACM, New
York, NY, 399-402.
STEEDLY, D. PAL, C. AND SZELISKI, R. 2005. Efficiently registering video into panoramic mosaics. Computer Vision, 2005.
ICCV(October2005). In Tenth IEEE Int. Conf. on , vol.2, no., pp.1300-1307 Vol. 2, 17-21
SZELISKI, R., AND SHUM, H.-Y. 1997. Creating full view panoramic image mosaics and environment maps, in: Computer Graphics
Proceedings, Annual Conference Series, 1997, pp. 251–258.
SZELISKI, R. 2006. Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph. Vis. 2, 1 (Jan. 2006), 1-104.
TAUBMAN, D. AND MARCELLIN, M. 2002. JPEG2000 - Image Compression Fundamentals, Standards and Practice, chapter 10, Kluwer
Academic Publishers, 2002.
TEODOSIO, L. AND BENDER, W. 1993. Salient video stills: content and context preserved. In Proceedings of the First ACM international
Conference on Multimedia (Anaheim, California, United States, August 02 - 06, 1993). MULTIMEDIA '93. ACM, New York, NY, 39-46.
TEODOSIO, L. AND BENDER, W. 2005. Salient stills. ACM Trans. Multimedia Comput. Commun. Appl. 1, 1 (Feb. 2005), 16-36.
TO, L. T. 2005. Video object segmentation using phase-based detection of moving object buondaries, Ph.D. thesis, University of New
South Wales (2005).
YE, G. PICKERING, M. FRATER, M. AND ARNOLD, J. 2005. A robust approach to super-resolution sprite generation. Image Processing,
(September 2005). ICIP 2005. IEEE International Conference on , vol.1, IEEE Computer Society, Washington, DC, 11-14.
YE, G. WANG Y. XU, J. HERMAN, G. AND ZHANG, B. 2008. A practical approach to multiple super-resolution sprite generation. In Multimedia
Signal Processing,(October 2008) IEEE 10th Workshop on , IEEE Computer Society, Washington, DC, 70-75, 8-10.
ZHU, Z., XU, G., RISEMAN, E. M., AND HANSON, A. R. 1999. Fast Generation of Dynamic and Multi-Resolution 360-Degree Panorama from
Video Sequences. In Proc. of the IEEE int. Conf. on Multimedia Computing and Systems - Volume 2 (June 07 - 11, 1999). ICMCS.
IEEE Computer Society, Washington, DC, 9400.
ZOGHLAMI, I., FAUGERAS, O., AND DERICHE, R. 1997. Using geometric corners to build a 2d mosaic from a set of images, in: IEEE Int.
Conference on Computer Vision and Pattern Recognition, 1997, pp. 420–425.

APPENDIX

A.1 POSSIBLE OVERLAPPINGS FOR TWO FRAMES

To generate all possible cases, there are three operations: union, presence, and absence. The regions
may unite with neighboring regions or that may not exist at all. We are going to represent union with U,

absence with -, and presence with +. If a region appears in a union, it is automatically present. Below, R1,
R2, R3, and R4 represent 4 corner regions shown in Fig. 9. For Fig. A.1, we are going to provide the

representation for the left-most (lm) and the right-most (rm) for each sub-figure: a) (lm) (R1UR4)+R2+R3,

(rm) (R1UR2)+(R3UR4) b) (lm) (R1UR3UR4)+R2, (rm) (R1UR2UR3UR4) c) (lm) R1+R2+R4-R3, (rm)

(R1UR2UR3)-R4 d) (lm) (R1UR4)+R2-R3, (rm) (R1UR2)+R3–R4 e) (lm) (R1UR2UR4)–R3 (rm) (R1UR2UR3)–R4

f) (lm) R2+R4-R1-R3 (rm) R1+R4-R2-R3 g) (lm) (R1UR2)–R3-R4, (rm) (R1UR4)–R2-R3 h) (lm) R1-R2-R3-R4,

(rm) -R1-R2-R3-R4.

A.2 Fusing Assertive Sprite onto conservative Sprite

We provide the algorithm for fusing assertive sprite onto conservative sprite.

Algorithm 2. Algorithm for fusing assertive sprite onto conservative sprite
// IN: Assertive sprite ASn−1
// IN: Conservative sprite CSn−1
// IN: frames fn and fn−1 of the video
// OUT: Fused sprite FSA on conservative sprite
apply the necessary shift operations on ASn−1 and CSn−1
copy CSn−1 to FSA

b) 3 region unions (first 4); all regions union (the last 5)

c) One missing region with no unions

d) One missing region with one union

e) One missing region with two unions f) Two missing regions with no unions

g) Two missing regions with
unions

h) Three missing regions (first four); all
regions are missing (the last one)

Fig. A.1. Overlappings between two frames.

a) Left side: only one union with the neighboring region; Right side: two unions

(minx,miny) ← (shiftx, shifty) // the top-left coordinate of the 1st frame on CS
for i = miny to (miny+height) do
 for j = minx to (minx+width) do
 FSA(i, j) = AS(i, j)
 end for
end for

