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Abstract. With the increasing need for different energy saving mechanisms in Wireless Sensor 

Networks (WSNs), data aggregation techniques for reducing the number of data transmissions by 

eliminating redundant information have been studied as a significant research problem. These 

studies have shown that data aggregation in WSNs may produce various trade-offs among some 

network related performance metrics such as energy, latency, accuracy, fault-tolerance and security. 

In this paper, we investigate the impact of data aggregation on these networking metrics by 

surveying the existing data aggregation protocols in WSNs. Our aim is twofold: First, providing a 

comprehensive summary and comparison of the existing data aggregation techniques with respect 

to different networking metrics. Second, pointing out both the possible future research issues and 

the need for collaboration between data management and networking research communities 

working on data aggregation in WSNs.  

1. Introduction 
Recent years have witnessed a tremendous growth and interest in the usage of tiny sensors in data 

gathering by forming large-scale ad hoc wireless sensor networks (WSNs). Several WSNs have 

been deployed for environmental monitoring (such as monitoring nesting behavior of endangered 

birds in a remote island [1]), precision agriculture (monitoring of temperature and humidity in 

vineyards [2]), and military and surveillance purposes (classification and tracking of trespassers 

[3][4]). It is envisioned that WSNs will be part of the future Internet where real-time information 

will be queried through the physical sensors deployed almost everywhere in our living 

environments. This direction suggests that retrieving and processing of large volume of data from 

WSNs will continue to be one of the most important problems for the researchers in coming years.  

However, since sensors have severe resource constraints in terms of power, processing 

capability, memory and storage, it is a challenging task to provide efficient solutions to data 

gathering problem. Especially energy limitation has been a pressing issue which affects the design 

of WSNs at all layers of protocol stack [5][6]. Many researchers have investigated various 

mechanisms such as shutting down the radio, eliminating control packets, and usage of topology 

control algorithms etc. [7][8][9] in order to reduce energy consumption in WSNs. Data aggregation 

is also among those mechanisms which is utilized in order to save energy.  

Data aggregation in WSNs is the process of combining multiple data packets into one by 

looking at their contents and is one of the mechanisms often employed for achieving energy-

efficiency. For instance, WSNs may have a lot of redundant data since multiple sensors can sense 

similar information when they are close to each other. Therefore, there is no need to send the same 

information to the base-station more than once. Instead, a summary of the readings from those 

sensors can be sent. Thus, using data aggregation will decrease the number of transmissions in the 

network reducing the bandwidth usage and eliminating the unnecessary energy consumption in 

both transmissions and receptions.   
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Data aggregation in WSNs suggests that the intermediate nodes perform the aggregation 

incrementally when the data is enroute to the base-station. Therefore, it is sometimes referred as 

in-network data aggregation. Typically, an aggregation tree rooted at the base-station is created 

where the source sensors are leaf nodes. Each intermediate node may have multiple child nodes to 

receive data and a parent node to transmit data. Therefore, an intermediate node can combine 

multiple packets, suppress them and help to calculate part of some aggregation functions such as 

average, count, maximum and minimum.  

While the described data aggregation may help reduce the number of transmissions and hence 

energy consumption [10][11][12][13], it may also affect other performance metrics such as delay, 

accuracy, fault-tolerance and security. For instance, data aggregation may cause the nodes to wait 

for their children to send their data, increasing the delay that the packets face [14][15]. In addition, 

it can decrease the accuracy of the result received at the base-station since many readings from 

different sources are eliminated through data aggregation during the packets are enroute [16]. 

Another issue is providing the fault tolerant transmission of the aggregated packets, given the 

unreliable nature of the wireless environments. This may require multi-path routing [17] which 

contradicts with the motivation of aggregation. Finally, security is yet another concern since 

authentication and encryption are required before packets are safely combined [18][19]. 

Nevertheless, this necessitates aggregation of encrypted data which is not a conventional problem 

[20][21]. 

In this paper, by considering each of these metrics separately we survey the current data 

aggregation research for each metric under a different subsection. While data aggregation has been 

studied as a means of saving energy in WSNs, none of previous work considered a comprehensive 

relation of data aggregation with all of the aforementioned networking metrics. To the best of our 

knowledge, there is no work which categorizes and summarizes the data aggregation approaches 

in WSNs with respect to their effect on various networking metrics. 

Beside these metrics, data aggregation also affects the processing of multimedia data 

[22][23][24]. Given the hardware improvements in image and video sensor technologies and their 

possible usage in many applications, we believe that aggregation of multimedia data will require 

special network architectures and hence it is very important to identify the challenges in this new 

research area.  

Finally, we also briefly summarize and discuss the database centric approaches to data 

aggregation in order to demonstrate that there is a strong relation between networking and data 

management aspects of data aggregation in WSNs. However, this relation did not build the desired 

collaboration between the networking and data management communities. Therefore, as a final 

contribution, we emphasize the need for collaboration and state the research challenges in order to 

fill the gap between the two research communities in the future. We believe that this is extremely 

important since WSNs are envisioned to be used as database systems where large amount of data 

will be processed.  

It is important to note that we only focus on the networking issues of data aggregation. When 

other issues such as data processing and information extraction are considered, it is usually referred 

as data fusion [25][26]. Although data fusion and data aggregation are used interchangeably in the 

research community, data fusion is a more broad area which includes aggregation as a sub-process 

and focuses on information rather than data with the use of several interdisciplinary techniques 

such as signal processing, statistical analysis, machine learning and probability. Therefore the 

research efforts on data fusion are beyond the scope of this paper. We only provide a brief summary 

on data fusion research.  

This paper is organized as follows. In the next section, we define data fusion and state the 

differences between data aggregation and fusion. In Section 3 we cover the discussion of data 

aggregation protocols with respect to various metrics and present possible open research problems. 

In section 4, we discuss the database centric approaches to aggregation and the gap between the 
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works of networking and data management communities on data aggregation. Finally in section 5, 

we conclude the paper with a summary and a table of the included protocols.  

2. Data Fusion vs Data Aggregation 
Data fusion and data aggregation are very interrelated and often used interchangeably in WSN 

research. While data aggregation is introduced with the need of reducing data redundancy and 

number of transmissions in WSNs, data fusion has already been used in the past extensively for 

different systems including wired multi-sensor systems [26]-[31].  

The definition of data fusion is given in [26] as follows: “Data fusion is a process that combines 

data and knowledge from different sources with the aim of maximizing the useful information 

content, for improved reliability or discriminant capability, while minimizing the quantity of data 

ultimately retained.” A data fusion process is characterized by its ability to combine, possibly 

uncertain, incomplete, and contradictory data. Hence, data fusion takes multiple sources and forms 

of data and uses all of this data in a way such that a better picture of the observed phenomena is 

formed.  In this way, the phenomena can be better predicted and understood and in turn controlled.  

Note that, as a consequence of the data fusion, the resulting information is often abstract, 

generalized or summarized, and, hence, the amount of data is reduced. The popular and widely 

accepted process model for data fusion identifies five levels in a data fusion process [32]: Level 0 

is the sub-object assessment, level 1 is object assessment, level 2 situation assessment, level 3 

impact assessment, and finally level 4 is process refinement. In this hierarchy, data aggregation is 

employed in level 0 where some signal processing is performed [32]. 

Applications of data fusion includes disparate fields [26], avionics [27][28], command control 

[29], remote sensing and identification of weather patterns [30], control of complex machinery and 

assembly robots and financial analysis [31]. In WSNs the usage of data fusion is numerous. Current 

data fusion research in WSNs is focused on applying data fusion techniques to WSNs by 

considering their special constraints. Data fusion in WSNs is used to do filtering, eliminating 

redundancy, eliminating noise and cleaning data, making predictions based on spatio-temporal 

characteristics etc. [33][34][35][36]. The aim in most of these approaches is to model the sensor 

data by using statistical techniques such as Bayesian-based approximation and Gaussian 

distribution in order to handle the imprecision. Handling imprecision and modeling sensor data 

enables future estimations, eliminate outliers and hence reduce the number of transmissions.  

While data fusion includes a wide range of different techniques that can be studied by different 

research communities [32], data aggregation on the other hand can be seen level 0 of data fusion 

where only the unneeded redundancy is reduced in the system and a summary of the data is 

produced.  In WSNs, this is achieved through some in-network processing which is mainly the 

focus of the networking research community. In this paper, we will only focus on data aggregation 

in WSNs and investigate its networking aspects. Given that data aggregation may affect the design 

of WSNs at most layers of the networking protocol stack, we will look at various networking 

challenges that arise with data aggregation.  

3. Effects of Data Aggregation on Network Performance 
Extensive use of WSNs in many real-life applications introduced several new network and node 

level performance metrics. Since sensor nodes have significant battery constraints, energy 

consumption, lifetime of the network and lifetime of a node are among the most important metrics 

to measure the effectiveness of a given algorithm in WSNs. Accuracy is another metric which has 

become important due to uncertain number of data sources that can contribute to a given query. In 

addition to these contemporary metrics, latency of the received data, security and fault tolerance 

level of the communication have always been among the priorities for real-time and robust network 

operation.  
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We argue that when in-network data aggregation is performed, it will have significant impact 

on these metrics. In fact, most of the time a combination of the mentioned metrics is simultaneously 

related and creates certain performance trade-offs in WSNs. While data aggregation has been 

studied as a means of saving energy in WSNs, none of these works considered a comprehensive 

relation of data aggregation with all of the aforementioned networking metrics. To the best of our 

knowledge, there is no work which categorizes and summarizes the data aggregation approaches 

in WSNs with respect to their effect on various networking metrics. This section provides a 

comprehensive survey of data aggregation protocols in WSNs as well as suggests some open 

research problems for future studies.  

3.1 Data Aggregation and Energy Efficiency 
The main motivation of data aggregation in WSNs is to provide energy efficiency through reducing 

the number of transmissions by exploiting the redundancy in the sensor data. This has raised the 

question of how to build efficient data structures to promote in-network data aggregation in WSNs. 

Specifically, how to create the data gathering tree and select the routes and where to do the 

aggregation in this tree are the main problems to consider. In this section, we will summarize the 

protocols which considered data aggregation problem from the energy-efficiency perspective. Note 

that most of the protocols that will be described here are the first works that attempted to model the 

data aggregation problem using different approaches.  This section also includes some application 

specific examples of data aggregation.  

3.1.1 Data Aggregation for Traffic Reduction 

Impact of Data Aggregation in WSNs: Finding the optimal aggregation tree in WSNs was first 

reduced to a Minimum Steiner Tree problem in [10][13]. This problem is known to be NP-

Complete which can be defined as follows: Given a complete graph G=(V,E) and a subset S < V of 

required vertices then a Steiner tree is a subtree of G that includes all the vertices in S and has the 

minimum sum of weights. Since optimum solution to this problem is NP-Complete, the authors 

propose three sub-optimal schemes as a solution in the paper. Basic schemes for the aggregation of 

data include the Center at the Nearest Source (CNS), here data is aggregated at the source nearest 

to the destination; Shortest Path Trees (SPT), where data is sent along the shortest path from source 

to base-station and aggregated at common intermediate hops along the way; and Greedy 

Incremental Trees (GIT), which builds an aggregation tree sequentially to merge paths and provide 

more aggregation. These protocols are implemented in the paper and a comparison in terms of 

energy gain is made by trying different number of sources, transmission range and distance to base-

station. The results show that the energy saving through SPT and GIT are more significant since 

they provide aggregation at all levels of the tree. However, this type of aggregation will cause to 

increase the latency of packets which will be discussed in section 3.2.  

 

Data Aggregation with Low Level Naming: In [11], application specific in-network data 

aggregation is suggested to be done as close to the data sources as possible which is similar to the 

CNS heuristic proposed in [10]. This work utilizes the ideas of Directed Diffusion [37] (a routing 

approach for WSNs) for naming the data and sensors based on the application. This naming is then 

exploited in order to perform in-network aggregation. Once the data is known through low level 

naming, intermediate nodes receiving the data can cache, filter and suppress the data before 

transmitting to the base-station.  

Note that this is similar to what Directed Diffusion does and completely application dependent 

which is the major difference from the approaches mentioned in [10]. The approach can not only 

provide 42% traffic reduction with respect to non-aggregation but also handle nested queries with 

the same mechanisms. This handling is however mostly related to query processing discussed in 

section 4 and hence will be elaborated in that section. 
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Data Aggregation with Path Sharing: Directed Diffusion [37] and path sharing can be combined 

to promote data aggregation in WSNs [38]. This is especially useful when there are multiple base-

stations in the network. The authors in [38] argue that directing different base-stations to share as 

much of a network path as possible toward a common source will reduce network traffic and save 

energy for the system while maintaining the same throughput. Maximum path sharing will help the 

network aggregate data easily and efficiently.  This not only reduces network traffic but also 

provides energy savings as well.  

The protocol uses a greedy algorithm to construct and maintain dynamic network paths 

between sources and base-stations.  The authors map the path maintenance algorithm to the 

weighted set-covering problem which is NP-Complete, and use its greedy approximation algorithm 

as their approach. The approach is compared to opportunistic aggregation where data aggregation 

is performed in a data tree whenever possible. While the two approaches perform similarly at low 

density networks, greedy approach performs significantly better at high density networks achieving 

up to 45% energy savings with respect to opportunistic approach. This is due to the fact that with 

large number of nodes, the probability that the paths to the base-station will be diverse is very high 

which reduces the chance for aggregation.  

However, this work differs from [10] and [11] in the sense that it considers multiple base-

stations rather than one. In addition, the main problem with this approach is that a lossless 

aggregation method in addition to path sharing may increase network congestion in particular 

segments of the path.  This will not only increase the latency of the packets but also depleting the 

battery of nodes on the shared paths. Therefore, network traffic level should also be used as a 

parameter to reinforce the paths. 

 

Energy-efficient Data Aggregation Hierarchy: An interesting approach to figure out the optimal 

number of aggregators for maximized energy efficiency in WSNs is to employ a randomized 

algorithm. [39] presents a distributed and randomized algorithm where sensors select optimal 

number of aggregators after deployment. This paper assumes a general compression function which 

makes the approach usable for any aggregation function in different applications. This function 

basically computes the size of output data for a given input data. Thus, it can be a simple function 

such as sum as well as a complex function such as wavelet compression. The authors also extend 

their approach to a hierarchical model for a more general framework.  The hierarchical aggregation 

model assumes aggregators at multiple levels up to the base-station which is the last level. The 

optimal number of aggregators in hierarchical model is also calculated.  

The approach in this work only focuses on the number of optimal aggregators and does not 

handle how the aggregation will be performed. However, the usage of a general compression 

function is a good metric which can be applied to other data aggregation approaches for 

performance assessments.  

 

Optimal Data Aggregation: In addition to finding the optimal number of aggregators as discussed 

in [39], it is important to figure out the optimal data aggregation tree. Although this problem can 

be NP-Complete, a randomized algorithm can provide a constant time approximation of the optimal 

aggregation tree [40]. The authors claim that the approach will eliminate the need for special data 

routing structures for some aggregation functions. Although it is not quite clear how to employ this 

algorithm in very large scale WSNs, this is an interesting and promising direction which can 

provide significant energy savings without introducing any computational complexity to both 

sensors and the base-station.  

 

Some of the mentioned approaches for data aggregation have been exploited in some 

applications or systems which benefit from data aggregation for reduced energy consumption. For 

instance, EScan is one of such systems that utilizes in-network data aggregation [41]. This work 
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aims to provide a residual energy map of the sensor network in order to help users to take necessary 

actions depending on the nature of the application. This information is provided through in-network 

data aggregation of individual sensor reports. Each sensor generates a portion of the energy map 

(i.e. its own information about the energy levels of the neighbor nodes) and those are aggregated 

near the sources in order to reduce the number of transmissions to the base-station. The base station 

will eventually have less accurate but still useful information about the energy levels of the sensor 

nodes at certain areas of the event region.  

Similar ideas are explored in [42] in order to offer energy efficiency in an inventory control 

application. The authors present an aggregation mechanism which basically sums the number of 

objects and transmits this information along with the region information to the base-station. The 

aim is to perform the counting near the sources and send an aggregated report. They present a 

population estimation algorithm by considering the spatial location of the sensors. The simulation 

results confirm the effectiveness of their approach by providing %65 energy saving with respect to 

the baseline.  

3.1.2 Open Problems 

The creation of data aggregation trees according to different application requirements is still a 

challenge especially with the increasing number of WSNs applications. Therefore, the approaches 

such as [40] which determine the optimal aggregation tree can be an interesting direction to pursue 

for ultimate and scalable solutions.  

In addition, employment of heterogeneous nodes for aggregation purposes and determining the 

best layouts for such nodes in the event areas are possible research areas for future investigation. 

In fact this type of usage has created a new type of network which is called heterogeneous wireless 

sensor networks. In those networks, aggregation and computationally expensive operations are 

planned to be performed in special nodes which are assumed to be more powerful than sensors. In 

this case, an additional research consideration is how to perform aggregation in a multiple sources-

multiple base-stations sensor network which has been mentioned in [38]. Such problem can also be 

studied under the newly emerged Wireless Mesh Networks [43] which is able to integrate WSNs 

with other types of networks such as Internet. 

3.2 Data Aggregation and Latency 
While data aggregation is confirmed to save significant energy in WSNs, there is a price for it: an 

inherent trade-off between energy and latency. Data aggregation may increase the end-to-end 

latency for the data packets and hence may not be applicable for the applications where end-to-end 

latency is critical. This increase is due to increased wait time for the intermediate nodes when 

performing data aggregation. Each intermediate node may have multiple children and the data 

gathering process from these children may not always be synchronized due to the unbalanced 

structure of data aggregation trees, node failures, congestion and packet losses. Therefore, the 

increased latency for the aggregated packets becomes an issue when data aggregation trees are in 

use. Increased latency is also closely related to another metric which is called data freshness. It 

refers to the time between generating a data packet and receiving it at the base-station. The less that 

time is, the fresher the data will be. Data freshness can be used in some of the applications but we 

consider it as another version of latency and will not discuss it separately.  

In this section, we summarize the aggregation approaches in WSNs for minimizing the latency 

while at the same time performing the desired level of aggregation. We also make a comparison of 

the approaches and provide some future research issues.  
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3.2.1 Delay-constrained Data Aggregation 

AIDA: The first work that considers latency minimization along with data aggregation is proposed 

in [44]. The proposed protocol is an application independent data aggregation (AIDA) which does 

not depend on the type of application as the previous research does.  

The protocol can work between MAC and network layer with any kind of routing approach. 

The main idea is to concatenate "DOA" number of packets at the MAC layer in order to minimize 

the number of transmissions and packet overhead for accessing the channel. DOA is the degree of 

aggregation which is basically the number of packets to be concatenated at once. The concatenated 

packets are decomposed when reach to the destination. This is an adjustable parameter and the 

authors propose a feedback based mechanism to adjust it based on the changing traffic conditions. 

Queuing delay is the factor used in the paper as feedback. They claim that by eliminating the need 

for accessing the channel and transmission for packets, the energy is saved and end-to-end delay is 

not affected and even decreases in high loads.  

However, their approach may be too complex for resource constrained sensor nodes. In 

addition, they just consider aggregation at the MAC layer and there is no optimization at the 

network layer. Therefore the proposed approach is not suitable for implementing typical 

aggregation functions such as sum, average etc. Furthermore, one of the main disadvantage of their 

approach is that when the concatenated packet is dropped or lost due to any reason then the recovery 

process will be very expensive, reducing the energy and latency gains. 

 

WFQ-based Delay-constrained Data Aggregation: Providing delay-constrained delivery of data 

when data aggregation is in use can be achieved through utilizing some special packet scheduling 

techniques such as Weighted Fair Queuing (WFQ) [14]. This proposed approach in [14] initially 

forms an aggregation tree that suits contemporary best-effort traffic and utilizes Weighted Fair 

Queuing (WFQ) in order to support on-time delivery of delay-constrained (real-time) data. The 

idea is to identify the longest path in terms of hop counts on the aggregation tree for which the end-

to-end delay is acceptable. A work around mechanism is presented to ensure timeliness of packets 

on unfeasible paths by adjusting the tree so that the packets are aggregated at another relay node 

that is closer to the gateway (base-station) node.  

The authors analytically proved that when a feasible path is found for the longest path in terms 

of hop counts among the real-time sources, the other sources connecting to this longest path can 

meet the end-to-end delay bounds. Simulation results show that the approach provides significant 

increase in timeliness at the price of a slight increase in energy consumption when compared to 

non-QoS-aware aggregation. The approach maintains the same level of timeliness for low traffic 

rates and slightly increases deadline misses for reasonably higher rate.  

Although the presented approach in [14] is complex to implement, it can provide delivery 

guarantees in terms of delay when used with constantly generated source data and is suitable for 

calculating aggregate functions mentioned above. It can work at the network layer as opposed to 

the approach in [44]. It is among a few works that claims to provide delay guarantees along with 

data aggregation.  

A variance of the approach in [14] is pursued in [45] without utilizing WFQ scheduling. The 

protocol uses the same queuing model as [14] and aggregates the non-real-time packets based on 

the application up to allowable MAC Maximum Transfer Unit (MTU) using the similar idea in [44]. 

The real-time packets however are immediately transmitted from the queue in order to meet the 

timing constraints. The approach can be seen as a combination of [44] and [14]. However, without 

any scheduling like WFQ there is no guarantee that the real-time packets will make their deadlines. 

The approach is good for providing priority to real-time packets and hence helps to reduce their 

end-to-end delay. In addition, the aggregation up to MTU number of non-real-time packets provides 

energy efficiency.   
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QAM-based Data Aggregation: QAM-based aggregation proposes packet scheduling algorithms 

for data gathering in real-time monitoring applications using a technique called modulation scaling 

[15]. The idea is to model the transmission energy using the Quadrature Ampitude Modulation 

(QAM) scheme, which represents the energy consumption as a function of the modulation 

frequency. By adjusting the bit rate at each node, significant energy savings can be achieved while 

keeping the latency in check. Fig. 1 shows how energy can be controlled with the adjustment of 

delay performance for 1 bit transmission. While this solution seems to be promising, it is not clear 

whether modulation scaling can always be applicable and how it affects the design of WSNs.  

Determination of Aggregation Points in 

WSNs: In [46] a mechanism to determine 

where to aggregate data and how long to wait 

for achieving an end-to-end latency not 

exceeding a certain time period is presented. 

The total deadline is divided into the number 

of sensors on a path so that each sensor node 

will know how long it is allowed to wait 

before sending the packet. This approach is 

simple however it does not discuss how the 

accuracy of the received data is affected at the 

base-station. Depending on the latency 

constraint, the performance will differ. For 

instance, if the latency is very small then the 

waiting time for a sensor will be very short 

and hence the accuracy of the data at the 

base-station will not be good.  Therefore, this factor should also be included when formulating the 

solution.  

 

3.2.2 Delay Performance and Network Topology 

Apart from the mentioned approaches, another interesting study related to the delay performance 

of data aggregation is done under the influence of topology control [12]. In this work, the authors 

study the possible effects of the network topology on the performance of in-network data 

aggregation in terms of energy, delay and fidelity. This work is a nice example of the inherent 

trade-offs between maintaining network topology or connectivity with less number of active nodes 

and performing in-network data aggregation.  

The simulation results show that topology control can have a detrimental effect on the network 

in terms of increased delays. This is because, since connectivity strives to maintain minimum 

possible number of active nodes for energy considerations, the aggregation process is delayed until 

some of the nodes wake up. The paper concludes that shorter and fatter aggregation trees should be 

employed for best energy-delay tradeoff results.  

3.2.3 Open Problems 

Delay-constrained data aggregation will be an important problem for large scale sensor databases, 

where users submit frequent aggregation queries and would like to get the results within a certain 

amount of time. When this problem is modeled as a constrained Steiner-tree problem, it will be an 

NP-Complete problem [47]. Therefore, efficient heuristics for solving this problem are needed.  

In addition, the approaches mentioned in this section mostly consider simple aggregation 

functions. For complex aggregation functions such as median, histogram etc. the approaches will 

not work. Hence, delay minimization with complex aggregation is still an open research issue. 

Fig. 1: Energy vs delay in transmission [15] 
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Finally, the topology control problem mentioned in [12] is an interesting and novel challenge which 

involves connectivity, latency and aggregation at the same time. This problem has not been given 

enough consideration by the research community.  

3.3 Data Aggregation and Accuracy 
In WSNs, it is very important to decide how much a node will wait for its children to forward the 

aggregated data to the upper nodes in a data aggregation tree in order to receive accurate data at the 

base-station. Accuracy is measured by the number of nodes contributing to the result received at 

the base-station. The more nodes contribute, the more accurate the data will be.  

Deciding the number of sensors nodes contributing the result is a difficult problem since such 

decision can also affect energy and latency performance. While an increased number of readings 

mean increased accuracy of the result, collecting those readings from the sensors may increase the 

waiting times at the intermediate nodes. In addition, the increase in the number of contributions 

will mean more number of transmissions which eventually boosts the energy consumption of the 

sensor nodes.  

This section covers the description of protocols that explore the trade-off among accuracy and 

other metrics such as energy and latency when performing in-network data aggregation in WSNs.  

3.3.1 Determination of Waiting Times  

Impact of Timing in Data Aggregation: The effects of data aggregation on accuracy and its inherent 

trade-off with energy consumption have been studied in [16]. This paper describes three different 

mechanisms in order to set the time duration for a particular node to wait before aggregating the 

messages from its children and forwarding it to the upstream node. These timing models namely 

periodic simple, periodic per-hop and periodic per-hop adjusted have a strong effect on the 

accuracy of the received data at the base-station.  

In the periodic simple approach, each node is assigned a predefined and fixed amount of 

waiting time. Periodic per-hop approach on the other hand requires each node to wait for all of its 

children so that all of them send their data and aggregation can be performed. The third approach 

is similar to TAG’s [48] epoch division approach which will be discussed in detail in section 4. In 

this approach, the time durations are assigned based on the position of the nodes in the aggregation 

tree.  This is called cascading timeout approach where a node’s timeout happens right before its 

parents. Simulation results have shown that cascading timeout approach can provide six times more 

energy saving with respect to the other two approaches without negatively affecting the accuracy 

of the data received at the base-station.  

 

Synchronization of Multiple Levels of Data Fusion: There is always a trade-off between latency 

and accuracy in WSNs.  For instance, an increased accuracy will come with an increased latency 

since the intermediate nodes will have to wait for all their children to contribute to the result [49]. 

One solution to eliminate this problem is to 

have a perfectly balanced tree so that two 

nodes at the same level will face same delay 

since they will have same number of nodes 

under their sub-tree. However, it is clear that 

creating a perfectly balanced tree is not always 

possible due to large number of sensors, 

random deployment of sensors and complexity 

of the tree creation operation. Thus, the authors 

present a mechanism which is independent 

from the structure of the tree and assigns 

waiting times to intermediate nodes based on 

 
Fig. 2: Multiple levels in an aggregation tree [49].  

Level 0 

Level 1 

Level 2 

Level 3 Base-Station 

… 
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their proximity to the base-station (See Fig. 2, redrawn from [49]). For instance, a node very close 

to the base-station should wait more than the node which is far away from the base-station.  

The presented mechanism broadcasts to all sensors the level of desired data accuracy and their 

hop distances to the base-station. The sensors using this information compute their waiting times 

for data aggregation. The simulation results have confirmed that the proposed synchronization 

protocol can achieve the desired accuracy irrespective of the aggregation tree structure.  

This approach is very similar to the approaches presented in [16] and [48]. The only difference 

from [16] and [48] is that in this case, the base-station decides a level of accuracy depending on the 

application and sends a parameter to all the nodes accordingly. The nodes receiving this parameter 

compute their waiting times for data aggregation. Therefore the level of accuracy is adjustable.  

A similar approach to [49] is pursued in [50] without considering any accuracy-latency trade-

off. The authors present a biological pulse-coupled oscillator based synchronization of the sensor 

nodes. This is the system used in pacemaker cells and fireflies. Once this global synchronization is 

achieved, the sensors can adjust their waiting times for data aggregation as performed in [49]. 

Different from the approach in [49], they suggest turning the radio off for the nodes which are 

neither transmitting nor receiving any data. This information will be available to them through 

global synchronization system. While this can provide significant energy savings, there is no 

consideration of accuracy in this case.  

3.3.2 Energy Consumption vs Accuracy Level 

Accuracy-energy tradeoff: Accuracy will be improved with less data aggregation since a whole 

picture of the data will be in hand when all the data is received. However, this means increased 

number of transmissions leading to more energy consumption. Therefore, there is always a trade-

off between accuracy and energy consumption in WSNs. The work in [67] investigates this trade-

off in periodic aggregation applications. These are the applications which require the result of a 

certain aggregation function at certain periods. The authors present a distributed estimation based 

aggregation approach. This approach has the ability to adjust the level of data accuracy by changing 

a threshold value which is very similar to the adjustment mechanism used in [49].  

The approach is a nice example of works which both exploits some data fusion algorithms and 

considers networking aspects when performing data aggregation. On one hand the authors use data 

fusion methods to compute an estimation of the information. On the other hand, they also explore 

the trade-off between accuracy and energy in the whole network. The fusion approach presented in 

the paper considers the spatio-temporal correlation of sensors’ data in order to make an estimate of 

the global result. Each sensor receives an estimation of the global result and compares its own 

estimate with the received estimate. If the contribution of the sensor node makes a significant 

difference to the global estimate, a new estimate is made and transmitted. Otherwise, no 

transmission is made.  

 

Link layer recovery for increased accuracy: An interesting solution to improve the accuracy level 

can be pursued at the link layer. Since this layer is responsible for improving reliability of the 

packet delivery, it can be exploited to improve the transmission reliability of the aggregated packets 

[51]. This is very important since aggregated packets have a lot of information and have been put 

significant effort to create. If they are not recovered well enough, this may cause a significant 

degradation in the accuracy of the received information at the base-station.  

The authors in [51], therefore, try to make an assessment of how much effort to put and decide 

on different options of error correction at the link layer depending on the capacity of information 

carried out by the data packet. For instance, if it is an aggregated packet, more sophisticated 

techniques such as forward error correction or ARQ can be employed before the transmission of 

packet at the link layer is performed. While these sophisticated mechanisms can increase data 

accuracy at the base-station, they can also increase energy consumption of the sensor nodes. 
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Therefore, depending on the application and the amount of information an aggregated packet 

carries decision of how to reliably transmit the packet to the base-station is an interesting research 

challenge which creates a trade-off between energy and accuracy. Note that, this problem is 

independent from the problem of adjusting waiting times which also affects the accuracy. The 

solution to this problem will be a complementary to that problem which is studied in [16][49][50].  

3.3.3 Open Problems  

Since data accuracy is closely related to data content, protocols which consider data processing and 

networking issues together are needed. Current protocols mostly try to decide the appropriate 

waiting times for the sensors before performing the data aggregation. However, employing 

sophisticated data and signal processing techniques can improve the accuracy of the data at the 

base-station. These approaches should also investigate the amount of resources (i.e. CPU, 

bandwidth, energy) they can allocate for such techniques. This necessitates novel and 

comprehensive approaches which can combine network and application layer information. 

Another problem is to deal with scalability when considering accuracy performance. For 

instance, in a very densely populated event region, the number of children for each sensor will 

probably be very high. In this case, the waiting time for the nodes can be significantly affected 

depending on the selected approach. Therefore, how the proposed solutions can be adapted to large 

scale WSNs and how to deal with multi-clustered WSNs will also be important research issues in 

the future.  

Finally, the problem of link layer recovery for aggregated packets, mentioned in [51] can be 

another interesting future challenge which may promote the research on error control and correction 

with energy trade-offs.  

3.4 Data Aggregation and Fault Tolerance 
WSNs are prone to message losses due to the hidden terminal problem inherent in wireless ad hoc 

communication. Moreover, due to the low-cost, low-power, low-bandwidth nature of WSN radios, 

several anomalies occur, such as asymmetric links, time-varying quality of links, highly non-

deterministic communication at the gray-area band [52][53]. Therefore, fault-tolerance of the data 

aggregation is crucial for dealing with the unreliable nature of communication channels in WSNs.  

In this section, we survey fault-tolerance techniques used by the aggregation protocols under 

two parts: In the first part, we consider fault-tolerance of various routing structures used for data 

aggregation which will be referred as convergecast structures. In the second part, the orthogonal 

fault-tolerance mechanisms used for improving the reliability of data transmission will be discussed. 

3.4.1 Fault-tolerance of Convergecast Structures 

Tree-based structures: A spanning tree, rooted at the base-station, is perhaps the most popular 

routing structure for aggregation [48][54][55].  The tree construction is often performed by flooding 

initiated at the base-station, and during the flooding a node selects the first node that it receives a 

flood message as its parent in the tree. Incidentally, there are several works on the non-uniform and 

malformed shape of the resulting tree structure in the literature [52][55]. However, the biggest 

problem with the tree structure is its susceptibility to node and link failures, which results in loss 

of an entire sub-tree of readings. Therefore, tree-based structures cannot be regarded as fault-

tolerant.  

 

Hierarchical/Cluster-based Structures: Disregarding its hierarchical construction, this case can 

also be viewed, in essence, as a tree-based structure with which it shares the same drawbacks. 

Slepian-Wolf coding [56], which assumes knowledge of correlation of data and encodes data at the 

nodes without explicit communication among the nodes, performs very badly due to message-

losses when aggregating data over cluster-based structures. This is because; the collector node may 
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not be able to reconstruct several sensor values if the encoded bits from one node are lost. Data 

aggregation based on explicit communication does not assume knowledge of the correlation 

structure and exploit data correlation only by receiving explicit communication (information) from 

other nodes, and hence is more tolerant to message losses. For energy efficient aggregation, a large 

cluster size is optimal for highly correlated spatial data [57]. However, large clusters are more 

intolerant to link failures in aggregation, as node or link failure of a cluster-head results in more 

data to be lost. 

 

Grid-based structures: A grid-based structure can also viewed as a tree-based structure at any 

snapshot in time; however, convergecast over a grid-based structure can be designed to be very 

robust and to recover from link and node failures quickly in a local manner [4]. The idea in [4] is 

to impose a logical grid structure on the network, the base-station being at coordinate (0,0). Each 

node has four immediate neighbors on the grid, two of which are closer to the base-station than 

itself. Ideally, a node chooses one of these two neighbors as its parent. In case link or node failures 

make these two neighbors inaccessible, the node can fall-back on any of the other two non-optimal 

parents. This case is noted as inserting a back-link, and only up to a certain number of back-links 

are allowed along any path before declaring the base-station as unreachable and giving up. 

Since grid structure allows choosing parent based only on local coordinate information and 

recovery is also local (not affecting the down neighbors in the grid), the grid structure provides 

very nice fault-tolerance properties. The grid-based convergecast structure has been successfully 

used in large-scale real-world field deployments in “Line In The Sand (Lites)” [3] over a 60 node 

WSN and in “ExScal” [4] over a 1000 node WSN, and proven its scalability and robustness. The 

tradeoff here with the tree-based approach is the initial time and work required for the set up of the 

logical grid structure, potentially by using a localization service. 

 

Multipath convergecast structures: For all of the convergecast structures above, at any given time 

there is at most one path between any node in the network and the base-station. Hence, one link 

failure can disrupt the aggregation significantly for all downlink readings. Note that the grid 

structure is also subject to this shortcoming, although its advantage is to be able to recover fast 

from these failures. The reason most data aggregation protocols insist on the single path rule is to 

avoid double counting of some data in the aggregation. For example, if a temperature reading 

transmitted by a node is double counted by two different parents, results of an “average” or “sum” 

query would be skewed. 

Recently there has been some works which try to overcome the double counting problem and 

provide multi-path support for aggregation to improve fault-tolerance. One suggestion is to use a 

Directed Acyclic Graph (DAG) [48], and let each node with accumulated value v send v/k to each 

of its k parents. This way, the effects of a link or node failure on accuracy of aggregated value 

would be limited as parts of the results in the downlink nodes would still find its way to the base-

station through other paths. 

A more fundamental solution, though, is to divorce the aggregation from the convergecast 

structure completely. To this end, approximate “order and duplicate insensitive (ODI) synopsis” is 

introduced in [17][59]. Approximate (based on randomization) ODI synopses for aggregates such 

as sum, count, avg, median, and uniform sample, are provided alongside with the error bounds for 

these approximate answers.  The net effect of decoupling aggregation from the convergecast 

structures is the freedom to use any of the available multi-paths to the base-station at the time, as 

the effects of double counting are voided through the use of ODI synopses. By routing the message 

through many of the available paths improve fault-tolerance of aggregation drastically [60].  
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3.4.2 Mechanisms for Reliable Convergecast 

Explicit and Implicit acknowledgments: To deal with transient communication failures due to 

collisions, acknowledgments are an effective mechanism. The sender, upon failing to receive an 

acknowledgment from its parent can retransmit its packet to ensure reliable delivery. The 

acknowledgments do not have to be always explicit. Due to the broadcast nature of the wireless 

channels, the sender node can snoop on the packets its parent is forwarding to its grandparent to 

detect if the packet it sent is effectively included, and retransmit the packet if needed. 

 

TDMA or epoch-based transmission: To avoid hidden terminal problem, time synchronization is a 

viable option. The idea here is to propagate the results level-by-level up the tree in distinct epochs, 

where each node waits messages from its children before sending its results in the epoch allocated 

to itself [48][61][62]. 

 

Gossiping: A gossip-based algorithm where each node gets a copy of the result of aggregation from 

another node can help overcome the problems associated with a single leader or parent in 

hierarchical/cluster-based aggregation structures. A hierarchical gossiping algorithm is suggested 

for fault-tolerance of global function evaluation problem in [63]. Here every node in the network 

participates in gossiping with a node in other clusters at increasingly higher levels.  

Unfortunately, the protocol is not energy-efficient, and does not address the problem of routing 

messages between far away nodes when nodes are gossiping at higher levels. By counting a 

communication between any two nodes as one message and spanning one unit time, the message 

and time complexity of the protocol for an N node WSN is O(Nlog2N) and O(log2N) respectively. 

However, for two nodes far apart, for example at different cluster partitions, a communication 

would involve many messages since it has to be conveyed over multi-hops using relay nodes, and 

would amount to number of messages and time units proportional to the distance between the two 

nodes. That being said, more lightweight versions of gossiping may still prove to be useful for 

increasing the fault-tolerance of convergecast.  

 

Reliable bursty convergecast: Even though a typical WSNs radio can transmit 40Kbits/sec, a node 

should regulate its data transmission rate as it also needs to relay data from other nodes. Since 

multiple nodes are originating traffic, rate control and contention management are major issues that 

needs to be addressed for effective data aggregation. In response to an event such as a detection of 

a trigger for a query, multiple nodes may start sending several packets in a bursty manner, which 

may lead to more than %50 data loss [64]. Using implicit acknowledgements, arbitrated 

retransmission, and prioritization of traffic, a protocol, Reliable Bursty Convergecast (RBC), that 

achieves reliable transmission is presented in [64]. The RBC protocol has been used in both Lites 

[3] and ExScal [4] field deployments successfully. 

3.4.3 Open Problems 

Tradeoffs between fault-tolerance and energy-efficiency require more research. Protocols that 

optimize both or that can be tunable to (adaptively) substitute one for another would be very useful. 

In addition, lightweight TDMA or epoch based solutions that can tolerate changes in the topology 

(due to changes in physical link quality) as well as self-stabilize starting from any arbitrary state 

are of interest for preventing hidden-terminal problem and for boosting reliable message delivery. 

Finally, finding more accurate ODI synopses is an active area of research. 

3.5 Data Aggregation and Security 
Most of the research on data-aggregation in WSNs has assumed that all the participating sensors 

and base-stations are honest and trustable. However, sensors and other powerful nodes within 
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WSNs can easily be compromised by physical tampering and other mechanisms. In that case, the 

aggregation mechanisms should be resilient enough to handle the attacks initiated by those 

compromise nodes. While the type of these attacks may differ, a typical attack that is related to data 

aggregation is to send false reports to the base-station so that it will infer wrong results. Most of 

the protocols that will be described in this section deal with this problem. We discuss and compare 

the different solutions.  

We also surveyed two other types of secure aggregation protocols: 1) The protocols that 

propose aggregation mechanisms for data which is encrypted or signed. 2) The protocols which are 

able to adjust encryption level depending on the information carried in the aggregated packet.  

3.5.1 Data Aggregation under Compromised Sensors 

Secure Information Aggregation (SIA): In order to achieve secure and reliable data aggregation, 

security mechanisms which prevent the user from making false decisions at the base-station is 

needed. The work in [65] is known to be the first work which considers security in data aggregation 

in WSNs. The work provides a security 

framework in order to develop algorithms 

for computation of several aggregation 

functions such as, max, min, median, sum 

etc. even though the aggregator and/or a 

fraction of sensors node are corrupted. The 

framework which is named as aggregate-

commit-prove has three steps. First, an 

aggregator node (other than the base-

station) collects the data from the sensors 

which are authenticated. Second, the 

aggregator computes the result based on 

the received authenticated data. And 

finally, it transmits the result along with a 

correctness proof to the base-station.  

The proofs are created through Merkle 

hash trees in which a hash is computed by 

concatenation of two children of a node as seen in Fig. 3 which is redrawn from [65]. The base-

station by checking the correctness of the proof can conclude whether the aggregator is cheating or 

not. Note that the paper provides an algorithm for the computation of each aggregation function 

including median, average, count, maximum and minimum.  

 

Witness-based aggregation (WBA): The same problem has also been studied in [66] which we will 

refer as WBA throughout this section. The author presents an aggregation approach where some 

selected witness nodes monitor the aggregation process. In addition to witness nodes, they assume 

that there is also a data aggregator node which transmits the result to the base-station. Each witness 

node is responsible for computing the aggregated result, getting a MAC (Message Authentication 

Code) of the result and forwarding it to the aggregator node. The aggregator node along with the 

result it has received from the sensors should transmit the proofs (i.e. MACs from witnesses) to the 

base-station. The base-station can check the proofs and determine whether the aggregated results 

are correct or not as seen in Fig. 4, redrawn from [66]. In the case of incorrect results, the base-

station can pull one of the witness nodes to receive the correct result.  

 
 

Fig. 3: Merkle hash tree creation [65] 
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Note that the approach 

summarized here is very similar to 

SIA discussed in [65]. The only 

difference is that WBA additionally 

employs some witness nodes to 

double perform the result 

computation. In fact both 

approaches utilize the same idea of 

using some one way hash functions 

in sensor nodes for relaying the 

results to the base-station. While 

MAC computation is used for 

creating proofs in WBA, Merkle-

based hash trees are used in SIA in 

order to verify whether the 

aggregators are cheating or not. 

Given that the two approaches 

follow the same idea, an 

experimental study would be an interesting research in order to compare their performance in terms 

of complexity and energy consumption.  

 

Secure Aggregation (SA): Yet, another approach to the same problem is discussed in [19]. In this 

case however, there are neither aggregators nor witness nodes as opposed to SIA and WBA. Rather, 

the proposed solution in SA involves something called delayed aggregation and authentication in 

order to prevent intruders or compromised nodes to change the result at the base-station.  

Delayed aggregation suggests that the aggregation of data at a parent node will not be 

performed but rather forwarded to the grandparent as is. The grandparent will however perform the 

aggregation and authentication of the data.  The main idea of aggregation at the grandparent is to 

be able to detect the bogus data coming from the possibly compromised nodes that are close 

neighbors (i.e. child and parent). For example, in Fig. 5, nodes A and B send their IDs, data RA, RB 

to node E with a MAC of the aggregation. E then forwards this information to its parent G. G finally 

performs aggregation of RA and RB and hence can verify its correctness by computing its MAC and 

comparing it with the one it has. 

 In fact SA uses MAC computation as done in WBA for performing authentication, but it is not 

performed at each level of the tree. Therefore, it is not clear whether it is as secure as WBA unless 

an experimental evaluation is made. Although this is lacking in the paper, the authors present an 

analytical cost of the proposed protocol in order to show that the protocol significantly reduces 

energy and introduces very little overhead when compared to insecure aggregation.  

In addition to the three approaches SIA, WBA and SA, [68] proposes another approach called 

resilient aggregation. However, in this approach there is no in-network data aggregation. 

Aggregation is only performed by a trusted base-station. The paper’s approach for preventing the 

base-station from making false conclusions is based on robust statistics. Robust statistics is the 

ability of performing aggregation and computing the result even under the noisy and error prone 

data. Some solutions robust statistics provide are truncating (placing upper and lower bounds on 

sensor readings) and trimming (eliminating highest and lowest 5% of the readings).   

3.5.2 Aggregation of Encrypted Data 

A very interesting security problem is the aggregation of encrypted data without decrypting it 

[20][21]. In fact, the research on this problem is quite necessary since most of the communication 

among the sensor nodes is envisioned to be encrypted and authenticated in future applications. In 

 
 
Fig. 4: Verification by two witnesses and an aggregator [66] 
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such deployments, decrypting the data, performing the aggregation and re-encrypting it for 

transmission will not only be very inefficient in terms of energy consumption but will also generate 

unnecessary traffic, decreasing the available bandwidth.  

If the aggregation function is known a priori, one solution to this problem is to be able to 

perform the aggregation with encrypted data which is called homomorphic encryption. Using this 

approach, a different scheme is needed for each aggregation function. For instance performing 

encrypted addition and average require different algorithms. [20] is a study on these kind of 

algorithms which include schemes for addition, average and variance. The main issue in this 

research is to come up with lightweight schemes which will not bring a computationally expensive 

load to the sensor nodes. However, this type of aggregation may not work for all functions. For 

example it is not possible to eliminate data redundancy by just looking at the encrypted data. 

3.5.3 Encryption Level in Data Aggregation 

A slightly different problem for aggregation is providing the privacy of the data. Specifically, this 

is related to the confidentiality of the relayed aggregated information. The work in [18], Secure and 

Reliable Data Aggregation (SRDA), claims that the closer the data flows to the base-station, the 

more information it will contain due to contributions from the intermediate nodes. This means that 

as data packet travels, more secure algorithms will be needed in order to preserve privacy and 

confidentiality of the data. SRDA presents a mechanism in which encryption level of the data is 

strengthened while coming closer to the base-station. This is done by increasing the number of 

rounds in the underlying RC6 encryption algorithm at each level of the aggregation tree. Note that 

RC6 is an encryption algorithm which is widely used in wireless environments. 

3.5.4 Open Problems  

Most of the problems discussed in this section about security in data aggregation are fairly new and 

very novel. Particularly, aggregation of encrypted data is an interesting study to pursue even though 

some initial efforts have already been made. The works in [20] and [21] for instance can be 

 
 

Fig. 5: Delayed aggregation in a sample tree [19]. 
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extended to be more energy and resource efficient and to cover more complex functions such as 

histogram, median etc. 

In addition, some performance comparison studies are needed in order to assess the best 

approach (such as SIA, WBA and SA) in terms of energy, delay and accuracy when compromised 

nodes and/or aggregators falsely contribute to the aggregated results.  

It is interesting to note that false contribution is a typical security problem which may also be 

handled by some fusion algorithms. Data fusion algorithms such as cleaning, outlier detection, and 

distributed estimation can be utilized to solve this problem since their goal is very similar. This can 

then be cast as a reliable data aggregation problem.  

3.6 Aggregation of Multimedia Data  
While data aggregation has been explored in the context of simple functions such as min, max, sum, 

average etc., very little research has been performed for aggregation and compression of 

multimedia data that exists in wireless image and video sensor network applications. This is mainly 

due to current hardware limitations of sensor nodes in the market, however it is expected and 

envisioned that in the future with the growing capabilities of current MEMS devices, some sensor 

nodes may have similar computational resources such as a laptop.  

Given the broad range of video and image sensor network applications, it is necessary to 

investigate issues such as image/video compression/aggregation under limited energy resources. In 

this section, we will first describe the data reduction techniques for the multimedia data and then 

survey the proposed aggregation techniques for such data in WSNs.  

3.6.1 Data Reduction 

In general, the reduction in the data size can be investigated in four parts: 

 

Data compression: The compression is one of the most effective methods to reduce the data size. 

However, there is a tradeoff between the compression and the size of the data to be transmitted. 

The larger the data, the more energy will be consumed in performing the compression. Thus, the 

main issue is to identify the ratio of the energy that needs to be utilized for both compression and 

transmission. Obviously, the advantage of compression is the possibility of data generation close 

to the original. Most research considers JPEG (Joint Photographic Experts Group) for image and 

MPEG (Moving Picture Experts Group) for video. The motion-compensated encoding may be 

employed to reduce the bit-rate [22]. The Discrete Cosine Transform (DCT), which is widely used 

in JPEG and MPEG, is computationally intensive and it is doubtful whether energy-limited sensors 

can handle it. The alternate approach is to use Discrete Wavelet Transform (DWT), which can be 

used in JPEG-2000 and MPEG-4 standards. 

 

Data Elimination: The easiest way to reduce the data size is to reduce the frame rate. Depending 

on the available power resources, the frame-rate may be reduced. In this case, some of the events 

might be missed if they happen during frame dropping [22]. For example, the regular video 

transmission is based on 30 frames per second. If the power resources are limited, the frames may 

be sent as 1 frame per second (or one frame per 10 seconds).  

 

Data Filtering: The captured data at the sensor may be filtered. Some systems may identify region 

of interest (ROI). The ROI may be sent with high quality [22]. For example, in surveillance systems, 

the moving objects are more important than the background. Instead of sending the whole frame, 

only the blocks that contain the moving objects can be transmitted. The sensors may detect events 

and transmit data as long as the event continues. 
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Data Summarization: During aggregation the data may be summarized by extracting high-level 

information like events and objects in the area. For example, the number of moving objects can be 

extracted by investigating the blocks in consecutive frames. The neighboring moving blocks are 

usually assumed to refer a single object. During aggregation, the aggregator node may just keep 

the number of objects in an area (e.g., shopping center). 

3.6.2 Multimedia Data Aggregation 

In order to handle multimedia data aggregation, the aggregator nodes need to be more powerful 

than the sensor nodes since they continuously process to aggregate the incoming data. Multimedia 

data aggregation can be investigated under low-level and high-level data aggregation. 

Low-level data aggregation is similar to image registration or mosaic generation methods. The 

sensors need to collaborate by maintaining information on cameras that have the same field of view 

(FOV), the calibration of these cameras, and temporal synchronization of these cameras [22]. For 

proper and fast aggregation of data sharing the same FOV, the view of cameras can be aggregated 

on a single view. However, this requires the knowledge of the respective position of the sensors as 

well as specific information about sensors like focal length. The temporal synchronization ensures 

that the data to be aggregated does not belong to different time intervals.  

In high-level data aggregation on the other hand, the sensors extract useful information and 

provide it to the aggregator nodes. This type of information may include the number of objects. 

The aggregator node provides a summary of the number of objects based on the input received 

from the sensors. 

Using the techniques described above, in recent years many protocols have been proposed for 

handling multimedia data aggregation. These protocols provided both the necessary network 

architecture and the algorithms for general solutions. Below, we summarize these works. 

 

DFuse: DFuse [69] provides a 

general aggregation architecture 

that can also be used in streaming 

media applications.  The authors 

present a power-aware role 

assignment framework called 

DFuse based on a heuristic. DFuse 

basically creates an overlay 

network for assigning aggregation 

functions to certain nodes in the 

network and monitors the 

resources of such nodes 

continuously for possible 

relocation of aggregation process 

to other available nodes (See Fig. 

6). Hence, the aggregation assignment is not static and can change depending on the network 

conditions. The framework also provides the programming API for performing different simple 

aggregation functions as well as complex aggregation functions such as video sequence analyzing.  

In [70], a system based on DFuse is presented. This system provides aggregation functions like 

image concatenation, outputting the brightest image, motion detection, face detection, and face 

recognition. In this system, if a node has significantly more energy than the current aggregation 

point, then the aggregation point is migrated to that node with more energy.  

 

Camera Sensor Network: In [71], the authors consider an experimental setup of camera sensors 

where JPEG compression is used. The sensors may trade the quality to the size of the image. The 

 
Fig. 6: Aggregation points (filter and collage) for video data 

coming from cameras [69]. 
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nodes can save energy due to the decrease in the size of data to be transmitted. In their experiments, 

they show that if the nodes transmit JPEG 1 images (high compression-low quality), the base station 

is able to cope with high number of requests and images. However, when the JPEG 8 (low 

compression-high quality), the number of requests and images that can be handled reduce 

significantly. Therefore, the fidelity of the application can be sacrificed to obtain meaningful 

readings over a longer time period. 

 

Video-based Sensor Networks: In this 

network system, the small video sensor 

devices which have limited capacity to 

forward the data are directly connected to 

the base-stations for the aggregation of data 

[23]. The aggregation is performed only at 

the base-stations as seen in Fig. 7, since 

they provide a central storage of the data 

from the sensors, have more computing 

power, and can do long-term monitoring. 

The authors mention that compression is a 

necessity but computation intensive 

compression methods like DCT-based 

compression standards like MPEG is not 

feasible. Since the sensors may be static, the tracking of objects needs to be accomplished by using 

multiple cameras. In that case, the data may need to be filtered to avoid information implosion and 

high priority may be given to important objects. 

 

Panoptes: Panoptes is a scalable low-power video sensor networking technology that aggregates 

video data [24]. Panoptes handles the hardware and aggregation issues in multimedia data gathering 

in WSN. The video sensor which has been used in [24] is called Panoptes (See Fig. 8). There are 

two types of Panoptes video sensors: the applied data bitsy platform and the crossbow stargate 

platform. The stargate platform usually yields better performance and aggregation results since it 

was originally meant to be used in data aggregator nodes. Both platforms are built on top of Linux 

operating system.  

There are three types of compression used: JPEG, differential JPEG, and conditional 

replenishment. The video sensor applies filtering by comparing the luminance components of the 

frames pixel-by-pixel. The video sensors use IEEE 802.11 protocol to transmit the data to the 

aggregating node. The video is only 

recorded if the changes in macroblocks of 

an image are higher than a threshold. For 

querying purposes, an image bitmap is 

maintained to keep track of the changing 

macroblocks based on the first frame in 

the event.  

The video aggregation node has 3 

components: the camera manager, the 

query manager, and the stream manager. 

When video sensors are activated, they 

register to the camera manager. Video 

aggregating node may have more than one camera manager to increase the scalability. The Union 

maps create a single bitmap for an event by employing bitwise OR operation on the bitmaps of the 

event. The query manager answers the queries by investigating the generated maps as an outcome 

of the union operation. The stream manager only streams events of interest to the clients. 

 
Fig. 7: Wireless Video Sensor Network [23] 

 
 

Fig. 8: The types of video sensors [24] 
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3.6.3 Open Problems 

The data aggregation for multimedia data in wireless image and video sensors is challenging due 

to the limited-power the sensors have. The compression methods are usually image based methods. 

To the best of our knowledge, no WSN that requires aggregation is utilizing new video standards 

like MPEG-4. The video data aggregation has not been accomplished. Currently, the aggregation 

is performed on the images (like JPEG). MPEG-4 may employ Discrete Wavelet Transform (which 

is considered to be faster than Discrete Cosine Transform) and remove the temporal redundancy. 

However, the dependency among frames and the necessity of the regeneration of frames by 

buffering additional frames looks like the handicaps of video-based aggregation although it may 

provide higher compression. 

4. Database Centric Approaches to Data Aggregation 
A large group of researchers treat WSNs as a special database where sensors are regarded as tables 

(data sources) and the base-station is the query generator. In this manner, some of the techniques 

in traditional databases can be employed when querying the sensor nodes for certain information. 

Query processing, storage of data, data calibration, data aggregation and sensor data mining are the 

issues which are yet to be more investigated in sensor databases [35].  

Since data aggregation can not be detached from underlying network protocols, it is closely 

related to the issues we discussed in this paper. Several people by considering sensor network as a 

database, proposed data gathering and aggregation architectures based on the traditional SQL like 

models in relational databases. In this section, we summarize and compare these approaches. We 

believe that the issues in this section require an interdisciplinary research where people from 

networking and data management can collaborate. We reiterate that one of the goals of this paper 

is to fill the gap between these two communities when studying data aggregation in WSNs.  

4.1 Sensor Database Query and Aggregation Architectures 
COUGAR: A data-centric aggregation protocol that views the network as a huge distributed 

database system is proposed in [72]. The main idea is to use declarative queries in order to abstract 

query processing from the network layer functions such as selection of relevant sensors etc. and 

utilize in-network data aggregation to save energy. The abstraction is ensured through a new query 

layer which is between network and application layer. COUGAR proposes an architecture for the 

sensor database system where sensor nodes select a leader node to perform the aggregation and 

transmit the data to the base-station (gateway). The base-station is responsible for generating a 

query plan which specifies the necessary information about the data flow and in-network 

computation for the incoming query and sending it to the relevant nodes. The query plan also 

describes how to select a leader for the query. The architecture provides in-network computation 

ability for all the sensor nodes as seen in Fig. 9 which is redrawn from [72]. Such ability ensures 

energy-efficiency especially when the number of sensors generating and sending data to the leader 

is huge.  

Although COUGAR provides a network-layer independent solution for querying the sensors, 

it has some drawbacks: First of all, introducing another layer (query layer) on each sensor node 

will bring extra overhead to sensor nodes in terms of energy consumption and storage. Second, in-

network data computation from several nodes will require synchronization (i.e. a relaying node 

should wait every packet from each incoming source) before sending the data to the leader node. 
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Third, the leader nodes should be 

dynamically maintained to prevent them 

from failure. Fourth, the relaying of data from 

sources to the leader node and from leader to 

base-station is another problem. The state of 

the nodes should be known by the base-

station which is another problem. And finally, 

there is no energy aware algorithms proposed 

as part of COUGAR which is very crucial for 

sensor nodes.  

Nevertheless, COUGAR’s idea of having 

an independent layer for query handling may increase the efficiency of query processing in large-

scale WSNs. This can be a desirable feature in future WSNs. Therefore a joint effort of data 

management and networking community to solve the above mentioned problems is required.   

Similar approach is also pursued in [11]. The main difference from COUGAR is that the 

authors present an application specific handling which assumes the knowledge of data and 

geographic locations of sensors. Different than COUGAR, they consider caching and in-network 

processing at intermediate sensor nodes for energy awareness. In this approach, nested queries are 

subdivided to be processed by initial and triggered sensors as seen in Fig. 10. While initial sensors 

are normal sensors, triggered sensors require more resource such as light, image etc. The query is 

first sent to an initial sensor which then subtasks query to triggered sensors by waking them up. 

The initial sensor then collects and aggregates data in order to reduce network traffic. 

 

Fjords: Similar to database point of 

view of querying sensor nodes, the 

authors in [73] presents data 

aggregation mechanisms inspired from 

the solutions provided in database 

community such as SQL (structured 

query language). In order to speed up 

the result of aggregated queries, they 

suggest using a pipelined aggregation 

approach which continuously updates 

the aggregation result. The approach 

creates a data aggregation tree initially 

by using broadcasting. The tree 

consists of multiple levels and each 

level has some sensors.  

When an aggregate query for 

periodic information retrieval is submitted, the nodes on the first level reply to the base-station in 

 
Fig. 10: Nested query handling a) traditional way 

b) aggregation approach [11] 

 
Fig. 11: Pipelined aggregation in Fjords [73] 

 
 

Fig. 9: Query handling in COUGAR: The leader node 

gets all the readings, calculates the average and if it is 

greater than a threshold sends it to the base-station 

[72]. 
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a predefined time slot. In the next slot, the nodes on the second level and also on the first level 

reply. This continues until reaching the leaf nodes (See Fig. 11, redrawn from [73]. When a leaf 

node is reached, the base-station will have replies from all the nodes at all levels leading to a robust 

and accurate result. The authors also present mechanisms to handle group by queries similarly.  

This work is similar to COUGAR in which WSNs is considered as a database. The database in 

this work is called Fjord [74].While COUGAR only considers moving selection operators on 

sensors, Fjord also considers group by queries. In addition, the pipelined approach in Fjord provides 

multi-level accuracy which is not the case in COUGAR. The authors of Fjord claim that this initial 

work and others will eventually produce an SQL like query language for WSNs which will be 

independent from the application.  

 

TAG: Tiny Aggregation (TAG) [48] is another database centric approach to data aggregation which 

defines an SQL-like declarative query language for expressing aggregation queries over streaming 

sensor data (See Fig. 12). This query language is applied as an abstraction between the user and the 

network protocol. Such abstraction gives chance to further apply some data optimizations.  They 

express five SQL aggregate functions (max, min, sum, count, average) and some other functions 

such as GROUP by using their 

query language. TAG assumes 

that the sensors form a single 

database table and each different 

sensing capability can be 

regarded as an attribute in the 

table as opposed to COUGAR 

and Fjord.  

TAG has two phases for data collection: distribution phase and collection phase. It introduces 

EPOCH clause which represents the time to wait for getting the next answer for the query. The 

synchronization of the nodes in the tree to receive and transmit data is maintained through the 

subdivision of EPOCH value into shorter intervals which are called slots. At each slot there is one 

level of nodes (in the aggregation tree) which are transmitting and another level of nodes which are 

receiving. This continues similarly up to the level of the base-station as can be observed in Fig. 13. 

 Note that, this waiting model is different than COUGAR’s where a parent node waits for all 

its children once it builds the list of its children. In TAG, when the child does not have data that 

conforms to the defined predicate, it does not send the data but rather notifies the parent node that 

it will not be sending data so that the parent will not wait for that node for performing aggregation. 

The idea in TAG is to do aggregation whenever possible in the data tree through the base-station. 

TAG separates data aggregation and routing functions as done in COUGAR, emphasizing that data 

aggregation should consider what data will be collected rather than how it is collected. Note that 

this is a different interpretation when compared to the data aggregation approaches we discussed 

in section 3.3. However, those approaches also consider the network topology when determining 

the waiting times for different accuracy considerations [16][49]. In fact, some of those approaches 

utilize the TAG’s and COUGAR’s approaches in determining the waiting times.  

 
Fig. 12: A typical TAG query [48] 
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Although TAG’s approach provides a 

very simple interface for efficiently 

gathering data from WSNs, the 

determination of slot values and 

knowledge about the whole network may 

not be possible in every application. Even 

if it is possible, it may introduce some 

overhead to the sensors.   

 

TINA: TiNA [75] (Temporal Coherency 

Aware in-network Data Aggregation) is a 

variant of TAG which uses the idea of 

temporal coherency tolerance. TiNA 

sends a packet only if the reading of that 

packet differs from the last sent packet 

reading by more than a stated tolerance 

called temporal coherency tolerance (tct). 

This not only eliminates the number of 

packets transmitted but also helps to 

reduce the size of aggregated messages at 

intermediate nodes hence providing 

significant energy savings. It uses same 

syntax for expressing the queries and same 

mechanism for synchronization of the 

nodes as in TAG. The only extension is a 

restriction at the end of each query specifying that values within tct will not be sent to the parent 

(See Fig. 14).  

Another work which utilizes TiNA’s approach is presented in [76]. This is basically a novel 

aggregation tree construction mechanism that employs TiNA’s in-network data aggregation 

specifically for GroupBy Queries.  

A GroupBy query requires information from different groups based on some criteria. The idea 

in this work is by considering the semantics of the queries to adapt the aggregation tree accordingly 

so that more energy can be saved. The paper presents two tree construction mechanisms namely 

GaNC and GaNCi. In this way, the sensors belonging to same group is clustered together, which 

eventually reduces the number of transmissions by performing the aggregation within the group. 

The two mechanisms provide significant energy savings when compared to conventional 

aggregation mechanisms. They are even more effective when used along with TiNA. 

4.2 Open Problems 
WSNs when viewed as a database will be requiring most of the services of traditional relational 

databases. However, given that sensors have significant resource problems, a lot of research is 

needed in order to reach that stage. In particular, more collaborative research is needed as we 

discussed. For instance, while designing query languages for WSNs, a number of networking 

aspects such as routing protocol, aggregation points, base-station location, recovery mechanisms, 

fault tolerance and security should also be taken into account. While a separate layer for query 

processing and handling is desirable in terms of performance perspective, such separation should 

not affect the design of low level networking mechanisms of WSNs. It is important to note that this 

category is expected to produce a vast amount of research in the future.  

 
Fig. 14: Query syntax in TiNA [7]. 

 
Fig. 13: EPOCH based Aggregation in TAG [48]. 
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5. Conclusion 
In-network data aggregation in WSNs attracted a lot of attention from the research community 

due to its potential for reducing the energy consumption of severely constrained sensor nodes.  

In this paper, we surveyed the protocols which either employs data aggregation for energy 

saving purposes or study the computation of some aggregate queries in WSNs. After distinguishing 

between data fusion and data aggregation, we summarized how data aggregation impacts 

networking performance in terms of latency, accuracy, energy, fault-tolerance and security by 

surveying several protocols. We then looked at how aggregation can be implemented when WSNs 

is considered as a huge database. In addition, we investigated the approaches for performing 

aggregation of multimedia data in WSNs. Below we provide a table (Table 1) which summarizes 

the approaches we have covered in this paper. 

Although, the summarized approaches solved many interesting problems and contribute to the 

development of WSNs, there are still many open issues to be investigated as we discussed under 

each section. We envision that design of query languages for WSNs in order to handle aggregate 

queries will attract more research in the future. Given that sensors are expected to be employed 

physically almost everywhere in the daily life, robust information retrieval in sensor databases is 

very crucial. Therefore, providing acceptable latency, accuracy, fault-tolerance and security along 

with energy efficiency should have to be included in such design. This definitely necessitates 

collaboration between networking and data management communities. Similar situation holds for 

the aggregation of multimedia data where signal and image processing issues should be revisited 

in the context of WSNs.  

In addition to above, security and fault-tolerance of data aggregation arise several issues when 

designing query languages. This is an issue which cannot be neglected due to weak nature of 

wireless environments towards several security attacks and high rate of packet loss in wireless 

transmission. Hence, secure and fault tolerant aggregation is another major future area which 

requires collaborative efforts.  

 Considered Metrics 

Aggregation Approach Energy Latency Accuracy Security 
Fault-

tolerance 

Multimedia 

Aggregation 

Data Centric Routing [13]       

Data Aggregation with Low-

level Naming [11] 
      

Data Aggregation with Path 

Sharing  [38] 
      

Data Aggregation Hierarchy 

[39] 
      

EScan [41]       

Optimal Data Aggregation [40]       

AIDA [44]       

WFQ-based Aggregation [14]       

QAM-based aggregation [15]       

Aggregation and Topology 

Control [12] 
      

Determination of Aggregation 

Points [46] 
      

Impact of Timing on 

Aggregation [16] 
      

Multi-level fusion [49]       

Energy-accuracy tradeoff [67]       

Table 1: Aggregation protocols and their performance effects on different metrics 
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