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Abstract

Flexible synchronization models cannot provide a proper way of managing user interactions that

change the course of a presentation. In this paper, we present a flexible synchronization model, termed

SynchRuler, which allows such user interactions including backward and skip. The synchronization rules,

which are based on Event-Condition-Action (ECA) rules, are maintained to handle relationships among

streams in SynchRuler. The synchronization rules are manipulated by Receiver-Controller-Actor (RCA)

scheme where receivers, controllers, and actors are objects to receive events, to check conditions, and

to execute actions, respectively. The verification of a multimedia presentation specification is performed

with the synchronization model. The correctness of the model and the presentation is controlled with a

technique called model checking. Model checker PROMELA/SPIN tool is used for automatic verification

of the correctness of LTL (Linear Temporal Logic) formulas.

Index Terms

Multimedia Synchronization, Model Checking, Synchronization Rules, Multimedia Presentations

I. INTRODUCTION

Multimedia presentation management has drawn great attention in the last decade due to new

emerging applications like video teleconferencing, collaborative engineering, asynchronous learn-

ing, and video-on-demand. There have been challenging problems confronted when multimedia

presentations enable user interactions and are transmitted over networks shared by many users.

The loss and delay of the data over the networks require a comprehensive specification of the

synchronization requirements. The reduction of human effort in the automation of multimedia

authoring is one of the challenging problems [24].

Multimedia presentation management research started with the organization of streams that

participate in a presentation. VCR-based user interactions are incorporated at different levels at

the later research. Flexible models do not enforce timing constraints and temporal organization is

rather performed by relating events in the presentation. For example, stream A starts after (meets)

stream B. Skip and backward interactions are able to be incorporated in time-based models. There

are only few flexible models considering skip operation but with restrictions. Nevertheless, to

our knowledge, there is no implemented flexible model that explicitly supports the backward

functionality. The main difficulty behind backward and skip interactions is the change in the

course of a presentation. Although conceptual (or graph-based) models have been proposed to
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handle backward and skip [22], the implemented systems could not use these models since they

require the authors to spend enormous time on modeling due to enforcing the incorporations of

the transitions for backward and skip. The author is challenged with the identification of the

source and destination of transitions and the number of transitions.

When the traditional methods check the correctness of a specification, they ignore the capa-

bilities and the interpretation of the synchronization model. To ensure that the synchronization

model plays the presentation as expected is as important as the correctness of the specification.

The synchronization models are likely to produce different multimedia presentations for the same

specification. Hence, the synchronization model must be also incorporated in the verification.

A. Related Work

Allen [1] introduced 13 primitive temporal relationships for time intervals. Little et al. [18]

extended these with n-ary and reverse relationships. The reverse relationships can declare relation-

ships for backward presentations. The verification of a multimedia presentation usually consists

of the verification of these relationships. One important factor in the modeling of presentations

is whether the model is time-based or event-based. Timed Petri Nets are first introduced for

multimedia presentations in OCPN [17] and extended with user interactions in [28]. The modeling

of user interactions using Petri-Nets has been covered in [22]. The backward and skip interactions

have been considered but a Petri-Net must be constructed for each possible skip and backward

operation (including the current position of presentation and where the skip is performed). Gibbs

[9] proposed a way of composing objects using their start times on a timeline. Hamakawa

et al. [10] introduced an object composition and a playback model where the constraints can

be defined only as pair-wise. A time-based synchronization model that considers master-slave

streams having at least one master stream is explained in [15]. NSync [6] is a toolkit where the

synchronization requirements are specified by synchronization expressions having syntax When�
expression � � action � . The synchronization expression semantically corresponds to “whenever

the expression becomes true, invoke the corresponding action”. NSync can only allow backward

and skip with some limitations after user also specifies the operations for backward and each

interval of skip. Time-based models usually keep the start time and duration of each stream.

In an event-based model, the start of a stream depends on an event signal. Events for multime-

dia applications are discussed in [27], and a model that includes temporal and spatial events is
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given in [21]. SSTS [21] is a combination of Firefly’s [7] graph notation and transition rules of

OCPN [17]. SSTS does not cover any user interactions. DAMSEL [23] has an event-based model

that considers activation of two events such that “occurrence of an event will cause the occurrence

of another event � time units later”. Temporal constraints of Madeus [16] are based on Allen’s

temporal relations [1]. FLIPS [25] is an event-based model that has barriers and enablers to satisfy

the synchronization requirements. It does not support fast-forward and fast-backward but it has

a limited skip operation that moves to the beginning of another object. A timeline approach with

event-based modeling that does not support fast-forward, fast-backward, and skip is proposed

in [12]. In PREMO [11], synchronization points may be AND synchronization points to relate

several events. The modeling of synchronization requirements using Event-Condition-Action

(ECA) rules have been introduced in [2], [3], and [4], and forms the basis of ECA rule modeling

in this paper. A hierarchical synchronization model that has events and constraints is given in

[8]. SMIL [26] is a mark-up language for publishing synchronized multimedia presentations.

B. Our Approach

Most of the previous models are based on event-action relationships. The conditions of the

presentation and participating streams also influence the actions to be executed. Thus event-

condition-action (ECA) rules [19], which have been successfully employed in active database

systems, are applied to multimedia presentations. Since these rules are used for synchronization,

they are termed as synchronization rules. The synchronization model uses Receiver-Controller-

Actor (RCA) scheme to execute the rules. In RCA scheme, receivers, controllers, and actors

are objects to receive events, to check conditions, and to execute actions, respectively. The

information for backward and skip operations are deduced by the model, and corrected by the

author if necessary. To verify the correctness of the specification with the model, we use model

checking technique, which automatically detects all the states that a model can enter and checks

the truthness of well-formed formulas. PROMELA/SPIN [13], [14] tool has been used for model

checking, which checks LTL (Linear Temporal Logic) formulas.

Contributions of our paper may be summarized as follows:

� developing a new interactive flexible synchronization model, termed SynchRuler,
� upgrading from event-action concepts to synchronization rules for multimedia presentations,
� incorporating backward and skip into SynchRuler without additional specification, and
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(a) (b)

Fig. 1. (a) Authoring: rule generation and model checking, (b) multimedia presentation based on the synchronization model.

� verification of the specification with the synchronization model using model checking.

There are two phases to create a correct multimedia presentation (Fig. 1): 1) Authoring:

correct rule generation and 2) multimedia presentation based on the synchronization rules. Our

focus in this paper is on the authoring part. This paper is organized as follows. The following

section explains the synchronization model. The user interactions are covered in Section III.

The modeling and specification are explained in Section IV. Evaluation of rules is discussed in

Section V. Our experiments are discussed in Section VI. The last section concludes the paper.

II. THE SYNCHRONIZATION MODEL

In this section, we explain synchronization rules, elements of a multimedia presentation with

SMIL, RCA scheme, and the presentation timeline object.

A. Synchronization Rules

Synchronization rules form the basis of the management of relationships among the multimedia

elements. Each synchronization rule is based on an Event-Condition-Action (ECA) rule.

Definition 1: A synchronization rule is composed of an event expression, condition expression,

and action expression. It can be formulated as: on event expression if condition expression do

action expression.

A synchronization rule can be read as: When the event expression is satisfied if the condition

expression is valid, then the actions in the action expression are executed. The event expression is
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the composition of events using boolean operators ��� (AND) and ��� (OR). The AND composition

requires signaling of all events in the composition but not necessarily at the same time. The

condition expression is the composition of conditions using boolean operators AND and OR

and determines the set of conditions to be validated when the event expression is satisfied. The

action expression is the list of actions to be executed when the condition expression is satisfied.

Definition 2: An event is represented with �
	���
������������������������� "!#���$���%�'&)(*�'(,+.- where �
	���
����
points the source of the event, ���$���%�����/��� represents the type of the event and ���$���%�'&)(*�'(
contains information about the event.

In a multimedia system, the events may be triggered by a stream, user, or the system. Each

stream is associated with events along with its data and knows when to signal events. The

hierarchy of multimedia events is given in [3]. The user must specify information related to

the stream events. Allen [1] specifies 13 temporal relationships. Relationships meets, starts, and

equals require the InitPoint event for a stream. Relationships finishes and equals require the

EndPoint event for a stream. Relationships overlaps and during require Realization event to start

(end) another stream in the mid of a stream. The relationships before and after require temporal

events since the gap between two streams can only be determined by time. Optional event data

in the definition contains information like a realization point. Event type indicates whether the

event is InitPoint, EndPoint, or Realization if it is a stream event.

Definition 3: A condition in a synchronization rule is represented with �0��1324�657- where 2 is a

relation from the set
��8 !,98 !;:�!;<=!�>?!�@?� and �'A is either a state variable that determines the state

of a stream or presentation or a constant. The most important condition is whether the direction

of the presentation is forward. The receipts of events matter when the direction is forward or

backward.

Definition 4: An action is represented with ($�#�6BC	/�%���/�����D�;�6
��
(*EF G!#(��#�6BC	/�H&I(,�'(,+J!K�
L��
�M�NBD�%O���BDEP�/-
where (��K�6BD	����Q�/��� needs to be executed for �;�6
��
(*E using (��K�6BD	��R&I(,�'( as parameters after

waiting for �
L��
�M�NBD�%O���BDEP� . ActionData is an optional parameter and used for fast-forward, fast-

backward, and skip operations. Starting and ending streams are sample actions. Backward and

backend actions are used to backward and to terminate a stream in the backward presentation.
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B. Elements of a Multimedia Presentation and SMIL

The basic component of a multimedia presentation is a stream. In our model, a multimedia

presentation may have a container consisting of streams or other containers. This allows grouping

of streams and creation of subpresentations. Explicit rules are generated by middle-tier from

a synchronization specification. In SMIL 1.0, there are two kinds of grouping: parallel and

sequential. The extraction of synchronization rules from SMIL expressions is explained in [3].

Fig. 2. Sample presentation.

Let us consider a simplified distance learning example that is depicted in Fig. 2. A multimedia

lecture on shot transitions has two parts: teaching and discussion. In the first part, the instructor

talks about different types of shot transitions in a video. The presentation starts with the audio

(A1) of instructor associated with a slide (S1) describing different types of shot transitions. The

instructor gives an example of two videos: original video (V1) and video with shot transitions

(V2). V2 is associated with a fade-out slide (S2) that is shown at the time of transition. In the

second part, there are two video channels: one for the instructor (V3) and another for the students

(V4). The audio (A2) is common in the second part. The audio (A2) starts 1 minute after the

instructor video since the beginning of the instructor video (V3) includes preparation for the

discussion. The video for students (V4) is shown when students are involved in a discussion.

Assume that the presentation is grouped according to the SMIL expression given in Fig. 3.

There are four containers in the presentation: the sequential presentation (SEQ1) of V1 and V2,

the parallel presentation (PAR1) of A1, S1, S2, and SEQ1, the parallel presentation (PAR2) of

A2, V3, and V4, and the sequential presentation (MAIN) of PAR1 and PAR2. We obtain the

synchronization rules given in Fig. 4. The user event USER(Start) determines the beginning of

a presentation. The event-action relationships for PAR1 container is depicted in Fig. 5.
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: seq >
: par >

: audio id="A1" src="Instructor.au"/ >
: seq >

: video id="V1" src="SampleVideo.mpg" begin ="16min"/ >
: video id="V2" src="SampleTransitions.mpg" begin ="2min"/ >

: /seq >
: img id="S1" src="Transitions.gif" begin ="id(A1)(5min)" dur="10min"/ >
: img id="S2" src="FadeOut.gif" begin ="id(S1)(17min)" dur="1min"/ >

: /par >
: par >

: video id="V3" src="Instructor.mpg" dur="20min"/ >
: video id="V4" src="Student.mpg" begin ="id(V3)(5min)" dur="15min"/ >
: audio id="A2" src="Classroom.au" begin ="id(V3)(1min)" dur="19min"/ >

: /par >
: /seq >

Fig. 3. The SMIL expression.

C. Receivers, Controllers, and Actors

The synchronization model is composed of three layers: the receiver layer, the controller layer,

and the actor layer. Receivers are objects to receive events. Controllers check composite events

and conditions of the presentation. Actors execute the actions once their conditions are satisfied.

Definition 5: A receiver is a pair S 8 ���,!#TU- , where � is the event that will be received and T
is a set of controller objects. Receiver S can question the event source through its event � . When

� is signaled, receiver S receives � . When receiver S receives event � , it sends the information

of the receipt of � to all its controllers in T . There is a receiver for each single event.

Definition 6: A controller is a 3-tuple T 8 ���
�,!#���,!MVW- where �
� is an event expression; �7�
is a condition expression; and V is a set of actors. Controller T has two components to verify,
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(F1) on USER(Start) if direction=FORWARD do start(MAIN)

(F2) on MAIN(InitPoint) if direction=FORWARD do start(PAR1)

(F3) on PAR1(InitPoint) if direction=FORWARD do start(A1)

start(SEQ1)

(F4) on A1(InitPoint) if direction=FORWARD do start(S1,5min)

(F5) on SEQ1(InitPoint) if direction=FORWARD do start(V1,16min)

(F6) on S1(InitPoint) if direction=FORWARD do start(S2,17min)

(F7) on V1(EndPoint) if direction=FORWARD do start(V2,2min)

(F8) on V2(EndPoint) if direction=FORWARD do end(SEQ1)

(F9) on (SEQ1(EndPoint) && A1(EndPoint) && S1(EndPoint)

&& S2(EndPoint)) if direction=FORWARD do end(PAR1)

(F10) on PAR1(EndPoint) if direction=FORWARD do start(PAR2)

(F11) on PAR2(InitPoint) if direction=FORWARD do start(V3)

(F12) on V3(InitPoint) if direction=FORWARD do start(A2,1min)

start(V4,5min)

(F13) on (V3(EndPoint) && A2(EndPoint)

&& V4(EndPoint)) if direction=FORWARD do end(PAR2)

(F14) on PAR2(EndPoint) if direction=FORWARD do end(MAIN)

Fig. 4. Forward synchronization rules.

composite events �
� and conditions �7� about the presentation. When the controller T is notified,

it first checks whether the event composition condition �
� is satisfied by asking the receivers

of the events. Once the event composition condition �
� is satisfied, it verifies the conditions

�7� about the states of media objects or the presentation. After the condition expression �7� is

satisfied, the controller notifies its actors in V .

Definition 7: An actor is a pair V 8 �J(X!M�Y- where ( is an action that will be executed after

time � passed. Once actor V is informed, it checks whether it has some sleeping time � to wait

for. If � is greater than 0, actor V sleeps for � and then starts action ( .
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Fig. 5. The event action relationships for PAR1.

Receivers and controllers can be set or reset by the system anytime. Let Z denote the direction

condition ��[�BJ
\�
�#�6BC	/� 8 Z=] S?^_V4SW&`- . According to the synchronization rules given in Fig. 4,

there are 19 receivers for events specified in the event expressions (Table I), 14 controllers for

synchronization rules (Table II) and 16 actors for actions (Table III).

D. Timeline

Definition 8: A presentation timeline object is a 4-tuple � 8 ��
��
�7��BD�$��
��a!b��	/�%�6
�	�LcLc��
/�a!�(��#�'	�
/�a!
(��K�6BD	����d- where 
��
�7��BD�$��
�� , ��	/�%�6
�	�LcLc��
/� , (��K�'	/
�� , and ($�#�6BC	/�%� are timelines to keep the expected

times of the receipt of events by receivers, the expected times of the satisfaction of the controllers,

the expected times of the activation of the actors, and the expected times of the start of the actions,

respectively.

The expected time for finding the satisfaction of a controller is the expected time of the

satisfaction of its event expression. The expected time for the satisfaction of an event composition

condition is calculated using the composition type. Assume that ���e1 and ����5 are two event

expressions where �6BDEP�������$1b- and �6BDEP��������5�- give the expected times of satisfaction of ����1 and

����5 , respectively. Then, the expected time for composite events is computed according to the

predictive logic for WBT (will become true) in [6]:

�6BJEP���J���*1f�?�g����57- 8 EP(,h�BDE`��EF�c�6BJEP���J���*1K-K!M�6BDEP��������5�-M-
�6BDEP��������14��������5K- 8 E`BD�%BDE`��EF�c�6BJEP���J���*1K-K!M�6BDEP��������57-Y-

where EP(*h�BJE`��E and E`BD�RBJE`��E functions return the maximum and minimum of the two values,

respectively. The timelines for receivers, controllers, and actors for synchronization rules given
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R1 USER(Start)

R2 MAIN(InitPoint)

R3 PAR1(InitPoint)

R4 A1(InitPoint)

R5 SEQ1(InitPoint)

R6 S1(InitPoint)

R7 S1(EndPoint)

R8 V1(EndPoint)

R9 A1(EndPoint)

R10 S2(EndPoint)

R11 V2(EndPoint)

R12 SEQ1(EndPoint)

R13 PAR1(EndPoint)

R14 PAR2(InitPoint)

R15 V3(InitPoint)

R16 V3(EndPoint)

R17 A2(EndPoint)

R18 V4(EndPoint)

R19 PAR2(EndPoint)

TABLE I

RECEIVERS.

C1 R1 && F

C2 R2 && F

C3 R3 && F

C4 R4 && F

C5 R5 && F

C6 R6 && F

C7 R8 && F

C8 R11 && F

C9 R7 && R9&& R10&& R12&& F

C10 R13 && F

C11 R14 && F

C12 R15 && F

C13 R16 && R17 && R18 && F

C14 R19 && F

TABLE II

CONTROLLERS.

A1 start(MAIN)

A2 start(PAR1)

A3 start(A1)

A4 start(SEQ1)

A5 start(S1,5min)

A6 start(V1,16min)

A7 start(V2,2min)

A8 start(S2,17min)

A9 end(SEQ1)

A10 end(PAR1)

A11 start(PAR2)

A12 start(V3)

A13 start(A2,1min)

A14 start(V4,5min)

A15 end(PAR2)

A16 end(MAIN)

TABLE III

ACTORS.

in Fig. 3 are listed in Fig. 6. The receivers and controllers are ordered according to their expected

satisfaction time. Only actors that have a sleeping time greater than 0 are displayed. The name

of an actor shows its activation (sleeping time) and an underlined actor shows the end of its

sleeping time. The actions are displayed in a similar fashion. The name of a container or a

stream shows its starting time and if it is underlined, it shows its ending time. At a time instant,

if a stream or a container has the same starting time as its container, the main container is shown

in the timeline.

III. USER INTERACTIONS

The support of VCR functions such as play, pause, resume, forward (fast or slow), backward

(fast or slow), and skip strengthens the browsing capabilities of multimedia presentations. Event-

based models can handle play, pause, resume, speed-up, and slow-down operations easier than
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Fig. 6. The presentation timeline.

time-based models, since these interactions only need to inform active streams. The speed of

the presentation is 1 in nominal presentation. If the speed is greater than 1, it is a fast-forward

operation. If the speed is less than 1 but greater than 0, it is a slow-forward operation. If the

speed is negative, it is a backward operation. When an actor is notified, it only needs to sleep

for �J�/Lc�
�M�XBJ�%O���BDEP�/-YiN�K�j�b�X�
�
[ ]UkRl 
\�/�
���%�'(,�6BD	��f�m- . Speeding up or slowing down only requires the

update of the speed of the presentation.

The management of skip and backward operations is not straightforward in constraint-based

or event-based models. NSync is one of the most comprehensive models that support VCR

functions. However, the details of backwarding and skipping are not provided by NSync. Al-

though it is not explicitly stated, the author must specify the synchronization expressions for the

backward presentation. If backward expressions are not specified, nothing will happen when a

stream reaches its beginning. Even when backward expressions are specified, the management

of backwarding with skip operations cannot be handled properly. Let us consider the virtual

mystery example from NSync where at time (value) 25 a dialog appears to choose a role, and

the stream does not play after time n (*
,o until a role is chosen. The corresponding expressions

are as follows:

When p I.value q 25 r �
display role dialog r
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When p I.value s 25 r �
undisplay role dialog r

When p I.value q Mark && role chosen r �
I.speed= 1; undisplay role dialog r

When p I.value q Mark && !role chosen r � I.value = Mark; I.speed = 0;

display role dialog r
When p I.value t I.end r �

role chosen.speed = 1 r
Let n (*
\o 8vu*w

, x�yz�$(�Lc��� 8{u�|
, and x�y}���R[ 8~|\w

. Assume that the role is chosen and the user

wants to skip to 32. The user cannot see the dialog if the role is already chosen (note that the

first expression will only be satisfied when the expression is false and then becomes true; in this

case there is no change of the truth of the expression). To see the dialog, the user must skip

before 25 and then skip to 32 (to change the truth value of the expression). If the user skips to

20 from 45, the system will try to close an undisplayed dialog. To get rid of these issues, the

author must provide a comprehensive specification so that the skip could be performed.

A. Skip Operation

In SynchRuler, the author of a presentation does not have to worry about skip operations.

All the information for skip operations is extracted from the synchronization specification. The

system is responsible for maintaining correct presentations after skips. A multimedia presentation

has a lifetime. When skip-forward is performed, some events may be skipped that may cause

ignorance of future streams that depend on the receipt of the skipped events. The problem can

be solved by using the presentation timeline. It is not always reasonable to start the actors

whose controllers are satisfied, since their actions might already have finished (to avoid restart

of actions). So, only the actions that will be active at the skip point are started from their

corresponding points. The actors whose sleeping times have not expired are allowed to sleep

for the remaining time. For example, assume that student is watching discussion session (PAR2)

of the presentation and then first he decides to come to a point that he watched moments ago

by backwarding the presentation and then decides to skip to the point when fade-out transition

slide (S2) is displayed. Since the user initiated the backward presentation, the direction of the

presentation is backward when skip is requested. This skip point corresponds to the �\����� minute

of the presentation. If a skip is requested to the �,�\��� minute in the backward presentation, R10,

R11, R12, R13, R14, R15, R16, R17, R18, and R19 are set and the rest of the receivers are
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reset. Controllers C8, C9, C10, C11, C12, C13, and C14 are set and the rest of the controllers

are reset. Only containers MAIN and PAR1 and streams V2 and S2 will be active. The actor to

backward A1 is a sleeping actor.

B. Backward Presentation

If the direction of the presentation is modified, then receiver conditions, controllers, and actors

need to be updated. For example, if the direction is converted from forward to backward, the

events that have been received are assumed to have not been received and the events that would

have been received later should be set so that the earlier actions (in nominal presentation) can start

again. In our system, the event composition and other conditions for the backward presentation

are automatically derived from the declaration of the rules of the forward presentation. So, the

author does not have to consider the backward presentation, and this alleviates the specification of

the presentation substantially. Authors usually specify the relationships among streams for some

specific reasons. We call these reasons as author properties. Assume V and � are streams; T
is a container; and ���$1 and ����5 are events in a presentation. The author properties can be listed

as follows:

Author Property 1: Dependency If V participates in starting � , � can be used for back-

warding V . In this case, there is a dependency between V and � . If streams V and � are not

overlapping, dependency property is used.

Author Property 2: Master-Slave If V influences � and causes B to start or end, the author

considered V as a master stream over � . V should be master at this point in the backward

presentation. If V and � are overlapping, master-slave property is used.

Author Property 3: Hierarchy If T starts its elements, the end of its elements participates in

ending T in the backward presentation. A container ends when all elements are played.

Author Property 4: Co-occurrence If ( ���$1a�?�{����5 ) influences (��#�6BC	/� , their co-occurrence is

effective in the forward presentation. That is, the action will take place after both events are

signaled. The action should be terminated when one of the events is signaled in the backward

presentation. This corresponds to self-occurrence in the backward presentation.

Author Property 5: Self-occurrence If ( ���$1���������5 ) influences ($�#�6BC	/� , their self-occurrence is

effective in the forward presentation. That is, the action will take place after one of the events
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is signaled. The action should be terminated when both events are signaled in the backward

presentation. This corresponds to co-occurrence in the backward presentation.

Author Property 6: Realization V���SW�
($L0BD�,(,�6BC	/��! l - corresponds to the realization event of P.

P is an ascending number for a stream during forward presentation. In a video, it may correspond

to when frame P is displayed. If V���SW�
(�LcBD�,(,�6BC	/��! l - influences � in forward presentation, then

realization of l��{� is important for � in the backward presentation. If l represents time,

V���SW�
(�LcBD�,(,�6BC	/��! l - is used in the backward presentation.

The author property realization can be considered as an explicit declaration of master-slave

property. The author properties are used to convert forward synchronization rules based on

relations between events and actions in synchronization rules [4]. There is a conflict to backward

stream V if stream V participates as a slave in a relationship and a stream � is dependent on

stream V in another relationship. This conflict is resolved according to the order of precedence

of the author properties: 1)Realization, 2) Master-Slave, 3) Dependency, 4) Hierarchy, and 5)

Self-occurrence, Co-occurrence.

Master-slave rule is about simultaneous play of streams, and dependency is about in order

presentation of streams. Since dependency property is about the sequential presentation of

streams, it has a lower precedence than realization and master-slave properties. For example,

assume that shot transitions slide (S1) should be terminated by instructor audio (A1) according

to the master-slave property or by fade-out transition slide (S2) according to the dependency

property. This conflict is resolved by using master-slave rule over dependency rule. Hierarchy

property has lower precedence than master-slave and dependency properties. If a stream does

not participate in any master-slave or dependency properties, the hierarchy property needs to be

used. If the precedence of the properties is the same, one of the rules is chosen randomly to

backward the stream.

The use of time for overlapping streams causes ambiguity when backward presentation is

considered. For backward presentation, a time expression from the beginning of a presentation

must be converted to a time expression from the end of a presentation. If two streams are

overlapping, this ambiguity is resolved by using realization events. A more detailed explanation

of time management is covered in [4].
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Event Dual Action

InitPoint backward

EndPoint backend

TABLE IV

DUAL ACTIONS FOR EVENTS.

Action Dual Event

start InitPoint

end EndPoint

TABLE V

DUAL EVENTS FOR ACTIONS.

Action Dual Action

start backend

end backward

TABLE VI

DUAL ACTIONS FOR ACTIONS.

(B1) on USER(Backward) if direction=BACKWARD do backward(MAIN)

(B2) on PAR1(InitPoint) if direction=BACKWARD do backend(MAIN)

(B3) on (SEQ1(InitPoint) && A1(InitPoint) && S1(InitPoint)

&& S2(InitPoint)) if direction=BACKWARD do backend(PAR1)

(B4) on A1(Realization,5min) if direction=BACKWARD do backend(S1)

(B5) on V1(InitPoint) if direction=BACKWARD do backend(SEQ1,16min)

(B7) on V2(InitPoint) if direction=BACKWARD do backward(V1,2min)

(B8) on SEQ1(EndPoint) if direction=BACKWARD do backward(V2)

(B9) on PAR1(EndPoint) if direction=BACKWARD do backward(A1,4min)

backward(SEQ1)

backward(S1,9min)

backward(S2,1min)

(B10) on PAR2(InitPoint) if direction=BACKWARD do backward(PAR1)

(B11) on (V3(InitPoint) && A2(InitPoint)

&& V4(InitPoint) if direction=BACKWARD do backend(PAR2)

(B12a) on V3(Realization,5min) if direction=BACKWARD do backend(V4)

(B12b)on V3(Realization,1min) if direction=BACKWARD do backend(A2)

(B13) on PAR2(EndPoint) if direction=BACKWARD do backward(A2)

backward(V3)

backward(V4)

(B14) on MAIN(EndPoint) if direction=BACKWARD do backward(PAR2)

Fig. 7. Backward synchronization rules.

June 15, 2005 DRAFT



JOURNAL OF TKDE, VOL. X, NO. X, OCTOBER 2003 17

C. Synchronization Rules for Backward Presentation

In SynchRuler, all the backward rules are unique since the basis of rule generation is the

forward rules and forward rules are not duplicates. The key factor in the number of rules is to

start and to end streams. The relationships among streams are used to start and end streams in

the backward presentation. However, if a stream does not interact with any other stream, that

stream is manipulated by its container. If the start of a stream occurs by a combination of events,

the backward rule is generated by using occurrence properties and order of precedence of author

properties. It is guaranteed that there is a rule to backward every stream.

In our model, events have dual actions (Table IV), actions have dual events (Table V), actions

have dual actions (Table VI), and conditions have dual conditions for the backward presentation.

In addition, realization events have dual realization events. The duality is required to convert

a forward synchronization rule into a backward synchronization rule. The dual actions for

InitPoint and EndPoint is backend and backward, respectively. In the backward presentation,

InitPoint and EndPoint events are signaled when backend and backward actions are performed,

respectively. The dual events for start and end actions are InitPoint and EndPoint, respectively.

The actions start and end have dual actions backend and backward, respectively. The dual event

for �;�6
\�
(*EF�JSW�
(�L0BC�\(*�6BD	���! l - is ���6
��
(*EF�JSW�
(�L0BC�,(,�6BD	���! l��F� - if P is specified in terms of stream

components (e.g. frame) rather than in terms of time. The condition (direction=BACKWARD)

is the dual condition for (direction=FORWARD).

Algorithm 1 Backward rule generation for simple rules
generateBackward(F,B)

IN: Z is a forward rule

OUT: � is a backward rule

if Z =”on realization if condition do action” then

� = ”on dual(realization) if dual(condition) do dual(action)” // Realization

else if Z =”on master if condition do slave” then

� =”on master if dual(condition) do dual(slave)” // Master-Slave

else if Z =”on dependee if condition do dependent” then

� =”on dual(dependent) if dual(condition) do dual(dependee)” // Dependency or Hierarchy

end if
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The algorithm to generate backward rules from forward rules is given in Algorithm 1. The

dual function takes the dual of its input and returns event, condition, or action depending on

where it exists in the synchronization rule. Fig. 7 depicts the backward synchronization rules

that are generated for the synchronization rules given in Fig. 4. The synchronization rule F1

declares what to do when the user starts the presentation. The corresponding rule for the

backward presentation, B1, determines what to do when the user backwards the presentation

from the end. For USER(Start) event in F1, there is USER(Backward) event in B1. The action

is backward(MAIN) in B1 for start(MAIN) action in F1.

The synchronization rule F2 has an InitPoint event and a start action. MAIN is the container of

PAR1, and the backward rule is generated using the hierarchy rule. The dual event for start action

is InitPoint. The event expression becomes PAR1(InitPoint). The dual action expression is back-

end(MAIN) for MAIN(InitPoint) event. All the condition expressions are direction=BACKWARD.

The corresponding backward rule for F2 is B2. The synchronization rule F5 also contains a

similar relationship but with time. Since V1 starts 16 minutes after the beginning of SEQ1 in

F5, the time is included in the action expression of B4 as backend(SEQ1,16min). We do not

provide more examples due to the space limitations.

IV. MODELING AND MODEL CHECKING

The most common methods for verification of finite-state concurrent systems are simulation,

testing, and deductive reasoning. It is not possible to consider all the cases in simulation and

testing. If there is a severe problem in the model, it may even be costly for the system to verify by

testing and simulation. The major advantage of model checking is that it is automatic and usually

fast. The counter examples are produced by the model checking tools. We believe the verification

of the specification must be performed with the synchronization model. Therefore, the author can

know whether the specification is proper to play as expected with the synchronization model. We

use PROMELA [13] as the specification language and SPIN [14] as the verification tool. These

tools are publicly available, and Linear Temporal Logic (LTL) formulas can be verified. The

representation of the synchronization model in PROMELA is explained in [5]. Model checking

consists of three phases: modeling, specification, and verification.
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A. Modeling

The streams and containers are the most important components to be modeled. In the modeling

phase, the model should be kept simple and avoid unnecessary details. Therefore, we make some

abstractions to ensure the correctness of the model. The abstraction is performed on the streams.

A container may enter four states. It is in IdlePoint state initially. Once started, a container

is at InitPoint state in which it starts its containers and streams. After the InitPoint state, a

container enters its RunPoint state and then enters enters IdlePoint state again. In the backward

presentation, the reverse path is followed. A stream is similar to a container. If a stream must

signal a realization event, a new state is added to RunPoint state per event [5].

The most difficult part in modeling is the modeling of time since PROMELA/SPIN does not

support time explicitly. We use three types of time expressions for specification: minimal time,

precise time, and media time. For example, the duration of V2 is 3 minutes. When V2 ends, the

minimal time for the presentation of V2 is at least 3 minutes. We may also conclude that the total

minimal time is 24 minutes since the beginning of the presentation. In our model, precise time

is implemented by using guard conditions. For example, V4 cannot start until A2 starts. When

A2 starts, the elapsed time since the beginning of V3 is 1 minute. The minimal and precise

times do not give information about the progress of streams. A stream updates its media time

as it starts, ends, and plays. When it starts, its media time is 0. When it ends, its media time is

its duration. If V2 has no realization event as in Fig. 4, V2 has only one RunPoint state (one

interval). The interval for RunPoint state is (0,3min). We get the time values by Oe�;� n BD�%��BJEP�
and O��;� n (,hX��BDEP� functions. For example, V2 has 3 RunPoint states for SMIL expression in

Fig. 8: “after V2 starts but before S2 starts”, “after S2 starts but before S2 ends”, and “after S2

ends”. Three intervals for 3 RunPoint states are (0,1min), (1min,2min), and (2min, 3min).

B. Specification

Specification consists of the properties that a model should satisfy once the model enters

some specific states. There are two basic properties that should be checked: safety properties

and liveness properties. Safety properties assert that the system may not enter an undesired

state. Liveness properties on the other hand assure that system executes as expected. Liveness

includes the progress, fairness, reachability, and termination of a process [5]. Linear Temporal

Logic formulas are properties of paths rather than properties of states. Therefore, an LTL formula
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Property Name Properties LTL Formulas

1 Active-Start Stream A can be started if it is already active. (undesirable) �����Q�����
2 Idle-Terminate Stream A can be terminated if it is already idle. (undesirable) ���G�������
3 Forward-Play Stream A is played �W�G�����*���
4 Backward-Play Stream A is played in the backward presentation �N�G���������

TABLE VII

STREAM PROPERTIES.

Property Name Properties LTL Formulas

5 Allen-Before Stream A is before stream B �N�G�����a�a�
6 Allen-Start Stream A starts with stream B �N�G�����a�
7 Allen-End Stream A ends with stream B �N�G���� ��
8 Allen-Equal Stream A is equal to stream B �N�G�����������G���� ��0�
9 Allen-Meet Stream B starts when stream A ends �N�G�������
10 Allen-During Stream B is during stream A �N�G�����N�G�������G ¡���*���0�
11 Allen-Overlap Stream B overlaps stream A ¢£���N�G�¤���*�a�¦¥��W�G F���*���0�

TABLE VIII

ALLEN’S TEMPORAL PROPERTIES.

is interpreted with respect to a fixed path. The operators §�!K¨ , and © correspond to globally,

eventually, and until, respectively.

Let l 8 �;�6
\�
(*E`V x��%BJ�Yª��'(,�'� , « 8 �;�6
��
(*E`V ¬=�R[�ª��'(,�'� , S 8 ���6
��
(*E`V x$[�L��/ª��'(,�'� , ª 8
�;�6
\�
(*E`V S4���­ª��'(,�'� , ® 8 �;�6
\�
(*EP� x��RB��Yª¯�'(,�'� , ° 8 ���6
��
(*EP� ¬=�H[$ª��'(,�'� , and

n 8 �;�6
\�
(*EP� x$[$Lc�/ª��'(,�'� . The properties and corresponding LTL formulas for streams are pre-

sented in Table VII. Once it is ensured that streams play, further checks can be performed based

on the relationships among streams. Based on Allen’s temporal relationships, the properties and

the corresponding LTL formulas are listed in Table VIII. The properties and the corresponding

LTL formulas for the backward presentation are listed in Table IX.

In [20], some properties between two consecutive user interactions based on time are verified.

For example, pause operation for a stream may be performed within � seconds after the start of

the presentation where
w :g�d:±[ and [ is the duration of the stream. In a distributed system,
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Property Name Properties LTL Formulas

12 Backward-After Stream A is after stream B �N�G�����Q���0�
13 Backward-Backward Stream A is backwarded with stream B �N�G���� e�
14 Backward-End Stream A ends with stream B �N�G�����a�
15 Backward-Equal Stream A is equal to stream B �N�G���� ¡���W�G�����a�0�
16 Backward-Meet Stream A is backwarded when stream B ends �X�G�����a�
17 Backward-During Stream B is during stream A �N�G�����N�G F���W�G�����*���0�
18 Backward-Overlap Stream B overlaps stream A ¢£���N�G�����*���²¥����G�����* ��0�

TABLE IX

BACKWARD TEMPORAL PROPERTIES.

Property Name Properties LTL Formulas

19 Time-Before Stream A is ³ seconds before stream B �N�G�´�~�N�G���3³.µG¶¦·'¸R¹'º�»#µ"³�µ�¹'º��0�
20 Time-Start Start Stream B starts ³ seconds after stream A starts �N�G�����N�G�¼�½³�µ�¶²·'¸R¹Yº/»#µ"³.µG¹'º\�0�
21 Time-End Start Stream B ends ³ seconds after stream A starts �N�G�����X�G ¦�½³.µG¶²·Y¸R¹'º/»#µ"³.µG¹Yº��0�
22 Time-End End Stream B ends ³ seconds after stream A ends �X�G�����X�G ¦�f³.µG¶¦·'¸R¹'º/»#µG³�µG¹Yº��0�
23 Time-After Stream A is backwarded ³ seconds after stream B �X�G�v���X�G�U�½³�µ�¶²·'¸R¹Yº/»#µ"³.µG¹'º\�0�
24 Time-Backend Stream A ends ³ seconds after stream B ends �N�G�����N�G�=�½³�µ�¶²·'¸R¹Yº/»#µ"³.µG¹'º\�0�
25 Time-Backward Stream A is backwarded ³ seconds after stream B is backwarded �N�G F���N�G�U�½³.µG¶¦·'¸R¹'º�»#µ"³�µ�¹'º��0�
26 Time-Backward Stream A ends ³ seconds after stream B is backwarded �N�G ¾���X�G�=�½³�µG¶¦·'¸R¹Yº/»#µ"³.µG¹'º��0�

TABLE X

TIME PROPERTIES.

these constraints cannot be satisfied due to the possible delay of data. We only check time to

verify the relationships among streams. For example, we would like to check V2 starts 2 minutes

after V1 ends. The time when V1 ends and V2 starts are �71 and �65 , respectively. We need to check

�c�6BJEP�� j�65#+ � �6BDEP�� �b1Y+ 8?8 �,- when V2 starts. This is added as �6BDEP�
T�	/�H[*BJ�6BD	�� in the formulas.

The properties and corresponding LTL formulas for time relationships are given for both forward

and backward presentation in Table X.

By using the previous properties, we can check the absolute temporal properties. How-

ever, checking absolute temporal properties does not guarantee that streams have made enough

progress. For example, we may check whether the classroom audio (A2) starts 1 minute after
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Property Name Properties LTL Formulas

27 Progress-Start Stream A starts at ³ seconds progress of stream B �N�G����¿;ÀM�GÁ3Â�³c�0�
28 Progress-End Stream A ends at ³ seconds progress of stream B �N�G����¿;ÀM�GÁ3Â.³c�0�
29 Progress-Backward Stream A is backwarded at ³ seconds progress of stream B �X�G����¿�ÀY�GÁ½Â.³0�0�
30 Progress-Backend Stream A ends in the backward direction at ³ seconds progress of stream B �N�G����¿�ÀY�GÁ½ÂÃ³c�0�

TABLE XI

PROGRESS PROPERTIES.

the instructor video (V3) starts but we cannot check whether V3 has made enough progress.

Allen’s temporal intervals can be checked by comparison of the beginning and the ending of

streams. We need to use media time of streams to check the progress of streams. The progress

condition is only satisfied when �c�6BDEP� 8?8 O��;� n BD���QBJEP���DÄ��,-'�?�W�6BJEP� 8?8 O��;� n (,hX��BDEP���JÄ��,-M- .
Let �X�\���)!M�Y- denote that � minutes of stream � is played by using the progress condition. The

properties and corresponding LTL formulas for progress relationships are given for both forward

and backward presentation in Table XI.

For a multimedia presentation, the states of streams should be reachable in the backward

presentation if and only if these states are reachable in the forward presentation. We call this

property as backward consistency of a presentation, and term such a presentation as a backward

consistent presentation. If we show the existence of a state that is not reachable in the forward

(backward) presentation while it is reachable in the backward (forward) presentation, it is not

backward consistent. It is not possible to specify a single LTL formula to check the backward

consistency. We need to identify the states that are reachable in the forward presentation. So,

the property is stated as two fold (Table XII). The number of states that need to be checked isÅ E ��Æ where m is the number of states that a stream may enter and n is the number of streams.

V. EVALUATION OF RULES AND AUTHOR GUIDE

Our system provides forward and backward synchronization rules, and allows the author to

perform verification tests based on LTL. There are two levels of managing rules: basic and

advanced. If the original SMIL specification is correct, there is almost nothing to be done in

basic rule management. Advanced rule management is about fine details of the synchronization

rules. During our tests, we have used the following guide to reach a correct presentation.
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Property Name Properties LTL Formulas

If the state is not reachable in the forward presentation then Ç)¢ ÈD³�ÉK³.·
31 Backward-Compatibility It is possible to reach the state in the backward presentation ��ÈC³�É#³0· ,

else

It is not possible to reach the state in the backward presentation ÇI¢ ÈD³.É#³.·
TABLE XII

COMPATIBILITY PROPERTIES.

A. Basic Evaluation

There are two phases of evaluation of the rules. In the first phase, the validity of the forward

presentation rules are checked.

1. Check forward synchronization rules first. It is an important mistake to start with checking

the validity of the backward rules before checking the validity of forward rules since backward

rules depend on the forward rules.

2. Check stream properties. Before checking temporal properties like “a stream starts before

another stream”, it is better to guarantee that the streams are actually played.

3. Check temporal interval properties. It depends on the author to check which properties

satisfy the requirements of the specification. For example, if we want to see whether S2 is

displayed with V2 or not, we use Allen-During during property and LTL formula.

4. Divide and conquer unsatisfied properties. If an LTL property is not satisfied, it is im-

portant to pinpoint the original source of the problem although SPIN provides an instance of

a contradiction. For example, when we test Allen-During property, SPIN reports a presentation

instance where fade-out transition slide (S2) starts and ends earlier than sample transitions video

(V2). This property is not satisfied due to possible delay in V2.

5. Link the dependent streams. If a stream A is dependent on another stream B (i.e., its start

or ending depends on another stream), the start of stream A should be initiated by stream B.

For example, S2 is dependent on V2, so the start of S2 should depend on V2 rather than S1. By

using Time-Start property, we can check whether S2 starts 1 minute after the beginning of V2

or ends 1 minute before the end of V2. The presentation in Fig. 4 does not satisfy that S2 starts

1 minute after V2 starts. The rule F6 is converted to ”on V2(InitPoint) if direction=FORWARD
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do start (S2,1min)”.

6. Check the progress of streams. The temporal properties may be equivalent to the progress

properties in lossless presentations. For example, S2 should start 1 minute after V2 starts, but

is 1 minute portion of V2 played when S2 starts? This can be checked with Progress-Start

properties in Table XI.

7. Use realization events whenever possible instead of temporal relations. If two streams are

not overlapping, realization events cannot be used. However, if two streams overlap, there is

a higher possibility of using realization events. If the progress properties of a stream are not

satisfied , then realization event can be used. For example, the rule F6 is further converted to

”on V2(Realization,1min) if direction=FORWARD do start (S2)”. The best way to solve the

synchronized ending of S2 with V2 is also to use a realization event (V2(Realization,2min)).

8. Regenerate SMIL expression. Most of the synchronization rules can be expressed by using

SMIL. It is important to have the SMIL specification as correct as possible. Our system has the

support to convert master-slave properties by realization events. The author has to decide whether

his updates could be specified with SMIL expression or not. If his updates could be specified

with SMIL, it is better if the author updates the original SMIL expression. Fig. 8 depicts the

updated SMIL expression.

8. Regenerate the rules from SMIL. In this case, the forward synchronization rules are more

consistent. If there is any missing correction, the corresponding rule is updated.

9. Check the backward synchronization rules. At this level, we apply similar steps as in forward

presentation: check stream and temporal properties, divide and conquer unsatisfied properties,

link dependents of streams, and check the progress of streams.

B. Advanced Evaluation

In most cases, the basic evaluation of the rules is enough for SMIL-based presentations. Even

though the forward synchronization and backward synchronization rules are consistent, the author

may like to update, insert, or delete rules.

1) Rule Updates: In the previous section, we have explained examples of updating syn-

chronization rules (like linking dependent streams). An update on a synchronization rule may

require the update of the event expression and action expression. The possible issues with event

expression are unnecessary events, missing events, and composition of events. If the SMIL
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: seq >
: par endsync="last" >
: seq >
: audio id="A1" src="Instructor.au"/ >
: video id="V2" src="SampleTransitions.mpg" begin ="id(A1)2min"/ >
: /seq >
: video id="V1" src="SampleVideo.mpg" begin ="id(A1)16min" end="id(A1)19min"/ >
: img id="S1" src="Transitions.gif" begin ="id(A1)(5min)" end="id(A1)15min"

dur="10min"/ >
: img id="S2" src="FadeOut.gif" begin ="id(V2)(1min)" end="id(V2)(2min)"

dur="1min"/ >
: /par >
: par >
: video id="V3" src="Instructor.mpg" dur="20min"/ >
: video id="V4" src="Student.mpg" begin="id(V3)(5min)" dur="15min"/ >
: audio id="A2" src="Classroom.au" begin="id(V3)(1min)" dur="19min"/ >
: /par >
: /seq >

Fig. 8. The new SMIL expression.

specification has been done properly, the problem of unnecessary and missing events will not

exist. Even though the composition of events are correct, the author may still need to change

the composition of rules either to introduce more flexibility or to make the rule more strict. A

flexible rule has a more chance to be triggered than a strict rule. A strict rule can be converted

into a flexible rule by 1) removing events from AND compositions, 2) inserting events into OR

compositions, and 3) replacing AND compositions with OR compositions. In a similar fashion,

a flexible rule can be converted into a strict rule by 1) inserting events into AND compositions,

2) removing events from OR compositions, and 3) replacing OR compositions with AND

compositions. Thre are 8 possible ways of composing 3 events (V3(InitPoint), V4(InitPoint), and
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A2(InitPoint)) of rule B11. Our system chooses AND composition (strict rule) by default. The

author may convert this strict rule to a flexible rule by using OR Compositions. For example, it

can be converted as on (V3(InitPoint) ��� A2(InitPoint) ��� V4(InitPoint)) if direction=BACKWARD

do backend(PAR2)”.

In the event expression of Rule B11, the parallel container ascertains that all of its elements

finish before its end. However, Rule B12a and B12b ensures the termination of V4 and A2 by

a realization event. If the user checks backward LTL formulas for V3, V4, and A2, it is noted

that V4 and A2 is terminated earlier. Rule B11 can be made flexible by ignoring V4(InitPoint)

and A2(InitPoint) from the event expression as ”on V3(InitPoint) if direction=BACKWARD do

backend(PAR2)”. In this case, it is still equivalent to the original expression.

2) Rule Deletion: Especially, there might be streams that are terminated by other streams to

support backward compatibility. If the author is not interested in backward compatibility at all

levels, he may remove some of the rules. For example, rules B12a and B12b terminate streams

V4 and A3, respectively. If the user thinks that terminating V4 and A2 by realization event is

strict and deletes those rules, he allows V4 and A2 to be played even if there is a delay.

3) Rule Insertion: The rules are generated for starting and ending streams. For the backward

rules, the streams are only terminated (backend) if there are master-slave and realization proper-

ties. In other cases, the streams are allowed for their presentation. For example, there is no rule

to terminate (backend) V2. If the author really requires the termination of V2 in the backward

presentation, he could use the following rule: ”on S2(InitPoint) if direction=BACKWARD do

backend(V2,1min)”.

VI. EXPERIMENTS

In our system, the author must specify a multimedia specification in SMIL or using syn-

chronization rules. In our environment, only SMIL components that are used by the system are

supported. The rest of the properties of the SMIL 1.0 and SMIL 2.0 can be added later. We have

implemented a program that takes SMIL expressions and generate the forward synchronization

rules. Once the forward synchronization rules are extracted, backward rules are generated. Our

real examples are usually composed of audio/video associated with slides. The NetMedia [29]

system is used as a testbed for our synchronization model. Besides being a synchronization

model, SynchRuler synchronizes the author with the synchronization model. SynchRuler has
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helped us reduce the number of incorrect specifications while increasing the number of correct

presentations. The author is able to provide a desirable and controlled flexibility when multimedia

presentations are created.

The complexity of model checking especially depends on the type of containers and LTL

property that is verified. There are three factors that affect the performance of the verification:

the number of streams, the structure of the presentation, and the property to be verified. The

structure of a presentation is related with the sequential and parallel presentation of streams. For

example, sequential presentation with 3 streams corresponds to playing 3 streams back to back,

and a parallel presentation with 3 streams corresponds to playing 3 streams in parallel.

We first investigated the complexity of the number of streams in parallel and sequential

presentations (Table XIII). Only safety properties are checked for these presentations. In Table

XIII, there is no increase in terms of time with respect to the number of streams in sequential

presentations. We also tested sequential presentation with 100 streams. The time elapsed to verify

safety properties for 100 sequential streams is 0.12 seconds. This shows that the verification can

be completed within in a tenths of a second for sequential presentations. The depth, states, and

transitions increase linearly with the number of streams for sequential presentations. When a

new stream is added into the sequential presentation, there are phases where the new stream

starts, plays, ends, and becomes idle. The complexity of the running time and the number of

states and transitions is ] �cE`�­- where n is the number streams in the sequential presentation

and E is the number of states a stream may enter. In these experiments, E is 4.

If the number of streams that are played in parallel is less than 7, the verification is completed

within a second. In fact, this is equivalent to the limit on the number of tracks available

for a presentation. In realistic examples, mostly the number of tracks is limited by 3. For a

parallel presentation, there are more combinations of playing streams. The number of possible

presentations for n streams that have m states is

x%����!MEÊ- 8 ���%EÊ-7Ë
��E�Ë}- � y

This explains the steep increase in running time, memory, states, transitions, and depth. Nev-

ertheless, the running time is still within a second for 6 tracks. Although the number of tracks

looks like 3 for the presentation in Fig. 2, the number of parallel streams that can be played by
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PAR1 is 4. S1 and S2 can be played in parallel since they are components of a parallel container.

Presentation # Streams Depth States Transitions Memory (Mbyte) Time (in seconds)

single 1 4 5 5 1.5 0.03

sequential 2 12 13 13 1.5 0.03

sequential 3 20 21 21 1.5 0.03

sequential 4 28 29 29 1.5 0.03

sequential 5 36 37 37 1.5 0.03

sequential 6 44 45 45 1.5 0.03

sequential 7 52 53 53 1.5 0.03

sequential 8 60 61 61 1.5 0.03

sequential 9 68 69 69 1.5 0.03

parallel 2 16 51 93 1.5 0.03

parallel 3 21 151 388 1.5 0.03

parallel 4 26 539 1835 1.5 0.06

parallel 5 31 2079 8754 1.7 0.18

parallel 6 36 8227 41017 2.4 0.71

parallel 7 41 32807 188480 6.0 3.96

parallel 8 46 131115 852039 20.8 16.50

parallel 9 51 524335 3.8* Ì�ÍMÎ 2.8 84.80

TABLE XIII

EXPERIMENTS BASED ON THE STRUCTURE OF PRESENTATIONS.

We also checked the time elapsed for the verification of LTL properties for sample presenta-

tions. Our goal is to identify the cost of verification of LTL properties. Table XIV lists the elapsed

time for a sample presentation (Fig. 8). All verification properties except during and overlap

are completed within a second. Actually, the time for overlap is far more than we expected. It

depends on the complexity of the LTL formulas specified for the overlap property. If the overlap

property is divided into 2 parts (similar to the before property), it can be verified within a second.

Except for the overlap property, the verification time for safety properties gives an upper bound

on the verification of the properties. These results consider the non-progress cycles and other

possible errors. Verification of properties takes less time than verification of safety properties

since only a specific condition is checked in the model. The verification of a property can be

completed without checking all states if the property is satisfied in early stages of the verification.
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Time (in seconds)

Play Stream 0.03

Before 0.16

Start 0.06

End 0.06

Equal 0.01

Meet 0.65

During 1.14

Overlap 21.78

Time Condition 0.11

Progress Condition 0.07

TABLE XIV

VERIFICATION OF PROPERTIES FOR A SAMPLE PRESENTATION.

VII. CONCLUSION AND FUTURE WORK

Previous verification techniques focused on the correctness on the specification and did not

question the synchronization model. We believe our work will pioneer in the evaluation of a

specification with the synchronization model for multimedia systems. Our work promotes the

standardization of properties for multimedia presentations. Model checking technique allows to

check the correctness of a specification for a synchronization model. In the future, multimedia

presentation systems will be able to answer the question whether presentations can be played

properly in a specified environment. This helps authors choose another system or improve their

specification. The major limitation of SPIN is not being able to support time explicitly. The

properties and LTL formulas to be verified may need to be updated according to the application.
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