Multimedia Tools and Applications, September 2004, Volume 24, Issue 1, pp 29-56. The final publication is
available at at Springer via http://dx.doi.org/10.1023/B:MTAP.0000033982.50288.14.

Modeling and Management of Fuzzy Information in Multimedia
Database Applications

Ramazan Savag Aygiin and Adnan Yazici

Dept. of Computer Science and Engineering Dept. of Computer Engineering
State University of New York at Buffalo Middle East Technical University
Buffalo, NY, USA Ankara, TURKEY

Abstract

In this paper, we firstly present a conceptual data model for multimedia database applications
based on ExIFOy model. The ExIFO, data model is chosen as the conceptual model since it
handles complex objects along with their uncertain and imprecise properties. We enhanced
this conceptual model in order to meet the multimedia data requirements. In addition to
uncertain and imprecise information, we present a way of handling relationships among objects
of multimedia database applications. Events that might be extracted from video or audio are
also considered in this study. Secondly, the conceptual model is mapped to a logical model,
which the fuzzy object-oriented data (FOOD) model is chosen, for storing and manipulating the
multimedia objects. This mapping is done in a way that it preserves most of the information
represented at the conceptual level. Finally, in this study videos of football (soccer) games is
selected as the multimedia database application to show how we handle crisp and fuzzy querying
and retrieval of fuzzy and crisp data from the database. A program has been developed to draw
ExIFQ2 schemas and to map the schema to FOOD code automatically.

1 Introduction

In recent years, management of multimedia information has been the focus of many applications
such as video on-demand services, digital libraries, museums, on-line shopping and document man-
agement. These applications require development and design of new databases where the multi-
media data is the resource. Multimedia databases are expected to fulfill the requirements of users
for efficiently and flexibly developing and managing multimedia applications. The development of
multimedia database systems is composed of three levels as in traditional databases. These three
levels are conceptual level, logical level and physical level.

The design of multimedia databases differs from that of traditional databases due to the char-
acteristics of multimedia objects, such as image, graphics, audio, and video. As pointed out in
[9], one of the challenging issues that multimedia database researchers have to face is the develop-

ment of conceptual models for multimedia information especially for video, audio, and image. The

raygun
Text Box
Multimedia Tools and Applications, September 2004, Volume 24, Issue 1, pp 29-56. The final publication is available at at Springer via http://dx.doi.org/10.1023/B:MTAP.0000033982.50288.14.

conceptual model should be rich in its semantic capabilities to represent complex media objects.
Following the conceptual data model, transformation from the model to a logical database schema
is required for storing and manipulating these objects.

Until now, many conceptual approaches are proposed to model complex data [5, 12, 17, 22]
at conceptual level. Since the conceptual models were developed for domain-specific applications,
further steps should be taken to enhance conceptual models to represent the complexity and re-
quirements of multimedia objects. There have been a number of attempts to develop conceptual
models for representation of multimedia objects. In [9], these models were classified into several
categories; graphical models, Petri-Net based models, and object-oriented models.

It is not always possible to describe all the semantics of real world information precisely, since
the observation and capturing of some real world objects are not perfect, hence its modeling and
representation are deficient. Uncertainty might arise from the data itself and/or the relations
between multimedia objects. For instance, attributes of an image such as color, description of an
object and spatial relations between objects may be interpreted in various ways. As a consequence
of these, queries involving imprecise and uncertain information may be unavoidable. Consider the

following queries:
e Q1: ”Find all hand images of pre-teen males that are abnormal’
e Q2: ”"Retrieve images that have colors similar to a sunset photograph”.
e Q3: ”Retrieve all facial images with a short round chin and thin hair”
e Q4: "Retrieve an object partially-surrounded-by a little of object A”

e Q5: ”"Retrieve videos of all goals scored by Shearer very near to the goalpost”

Q1 is an example query in a medical image database. In Q1, pre-teen and abnormal are fuzzy
templates. In Q2, similar-to is a fuzzy operator, which has to employ similarity matching. Q3 is a
query for facial image database in which short round and thin are fuzzy concepts. Q4 is an example
for Geographic Information Systems that contains fuzzy concepts such as partially-surrounded-by
and fuzzy quantifier little. Q5 is an example of query that might be needed in a video. Here near
is a fuzzy concept and very is a fuzzy modifier. If these kinds of uncertain, imprecise, and fuzzy
information are forced to be precise, then there might be some loss of information. Uncertainty in

databases has been studied by many researchers such as [15, 23].

However, there has not been much research on the development of conceptual models which
deal with uncertainty for multimedia databases. In this study, the conceptual model that we
present for multimedia database applications is based on ExIFOy data model. ExIFOq [22] is
a fuzzy object-oriented conceptual data model that includes representation of fuzzy information
and handles object-oriented concepts. This model attempts to preserve the acquired strengths
of semantic approaches, while integrating concepts of the object-oriented paradigm and fuzziness.
ExIFO5 model supports uncertainty at attribute level as well as the class level. It includes three
types of uncertainty at the attribute level: fuzzy, incomplete and null valued attributes. After
constructing a data model for multimedia database applications, we also show how the ExIFO,
schema is mapped to the object-oriented data model, FOOD [24, 23].

One of the main focuses of this study is conceptual modeling of media where the multimedia
objects are presented. In this study, conceptual modeling of audio, video and image is performed.
Another focus is the modeling of relationships among objects in multimedia data. These relation-
ships can be either spatial in an image or real-life relationships (roles) which might not be extracted
automatically from the video. Modeling of mapping from real objects to multimedia objects is also
performed. We also designed events that might take place in a video/audio since most of the
applications require querying according to the events.

As a multimedia application, we have chosen videos of football (soccer) games. The developed
conceptual model is appropriately adapted to this application. Then the conceptual model is
mapped to FOOD [24]. A user interface is prepared for querying the database. A program which
enables drawing of ExIFOs schemas and enables querying on videos of football games is built. The
user can draw and modify ExIFOy and map the schema to FOOD code if he/she desires. The user
can perform both crisp and fuzzy queries.

This paper is organized as follows: The following section discusses uncertainty and object-
oriented databases. In section 3, multimedia database applications and issues are explained briefly.
In Section 4, conceptual data modeling of multimedia database applications along with ExIFO,
is explained and then its application for a multimedia database application, videos of football, is
presented in Section 5. Section 6 describes how the mapping is performed from ExIFO, model to

FOOD model. The querying process is presented in Section 7. The last section concludes our work.

2 Uncertainty and Object-Oriented Databases

The management of uncertainty in database environment is necessary in application areas such as
multimedia databases, engineering applications, decision problems, control systems, and knowledge
based systems. Most of the studies on fuzzy databases are developed by either using or extending
the ordinary relational models. There are only few studies to handle uncertainty and fuzziness
under object-oriented databases [24, 15]. Fuzzy and uncertain object-oriented databases support
rich semantic expressiveness.

According to fuzzy set theory, each element has a membership to a fuzzy set that it belongs
to. Membership values lay in the range [0,1]. If the membership value is high, it is more likely
to be member of the set and if it is low, it is less likely to be member of the set. The functions
which determine the membership values of elements to sets are called membership functions. The
notation for expressing membership of element x to set A is denoted as p4(z). The relationships
between fuzzy sets are investigated in [25].

The similarity-based fuzzy object-oriented data model (FOOD) [24] facilitates the enhanced
representation of different types of imprecision. Similarity relation has the basic characteristics
of the similarity relations that are contained in [25]. In FOOD, similarity relation allows impre-
ciseness in data to be presented and imprecision in data results in uncertainty in classifications.
The similarity relation is both a generalization of equivalence and an extension of the degree of
membership concept for set elements. Here the domain elements are considered as having a varying
degree of similarity, replacing the idea of exact equality /inequality. Each database domain, D, has
an associated similarity relationship (represented as a matrix) that assigns a value between 0 (zero)
and 1 (one) (including 0 and 1) to each pair of domain elements. That is, the membership grades
are not associated with individual data items (as it is for fuzzy membership values) but with entire
classes. In this model, a similarity matrix is kept for each fuzzy attribute to declare the similarity
between the values under the corresponding domain. For example, if the attribute is color, then
the contents of similarity matrix are the similarity of colors and similarity among these values are

in the range [0,1].

2.1 Attribute Level Uncertainty

In the FOOD model, three types of uncertainty are distinguished at the attribute level, fuzzy,

incomplete, and null.
2.1.1 Fuzzy Attributes

Fuzziness exists when true data is available in descriptive terms rather than as a precise data. These
imprecise values can be related to each other with AND, OR, and XOR semantics. By using AND
semantics, the book of a color can be represented with <red, blue> , i.e., the color of the book
consists of two colors, red and blue”. In fuzzy sense we may interpret this as, one of the colors is
red (or a very similar to red, i.e., redish) and the other is more or less blue. By using OR semantics,
the face expression of a person can be represented with {worried, sad}, i.e., "the expression of his
face may be worried or sad.” In fuzzy sense the expression of the face is vague, either worried or
sad or another expression similar to these. By using XOR semantics, a kick in a football game can
be represented with [free kick, indirect kick], i.e., "the kick is either free kick or indirect kick, but
not both”. There is an uncertainty involved here since one cannot always distinguish whether the
kick is a free kick or indirect kick, but only one of them must be chosen for each specific kick.

The database should allow queries including both fuzzy and precise values. Therefore, in the
database, if the data is acquired in precise form then it is kept exactly. Fuzzifying the precise
data and storing the fuzzy value would cause loss of information. In contrast, ignoring fuzzy value
in absence of precise data would also cause loss of information. Comparison of fuzzy and precise
values is handled by membership functions. Each value of a fuzzy attribute has a corresponding
membership function. For example, the domain of height is {short, normal, tall}. The membership
degrees of a precise height value (e.g., 1.75 cm) are calculated for each of short, normal and tall.

Queries might also include threshold values to restrict the objects to be selected. If the threshold
is high, only objects which are the most similar are retrieved. Decreasing threshold causes additional
retrieval of objects.

The inclusion formula yields the similarity between two imprecise values. The inclusion value
differs as the semantics between the values change. The computation of inclusion formulas for

AND, OR, and XOR semantics has been explained in [24].

2.1.2 Incomplete and Null-valued attributes

Another type of uncertainty is incompleteness which occurs when true data may belong to a specific
set of values. For example, in a movie, the main character has the same attributes as a person. He
has a name, age, etc. But we might not know the exact age of this person. Instead, we can predict
his age as a range such as between 25 and 35. The last type of uncertainty at the attribute level is
null. If an attribute’s type is null, this can imply one of the following: the attribute’s value does
not exist or it exists but its value is not known or it is not even known whether the attribute’s value
exists. Consider an example of an event that takes place in video. We might have no information if
the event has a reason or not, or we might know that the event has no specific reason or the event
has a reason but we might have no information about what it is. The computation of inclusion

formulas for incomplete and null-valued attributes is explained in [22].
2.2 Class/Object Level Uncertainty

The second level of uncertainty exists on the object and class levels. This uncertainty represents
the membership degree of an object to a class. For example, in an image database which contains
landscape images, all images can be classified into three classes: forest landscapes, sea landscapes
and urban landscapes. The image of a village which is by the sea and next to a forest can be an
object of all the landscape image classes with different membership degrees. If we consider only
the color histogram of the image, we can assign a different membership degree ([0,1]) to each of
the classes according to dominating colors. The computation of inclusion formulas for class/object

level has been given in [24].
2.3 Class/Subclass Level Uncertainty

The degree of membership of a class to its superclass can vary. For example, class video-insects can
be subclass of video-winged-animals with a membership degree in [0,1]. This type of membership
introduces the notion of fuzzy classes. There may exist uncertainty also between a class and its
subclasses. It is not always possible to construct class hierarchy precisely because of the conceptual
distance between the class and its subclass. Fuzziness can be used at the class/subclass level
and the system can be queried according to this uncertainty. The system can answer queries about
membership of classes to its superclasses such as ”To what extent a class belongs to its superclass?”.

The membership degree of a class to its superclass can be determined by using the range definitions

of classes as in object/class level. The detailed explanation of the computation of the inclusion

formula exists in [22].

3 Multimedia Database Applications

Multimedia Objects (MOBs) are usually complex objects composed of other objects that can also
be complex. The object-oriented model is one of the best models to express the object hierarchies.
MOBs are audio-visual in nature [13]. This results in imprecise and incomplete description of
MOBs and subjective interpretation of the users. This is the case of MOBs where uncertainty and
fuzziness needs to be embedded. It is clear that the user has no idea about how MOBs are stored in
the database. The language that the user uses to retrieve multimedia objects or data might consist
of uncertain, incomplete, and fuzzy expressions. MOBs are multidimensional and hierarchically
structured, and can have some relations among them. Temporal relation is related to the time
that objects become active. Some of the basic temporal relations can be stated as during, before,
overlapping, meet, etc. The spatial relation is related to the distribution of the objects in space.
Some of the basic spatial relations are left of, behind, inside, etc. These two types of relations are
expected to exist in multimedia databases to handle content-based retrieval.

Most research on media focused on image, video, and audio. Video is a sequence of images.
Each image in a video is called a video frame. Video has both temporal and spatial behavior. Video
has temporal behavior in the sense that image sequences of the video should be displayed in order
and in some dedicated time. Audio has temporal behavior in the sense that it should be played
in order and in some dedicated time. Audio/Video is combination of audio and video where it
might be necessary to play video and audio in harmony. A video clip is a subset of the sequence of
images that form the video such that it has meaning and events that can be defined. The number
of video frames does not have to be constant and events can be extracted from variable number of
sequential images. An audio clip is some partition of the audio and it has the same characteristics
as described above for a video clip. We assume that each video clip has a corresponding audio clip.
An audio clip can also be empty, that is, it does not exist or can not be played.

In [7], a graphical data model for video data which supports spatio-temporal semantics is pro-
posed. Video is composed of clips, sequences of frames. Each clip is partitioned into segments.

Image data model is described as a scheme for representing objects in images, their visual and ge-

ometric characteristics such as color, texture, spatial and topological relationships between objects
and semantics associations such as aggregation, generalization/specialization among objects [11].
Yang and Wu [20] developed a semantic image database on top of the IFO [1] conceptual data
model to describe inner structure and contents of images. OVID [14] is a prototype video-object
database system. OVID offers schemaless description of database, interval inclusion inheritance,
and composition of video-objects based on IS-A hierarchy. In [2], a way of organizing and structur-
ing video data to facilitate queries is described. There are two concepts which needs to be retrieved
from the queries: entities and video frames. Entities can be video objects which are present in video
frames or activities which are subjects in the sequence of video frames. Events can be considered as
instantiation of activities with objects that take part in the activity. Events can be distinguished
from each other with the objects involved in them. Roles are descriptions of activities and team
is the set of all objects/descriptions that jointly describe an event. Fuzzy queries in multimedia
database systems have been studied in [8]. Only one uncertainty of attribute level (fuzzy) has been
allowed and the comparison of values at different levels of uncertainty has not been considered.
Data model should enable relationships such as PART-OF and IS-A relationships. PART-OF
relation simplifies the management of complex objects and IS-A relation handles the class hierarchy.
In addition to above, SIMILAR-TO relationship which enables imprecise matching objects is an
important relationship that should be incorporated in a multimedia database management systems.
A spatio-temporal semantic model for multimedia database systems using augmented transition
networks (ATN) has been proposed in [6]. The temporal layout and spatial layout of multimedia
objects are represented with multimedia strings. In [7], the user can define his or her own view
of the database in an object-oriented way. There are three types of objects the user should deal
with: conceptual spatial object (e.g., sitting), conceptual temporal object (e.g., walking, slam-
dunk) and physical objects (e.g., persons, trees, houses). In [19], the scenario, events in the context
of a multimedia application, consists of the actions that take part in multimedia application and
the response of the applications to the events. The conceptual modeling of multimedia database
applications using ExIFOs model has been studied in [4]. The different levels of uncertainty has

been modeled for multimedia objects.

4 Conceptual Data Modeling of Multimedia Database Applica-
tions

In this section, a conceptual data model for multimedia database applications is built using ExIFO,
data model [22]. The EXIFO; model is a formally defined conceptual database model that com-
prises a rich set of high-level primitives for database design. More formally, an EXIFOs scheme
is a directed graph with various types of vertices and directed edges, representing atomic objects,
constructed objects, fragments and ISA-relationships. Since the formal definitions of EXIFO2 com-
ponents are given in [24, 21], we only briefly summarize the related important concepts here.
Atomic objects are the basis of any IFO schema and involve three types: printable, abstract and
free. Printable objects correspond to objects of predefined types that serve as the basis for input and
output. Abstract objects correspond typically to objects in the real world that have no underlying
structure. The third type of atomic object is called free, and corresponds to entities obtained via
the "ISA” relationship. Constructed objects are composed of underlying object representations by

a finite set of grouping or aggregation constructors.
4.1 Using ExIFO, for Multimedia Database Applications

In this study, we utilize ExIFO, data model for conceptually modeling multimedia database appli-
cations. Rather than considering every type of media, we concentrate on video, image, and audio.
Video has both temporal and spatial behaviors, image has spatial behavior and audio has only
temporal behavior. Our model is extensible and have the power of representing other structures
of multimedia applications. We include uncertain and incomplete information as well as fuzzy
classes. In the following subsections, how to handle types, constructors and fragments of ExIFO,
data model and some additional constructors to form complex objects from multimedia data are

discussed along with examples.
4.1.1 Types

There are three basic atomic types in ExIFOy data model: printable, free, and abstract. The file
format, such as bitmap, gif, of an image can be considered as printable type. The image can be an
abstract type. The video frame is an example of a free type in the model. The representations of
these types are depicted in Figure 1 (a).

To handle uncertainty at the attribute level, there are three types: incomplete-valued, null-

< O ® ®

File Format Image Video Frame Why When
(a) (b)

Figure 1: (a) Basic Atomic Types (b) Uncertain Atomic Types

valued, and fuzzy-valued. The reason(why) for an event can be null-valued, whereas the time(when)

of the event can be fuzzy-valued (Figure 1 (b)).
4.1.2 Constructors

Two of the constructors that exist in ExIFOy data model are aggregation and grouping. These
constructors are also used in modeling multimedia data. For instance, aggregation constructor is
utilized in combining image attributes such as image title, format, width and height (e.g., ”Ferrari”,
bitmap, 256, 256) as in Figure 2 (a). These attributes can be extended according to the requirements
of the multimedia application. A set of images that constitute all pictures of a certain automobile,
e.g., Ferrari, can be handled by grouping constructor.

Video Clip

@ Object Collection @ Video Frames
‘ - ‘ ‘ ‘ ‘ - ‘ ‘ . ‘ . Object VideoFrame
Title Format ~ Width Heigth

(a) (b) (c)

Figure 2: (a) Aggregation Constructor (b) Collection Constructor (c) Sequence Contructor

Composition and collection constructors require exclusivity in aggregation and grouping respec-
tively. The composition constructor can be used when components of an object (e.g. image id
number) can be uniquely identified. On the other hand, the collection constructor can be utilized
to group the objects in an image (e.g., in a picture of a computer on a table, computer and table
are two objects grouped using collection constructor) (Figure 2 (b)).

In addition to these constructors, a new constructor is used to improve the modeling power for
multimedia applications. This is the sequence [18] constructor that is modified version of aggregation
constructor and includes the chronological order of the constituents. For instance, a video clip is
segmented into video frames. There exists a temporal relation between each video frame. A wvideo

clip is composed of an ordered sequence of video frames with respect to time (Figure 2 (c)).

10

4.1.3 Fragments

The types in ExIFO5 data model can be linked by using functions called fragments. The goal of the
fragment is to describe the properties of the principal types. The functions can be total function,
partial function, complez-total function and complez-partial function. In our data model, fragments
handle relations among the objects in an image. An object might have more than one relation
with more than one object (e.g. an object may have two neighbors, left-of and right-of). Thus we
used total, complez-total and complez-partial functions. Each object in an image must have some
properties (total function) (e.g. color, texture). The object may have zero or more relationships
with other objects (complex partial function). Lastly, a relation may consist of one or more objects

(complez-total function) (Figure 5 (b)).
4.1.4 ISA Relationships

The last structural component of the ExIFOs model is the representation of ISA relationships
interpreted in two ways as specialization and generalization. We use these relationships in the same
manner as it is used in [22]. We use a specialization link to map objects in an image to the real
objects (e.g. Object has the same attributes with the ObjectTypel) (Figure 5 (b)). In this figure,
object is a free type and object types can be free or abstract. This is a restriction set by specialization

link property. According to the application, the types of object types are decided.
4.2 Modeling Multimedia Database Applications

In our modeling approach, a video is composed of name, description, pointer to raw data and
sequence of clips as depicted in Figure 3 (a). Clips are composition of audio and video clips which

are shown in Figure 3 (b).

Video

Events

Video @ e X
\i: Description ‘ ' ‘ ‘ . ‘ ‘ O ‘ ‘ O ‘
cnp Event Name Where When How Reason

|:| Pointer to Raw Data Audia Visual
Name Clip Clip Objects
Clips < > 2 >
(a) (b) (c)

Figure 3: (a) Video Components (b) Clips of a video (c) Event

11

Audio and video clips have starting and ending frames which can be used for synchronization
and temporal relationships. Events can be defined both for audio and video. In this work, we did
not list all of the attributes of video and audio, but these can be found in [10, 16]. An event consists
of objects that take part in an event, the reason(why), what, how, where and when it happened as
depicted in Figure 3 (c). ”John runs slowly in the forest to be healthy in the morning” is a possible
event in a video clip. Run corresponds to the action (what), in the forest denotes where the run
occurs, John represents the object, to be healthy denotes the reason for his run, slowly corresponds
to how fast he runs and in the morning represents when he runs. This event structure is similar to
the one in [2].

Audio clip is a sequence of audio frames. Each audio frame is a one-dimensional signal that has
frequency and amplitude as physical properties and title and keywords as description of the signal.

The schema of audio clip is depicted in Figure 4 (a).

Starting Ending
Frame Frame

Physical Description Q Video
ﬁo;@ @ ‘ \ Frame
LT I N4

Frequency Amplitude Title Keyword Q mege
(a) (b)

Figure 4: (a) Audio Clip (b) Video Frame

Each video clip is a sequence of video frames as shown in Figure 2 (c). The study done by
Y.F.Day et al. [7] also includes a model of video clips, which is somewhat similar to our approach.
In their work, each video clip is composed of segments. Each segment is distinguished from other
segments in the objects that they contain. The model that they propose represents a video clip in
the form of a directed graph. However, in our approach, clips are distinguished when a new event
starts. In this model, each clip has at least one event. Temporal relations among objects can be
retrieved according to starting and ending times of their clips. Video frame is an image and this is
depicted in Figure 4 (b).

Image has a collection of objects and physical properties about the attributes of the image and

12

features extracted from the image. Attributes are an aggregation of title, format, width and height

of the image. Features of an image are histogram, raw data, texture, and also fuzzy terture and

fuzzy color descriptions. The components of image are shown in Figure 5 (a).

Physical Properties

Relationships

Properties
Name Relation Type

Title

Pl
@ l:| ObJ'ectTypeQ GPED

ObjectType2 Object Type Name

Title Format Width Heigth Color Fuzzy Texture Histogran Raw Data
Texture Propertyl Property2 PropertyN

(a) (b)
Figure 5: (a) Image (b) Object

Objects can have minimum bounding rectangles for determining its location and spatial relation
with other objects in the image. Objects in a video are related to each other with a relation. A
relation keeps the object and the relation type with the corresponding objects. Relation type can be
spatial relation (e.g., object A is partially-surrounded by object B) or any other relation that might
exist such as family (e.g., A is father of B). Objects also have roles which might differ according to
the context. For example, in a video a person can be employee at his work during the day and a
husband after the work. Objects have dynamic properties that can change in various images. These
properties can be color, face expression, and state of the object. The types of these properties
can be fuzzy-valued, null-valued, incomplete-valued or printable depending on the application. An
object in the image is, in fact, a specialized version of a real time object such as person, animal,
staff. The components of an object are depicted in Figure 5 (b).

The result of conceptual modeling of multimedia database applications is represented as a
generic conceptual schema using the ExIFOs model and is shown in Figure 6. This conceptual
model does not handle all of the details related to all multimedia database applications. It only
gives the basics of conceptually modeling a multimedia database application. The model might
need to be extended for an application or some parts from the model may be removed for other
applications. Here we consider mapping from real objects to objects in multimedia application,
handling relationships among objects, and handling uncertainty as the crucial parts for conceptual

modeling. We use the sequence operator since there exists chronological order between the video

13

frames of a video and audio frames of audio as well as clips of audio/video.

/ = Description
=

Name Pointer to

Clips

Clip

x\/idm Ci” |:| |:|

Ending
Starting Frame
Frame

Video Frames

Objects Relationships

Properties

Texture Histogram Raw Data

Propertyl Property2 PropertyN Role
v Title Format Width Heigth Color Fuzzy
Texture
Obje‘“ypel: ObjectTypeD

ObjectType2 Object Type Name

Figure 6: The Schema for Multimedia Database Applications

5 A Multimedia Database Application:Videos of Football Games

There have been various multimedia database applications that our conceptual model can be ex-
ploited. Videos of films, news, or sport games are examples of these kind of applications. As an
example, in this study we have chosen a sport activity, football.

In this work, the domain of videos is a set of football games. In this section, the details of a
football game and the properties that should be extracted for a football game are stated along with
the conceptual model.

Each football game video has a name, a description, a pointer to raw data and a sequence of
clips. The schema of this part is shown in Figure 3 (a). The name is chosen as the pair of team

names since these are the basic keywords to have opinion about what the video is. For example,

14

if the game is played between England and Germany, the name of the video can be declared as
England-Germany.

The pointer to raw data is composed of the file name and the file location. This is needed when
the results of the queries are presented to the user. The description is usually application specific.
In our application, the description consists of the first team name, the second team name, the score
of the first team , the score of the second team, the number of audience, the stadium where the
game is played, the date of the game, the type of the game, the weather condition when the game
is played. Since the audience number might not be always known exactly, this attribute is denoted
with the incomplete constructor to state that the audience count lays in a range. The weather
condition has fuzzy values such as sunny, hot, rainy, cold, snowy etc. Since these values have some
degree of similarity, this attribute is denoted with the FuzzySet constructor. The type of the game
determines whether a game is a friendly, world cup, or cup final etc. The stadium and the date
of the game corresponds to the stadium where the game is played and the date when it is played,
respectively. The stadium, date, team names and team scores are represented with the printable

constructor. The description is depicted in Figure 7 (a).

Event Type /
(TyTej@) | [O][0]

Where When How Why

Description

TeamName: |:| |:| Air Condition Kick Kick_Reason,
TeamName2 Sadum Dae Match Type Event Goa_Save Bal_out Event Objects
TeamScore? Audience Event Event

(a) (b)

Figure 7: (a) Video Description (b) Football Event

A video is a sequence of clips, i.e., a video is partitioned into smaller parts and the video is
a sequence of these constituents. This is represented with the sequence operator. A clip has two
components: an audio clip and a video clip. A clip is a composition of these components since each
audio clip or video clip exists only once along the video. This part is shown in Figure 3 (b). An
audio clip is a sequence of audio frames and consists of events. In addition, it has starting and
ending frames. Since audio clip has at least one event, this is depicted using complez-total function.
Events are explained when a video clip is explained. An audio clip is a one-dimensional signal and

this is depicted with the specialization link. A signal is composed of its physical properties and

15

description. The physical properties are aggregation of frequency and amplitude. The description of
signal is aggregation of title of the signal and keywords. The audio clip of a video with its subparts
are shown in Figure 4 (a).

A video clip has also starting and ending frames. It is a sequence of video frames and a video
clip contains at least one event as in audio clip. Video clip is depicted in Figure 3 (b). Video frame
is an image and this is represented by using the specialization link. This specialization is shown in
Figure 5 (b).

An event has 5 components: the type of event, the time when the event happened, the place where
the event happened, the reason(why) for the event and how the event happened. There are five types
of events in our application: card event, kick event, ball_out event, goal_save and kick_reason event.
An event can be only one of these, so event types are depicted with the alternative constructor.
Each of these event types are represented with the FuzzySet type. Possible card events are yellow
card and red card. The card event has OR semantics. This means that a card event can be yellow
card, red card, or yellow card and red card. In a football game, a player can be booked with a yellow
card, or sent out of the game with a red card directly or he can be sent out of the game red card
following a yellow card. The kick event can be a free kick, indirect kick, or penalty. In kick event,
only one of these events are true and has XOR semantics. Because, a kick cannot be a free kick
and indirect kick at the same time. The ball out event can be out or touch . This event has also
XOR semantics. The goal save event has also XOR semantics since a player either scores or the
goalkeeper saves it. The reason for a kick in our application can be a foul. This type of event has
also XOR semantics. All these events have to be fuzzy in our application although at first sight
they seem to be crisp. For example, when the referee can whistle a kick, it is not always possible
to distinguish an indirect kick and free kick. This data should be kept as either indirect kick or free
kick. Otherwise, there is a loss of information if one of them is forced. Also, the user might not be
sure of the kick that he wants to watch. The reason and how the event happened are represented
with the null constructor. How attribute can be holding, pushing etc. in case of foul event. Foul
event is of type kick_reason event. The reason for a yellow card can be objection to referee. The
time and the place of the event are represented with the FuzzySet type. Closeness of the player
to goalpost can be a fuzzy term such as near, far etc. The time of a game with respect to the
beginning or end of a game can also be a fuzzy term. The event schema for football is shown in

Figure 7 (b).

16

An image has a collection of objects and has properties about the physical image. Physical
image is composed of attributes and features. Attributes of an image are title, format, width, and
height. Features are texture, fuzzy texture, histogram, raw data, and color. Color and fuzzy texture
are fuzzy attributes. The components of image are depicted in Figure 5 (a).

Each object in the image has a type, role and relations. Type determines the kind of the object
such as ball and player. The role determines object’s role in an event. Each object might have
relationships with other objects in the image. Since having a relationship is not a constraint, this
is depicted with the complex-partial function. Each relation has a relation type, relation name and
a related object. If there is a relation with another object, then the related object must exist.
Therefore, this is denoted with the complex-partial function. The relation type determines the type
of the relation. This can be spatial, action, family, etc. For example, Player A is in left-of Player
B is a relation of type spatial. Player A passes the ball to Player B is a relation of type action.

The components of the objects are shown in Figure5 (b).

Video Clip

Defender

Person
o
Ending Starting
Frame Frame v
Team Name _
Height é@ VideoFrames
Age

P'aye'

Video Frame
u u Events

—_Ball Control
ShotAccuracy Pas%\ggreﬁ'on Reactioncreawny ’ Image

Head Dribble

(a) (b)
Figure 8: (a) Defender Player (b) Video Clip

Objects are specializations of other types. In this application, possible objects are ball, player,
and goalpost. A player can be a defender player, a middle-field player, a forward player or a
goalkeeper. Each of these have some player properties: aggressiveness, heading, reaction, agility,
ball control, creativity, pass, dribble, shot power, shot accuracy, team name. The values of these
properties except team name are denoted with the FuzzySet type since there is no metric to calculate
these properties. The team name is represented with the printable type. Each of the defender,
middle-field, goal-keeper, and forward types have domains in which some of these properties are
essential. The schema for a defender player is shown in Figure 8 (a). Although a player can be e.g.,

a middle-field player with a some degree, he can also be a forward player with another membership

17

degree. In this case, class/object level fuzziness occurs. Video clips along with its subparts, events,
video frames, image, objects are shown in Figure 8 (b). The whole schema, for the video of football

games are shown in Figure 9. The details are ignored in this figure not to complicate it more.

Description

Name Pointer to

|:| |:| Air Condition

TeamName2 Sadium Dae Match Type

Cli TeamScorel -
P TeamScorepAudience

e

Starting Frame
Frame

e

Frame Ending
Frame

Video Frames

Audio Frame

Signa
Relationships

e <>

Physical Description Kick_Reasol
Properti Event Goal_Save Bal_out Event Obj
) Event Event
E % Attributes Featur
Frequency Amplitude Title Keyword ’ Obj
It Name

Title Format Width Heigth Color Fuzzy Texture Histogram Raw Data
Texture
Defender
Forward

Middle-Field

Physical Properties

Object Type

Figure 9: Schema of Videos of Football Games

6 The Mapping of the Conceptual Model into Logical Object-
Oriented Model (FOOD)

After building the conceptual data model, this model should be mapped to a logical model. In
this case, the logical model is chosen as fuzzy object-oriented data (FOOD) model. The types,
constructors, fragments, and ISA relationships that are used in the model should be appropriately
transformed.

There are four kinds of building blocks of an ExIFO4 schema: types, constructors, fragments
and ISA relationships. Aggregation, composition, grouping, collection, alternative and sequence
can be considered as complex constructors that have components. The types such as printable,

incomplete-valued, null-valued, and fuzzy-valued are simple types and are components of other types

18

or constructors. The free and abstract types might also have components through the fragments
associated with them. The ISA relationships are essential only between free and abstract types.
Components can be composed of constructors and types. Before going on details of transformation,
an initial class FUZZY is created in FOOD. This class has attributes for membership and methods
for determining class/subclass and class/object level uncertainty.

Before investigating the mapping process, it is better to revise the class structure. A class has
a name, a list of attributes with their types and a list of methods. A class has also a list of classes
that it inherits. A class is created for each of the constructors, aggregation, composition, grouping,
alternative, and sequence constructors. A class is also created for free and abstract types. For
constructors, attributes consist of its components. For free and abstract types, the attributes are
composed of the elements directed by the fragments. The methods for the class can be functions
to determine class/object level membership and class/subclass membership. There might be some
additional methods to check the consistency of the constructors. For example, for composition
constructor a class has a method to check exclusivity of its components. For the fragments of free
and abstract types, methods to check the consistency of the fragments are added. The classes to
inherit are determined by ISA relationships in case of free and abstract types. If a class includes an
attribute derived from fuzzy-valued, incomplete-valued, and null-valued constructor, the class also
inherits from class FUZZY. In case of grouping, collection, and sequence constructors, additional
data structures might be needed to check the properties of their components such as set, ordered
set properties.

The mapping is investigated in three parts. In the first part, the types that are components of
other constructors or components directed by the fragments of free and abstract types are stated.
These types are printable, fuzzy-valued, incomplete-valued, and null-valued. In the second part, the
mapping of constructors are stated. In the third part, the transformation of free and abstract types
is expressed briefly. The last part is isolated from the first part, since a class is created for these
types. It is separated from the second part, since these types have fragments and might have ISA
relationships associated with them.

The algorithm for generating classes for structures is presented in Figure 10 (a). The algorithm
for the generation of attributes from components directed by free or abstract types is shown in Figure
10 (b). TYPE corresponds to the type name in FOOD of ExIFO, type and NAME represents the

ExIFO9 type name.

19

create the class name
If constructor e{agagregation, composition, grouping, coliection, alfemative, sequence} then
create the atfributes of the class
else if constructor € {free, absiraci} then
create the atributes forthe components directed by the fragments of the type
endif
if constructor e {alfernative} then
create additional boolean attributes for each component
endif
If attributes are of type muliivaiued, incompletevaiued ar hulvaiued then
inherit from class FUZZY
endif
for each mukivaived, incompliefevaiued, or nuivalued attribute do
create the type definition for ranges and relevances
end foreach
define the ranges, relevances, semantics in the class constructar
if constructor & {composition, coflection) then
add a method to check exclusivity

endif
if constructor e {alternative} then - —

assign boolean atributes to false if the component is printable then
endif create attribute as TYPE NAME

else if the component is fuzzy-valued then
create attribute as multivalued<TY PE> NAME
else if the component is incomplete-valued then
create attribute as incompletevalued<TYPE> NAME
else if the component is null-valued then

if type e {freg, absiraci) then
check far I3A relationships
inherit from the class according to the type of ISA relationship
add a method to check the consistency of ragments

endif _ create attribute as nulivalued<TYPE> NAME

foreach mulfivaiued attribute do else if the component is a constructor or free or abstract then
create the similarity matrix create attribute as TNAME NAME

end foreach endif

Figure 10: Mapping algorithm for (a) constructors and free and abstract types (b) simple types.

6.1 Mapping of Types: Printable, Fuzzy-Valued, Incomplete-Valued and Null-
Valued
These are separated from the others since these have simple structure and are transformed as
attributes of classes. Each printable type has a name and a type name. For example, the file
format in Figure 1 (a) is a type having name fileformat and has a type name char * This type is
mapped to FOOD code as
char * fileformat

The type names can be types that previously exist such as int, float, etc. which correspond
to integer and real values, respectively. They can also be new type names that are derived from
previously existing type names such as string.

The types fuzzy-valued, incomplete-valued, and null-valued types have different structure since
they might have more than one value and include uncertainty and fuzziness. Template classes are
created for each of these types. These classes are multivalued, incompletevalued and nullvalued for
fuzzy-valued, incomplete-valued and null-valued, respectively. For example, when in Figure 1 (b)
is denoted as follows: if it has values of integers:

multivalued<int> when
The type when might have two types of values, integers and strings. Integer values correspond

to the exact time where as string values denotes fuzzy time. Some of fuzzy values for when are late,

20

early, etc. This type also supports semantics of the attribute. The incompletevalued has a range
for its values. The nullvalued type allows additional values such as unknown, does_not_exist, and
no_information.
6.2 Mapping of Constructors: Aggregation, Composition, Grouping, Collec-
tion, Alternative and Sequence

Each of these constructors has components. Aggregation, composition and alternative constructors
have multiple components whereas the others have single components. For each of these construc-
tors, a class is created. And the components are added to the class as attributes of the class. Class
name is composed of letter ”T” and the constructor name. The letter " T” represents that this
class is used as a type. If the constructor is alternative, additional boolean attributes are defined to
determine which component is the actual component. For composition and collection constructors
methods for checking exclusivity of elements are added. Grouping and collection types represent
set structure. A simple data structure can be built to represent sets. Sequence constructor can be
considered as an ordered set. If a constructor has a fuzzy-valued, incomplete-valued or null-valued
component, the generated class inherits from class FUZZY.

These constructors can also be components of other types. In these cases, their class name is

associated in front of its name as its type when creating as an attribute.
6.3 Mapping of Types: Free and Abstract

The classes for these types are created as in case of aggregation constructor. The only difference is
that the components which are directed by the fragments are added as the attributes of the class.
The fragments can be complez-total, total, complez-partial, and partial. To preserve the consistency
of the fragments, a function is added to the class. In addition, classes to inherit from exist and these
are represented with ISA relationships. According to the ISA relation type (i.e., generalization or
specialization) and the direction of the ISA relation, the class to inherit from is determined. The
free and abstract types can also be components of other types. In these cases, their class name is

associated in front of its name when creating as an attribute.
6.4 Creation of Ranges, Relevances, Semantics, and Similarity Matrices

If a class has attributes of type multivalued, nullvalued or incompletevalued attributes, then this

class has ranges, relevances and semantics for these attributes. Similarity matrices for the elements

21

in the ranges of multivalued attributes are also created. In this work relevances ranges, and se-
mantics are declared in the class constructor. The similarity matrix is defined out of the class

definition.

6.5 Sample Mappings from ExIFO, to FOOD

I ExiF02 Schoma BEE
File MaptoFOOD View Help
oo @@ ©| = —— [P
CEE $® @ —» — -] sl oo
<>\f\d8n ﬂ
l:l l:l e clips QdESI:leIIEm

name, filerame

clip %m‘
=) [I N R =1
teaml team? soorel|score? stadium detel matchiype audisnciaicandiion
videoc]

[LAET

Figure 11: User Interface for Drawing ExIFO; Schema

In this section, we only show the mapping of some portions of the ExIFO, schema developed
for videos of football games. The user interface for drawing ExIFO, schemas is shown in Figure
11. Firstly, the mapping of the event schema depicted in Figure 7 (b) will be given as an example.
The FOOD code for this abstract type is shown in Figure 12 (a).

The class name is generated as Tevents. The attributes of the class are eventtype, where, when,
how, why and objects. The types of when and where are defined as multivalued<int>. The values
of when and where can be both crisp and fuzzy. The types of how and why are generated as
nullvalued< AnsiString> since these attributes can take values corresponding to no information,
does not exist and unknown. AnsiString is a builtin type for strings. Since eventtype is depicted
with the alternative constructor, a new class will be generated for this attribute and its name will be
Teventtype. Objects are denoted with the collection constructor, so its type will be its class name.
There are two additional attributes related about the ranges and relevances of the class. The type
definitions for ranges and relevances are generated and the attributes are shown in the constructor

of the Tevents class. The type definitions will be stated later in this section. The corresponding

22

class Tevents : FUZZY
1
public:

Teventtype *eventtype;
multivalued<int> where;
multivalued<int> when?
nullvalued<Ansistring> how;
nullvalued<Ansistring> why:
Tobjects *objects;

Rangesevents Ranges:
RLVevents Relevance;

class Teventtypes : FUZZY |
public :

bool is_card;
bool is_ kick;
bool is_out;
bool is_goalsave;
bool is_kickreason;
multivalued<Ansiftring>
multivalued<aAnsiString>
multivalued<Ansiftring>
multivalued<aAnsiString>
multivalued<Ansiftring>
Teventtype () {

is card=false;

is kick=falsze;

i=s ocut=false;

is goalsave=false;

card;

kick;
kickreason;
out ;
goalsave;

is kickreason=false;

Tevents Ranges.card = "yellowcard, redcard”;
_ Ranges. kick = "freekick, indirectkick, penalty”;
eventtype = new Teventtype; " -
o . P Ranges.out = "out, throwin';
Ranges.Rangehow = "unk,dne,ni,head,holding™; = 1 o 1 .
Ranges.Rangereason = unk,dne,ni,holding,pushing,objection,ballcontrol”; anges.g?aksave R 7g2? ’T?Ye ’
Ranges.Rangewhere.lowerlimit = 07 Ranges. ic re‘?scn - ouLni
Ranges.Rangewhere.upperlimit = 60; RLchrd =0l
RIvkick = 0.1;

Ranges.Rangewhen.upperlimit 120;

Ranges.Rangewhen.lowerlimit = 0; RLvout = 0.1;

Relevance.RLVhow = 0.1 RIVgoalsave = 0.1
Relevance.RLVwhere = 0.1; RLvkickreason = 0.1;
Relevance.RLVwhen = 0.1; C?rd.semant}cs = "OR"
Relevance.RLVreason = 0.1; kick.semantics = "XOR";
where.semantics = "OR"; out.semantics = "XOR"
when.semantics = "OR"; goalzave.semantics = "XOR";

objects = new Tobjects: kickreason.semantics = "XOR";

(a) (b)

Figure 12: Codes for mapping of (a) abstract type (b) alternative constructor.

ranges and relevances are assigned to these attributes. The semantics of the attributes where and
when are also assigned in the constructor. The assignments are done in the constructor of the
class since these will be initial values for all of the objects. Instead, methods could be defined for
assignments of ranges, relevances, and semantics, but in this case the user should call these methods
after creation of the object. Since each event will have an event type and a set of objects, these
are created with the new command in the constructor. As the last point for this class declaration,
this class inherits from class FUZZY since it includes multivalued and nullvalued attributes.
Figure 12 (b) shows the FOOD code for the alternative constructor that is used for event type.
In this case, a boolean attribute for each component to determine which one of the event types is
true is added to the declaration. Alternative constructor requires only one of the components to be
true, i.e., they are mutually exclusive. In the constructor of the class, these are initially assigned
to false since none of the events is chosen when the object is created. When the event type is
defined, the corresponding boolean attribute will be transformed to true. The other attributes of
the class are declared as multivalued< AnsiString>. The values of ranges, relevances and semantics
are assigned in the constructor of the class. Assigning equal relevance values means that each

component has the same effect on determining membership of the object to the class.

23

typedef struct |
Ansiftring Pangehonr;
Insidtring Panoewby;

incompletevalued<int> Rangevheres ;

incompletevralued<int > Rangevhen;
} Pangesewents ;

typedef struct |
float Pangehor;
float Rangewbsy;
float Pangewhere;
float Pangewhen;
} PLWevents;

(=)

)

float kickmarrix[3]1[3] = {
{1.0,0.7,0.8},
{0.7,1.0,0_5},
{0.8,0.5,1_0},

IH

Ansiftring kickdomain[3]={"freckick",

"indirectkick", "penalty"} ;

(=)

class Tvideoframes

{
public:

class Tobjects
{
public:
Tobjectset *object;

Trideoframesequence *videoframe;
Tobjectsi{) |

Trideoframes{) { object= new Tobjectset;
videoframe = new Tvideoframesedquence; +i

Vi
Vi ’ bool check collection objects();

+i
G (2)

class Tclip
¢
class Tattributes public:
¢ Taudialclip *audialclip;
public: Tvideoclip *wideoclip;
int height;
int width;
i Ansistring format;
public: Ansiftring title;

class Tvideoframe : Timage Tclipi) |
audialelip = new Taudialelip:
videoclip = new Tvideoclip;
b
Tvideoframe () { Tattributes () {

i Vi bool check_composition clip():

()] (g (&Y

Figure 13: Mapping to FOOD (a) ranges (b) relevances (c) similarity matrix (d) sequence con-
structor (e) collection constructor (f) specialization (g) aggregation constructor (h) composition
constructor.

Figure 13 depicts mappings for ranges, relevances, similarity matriz, sequence, collection, spe-

cialization, aggregation, and composition.
7 Querying

The index structures have been built for events and the objects in the clips. The data structure
used for accessing the objects about the clips in which they appear is a simple sorted list of the
objects. Each object name is associated with the clips that they exist along with their roles. When
a user specifies a query, the system first checks if the object exists. If it exists, the clips that the
objects are seen are retrieved. Additionally, if the role of the object is set front as a constraint, the
clips are controlled along with this restriction.

A simple data structure is built to perform fast retrieval of events from the database. This is
a tree structure in which at the first level video names are branched. Then each video has five
branches where each branch corresponds to an event type. The events are ordered according to
time that they occur and have pointers to clips. When a user submits a query, the clips are firstly
retrieved from this tree with respect to event types and event times. This operation reduces the

number of clips to be checked at the first attempt. This structure also enables the fast retrieval

24

of events defined with a fuzzy time value as well as crisp value. When a user submits a query
including a fuzzy term with a threshold for the time of the event, firstly a function takes the fuzzy
term and threshold as input and returns the range of time to be retrieved as output. The events
which lay in this range are retrieved. In this application, we only performed indexing on fuzzy time
as an example for fuzzy terms but this can be extended also for other fuzzy terms.

The query construction has 3 components. It is composed of the selection of properties of video,
the selection of events and the selection of objects along with their properties. The querying process

is composed of the following steps:

e specification of video description properties(optional)
e specification of event properties (optional)

e specification of object properties (optional)

e retrieving clips by using the index structures

e comparing the information in clips with the rest of the attributes and elimination of non-

relevant clips
e presentation of query results

7.1 Query Construction

7.1.1 Querying for Video Description

At the first level of querying, the user can set up queries about video description. As mentioned
before, the video description consists of team names, team scores, air type, audience number, game
type, stadium, and date. The user might request videos of games which are played in stadium
?Parc de Prince” or played in ”June 20th of 1998”. The user can also determine the game type.
He can request the videos of ”World-Cup” or ”friendly” games. The user might want to watch
games played in a "rainy” or ”"sunny” weather. Since air condition is a fuzzy term, the user can
state a threshold for similarity. He might also be interested in the number of audience. As stated
before, the audience number lays in a range. The user can define the range of audience along with
a threshold. These are the opportunities given to the user for building queries. The user is usually

interested in the team names and team scores. The user can request games of England. In addition,

25

he can put a restriction that England plays against Germany. Besides stating the visitor team, he
can also specify a score and request games which England played against Germany and scored 3. If
the user is interested in number of goals of games, he might request games according to goal count

in the game. He can request ”all videos that many goals occur” or ”all videos that 2 goals occur”.
7.1.2 Querying for Event

After the user emphasizes restrictions about video description, the videos that do not fit user’s
declaration are directly eliminated by the above processing, and queries including further details
about events and objects are processed with the rest. For the videos retrieved, the event and
object information are controlled. Different indexing structures are kept for events and objects.
Only one of the structures is traversed when a query is submitted including object information
or event information. It is obvious that when information only about events is stated, then event
index structure is traversed and when information only about objects is stated, then object index
structure is traversed for the corresponding clips. When information for both of them is included,
it is burdensome to traverse both index structures, hence only one of them is searched. In this
application, the index structure that is traversed is chosen as the event index structure when
information is given both about events and objects.

After the number of videos to be retrieved is minimized, querying about events and objects
can be performed. In this application, the user can determine the events that he wants to watch.
The event types are fuzzy terms. Therefore, event types can have a threshold. As notified before,
each clip consists of events. The user’s focus is usually the clips that contain these events. The
user might request the goals or fouls of a game. Sometimes, the user might not be sure about the
event name such as yellow card or red card and he can state the event name with a comma such as
yellowcard, redcard. In these cases, the event type is extracted from the event name firstly. In this
occasion, the event type is card event. Since the semantics for card event is OR, this event name
would have been searched with conjunction along with the threshold. If the user had stated the
event name as free kick, indirect kick pair, the event type would be kick event. Since kick event
has XOR semantics, event name is searched according to XOR semantics with the corresponding
threshold. The user does not need to specify the event type semantics for event names. These are
extracted automatically by the program.

In the above case, only one event is defined. Clips contain at least one event, and the user could

26

define complex queries for clips. He can request ”clips that contain fouls and yellow card, red card”.
The user can define also how, why the event happened. ”Retrieve clips that contain fouls caused
by holding the player” is a sample query including how attribute. The time and the location of
the event are important in football games. The user can crisply state the event time such as 75th
minute. He can also state the event time using fuzzy terms. There are 6 fuzzy terms defined for
time, which are at the beginning of the game, at the mid of the first-half, at the end of the first half,
at the beginning of the second-half, at the mid of the second-half, and at the end of the game. The
user can request ”the goals which are scored at 85th minute”. The user can also request ”the goals
scored towards the end of the game” with a threshold. In this application, he can set up queries
including fuzzy terms and crisp terms for the same attribute such as ¢ime. The location can also be
defined crisply or using fuzzy terms. The user can request goals scored with a distance of 2 meters
to the goalpost. He can also set up a query "retrieve all goals scored near the goalpost”. ”"Retrieve
all goals scored near the goalpost from free kick towards the end of the game” is a sample complex

query for an event.
7.1.3 Querying for Object

Besides specifying constraints about events, the user can also declare object properties. Objects
have roles and relations with other objects in a clip. A player can be a scorer in one event or
he can be a performer of a free kick event in another event. In this sense, "retrieve all free kicks
performed by Shearer” or "retrieve all goals scored by Shearer” are sample queries. One of the
important objects in a game is the ball. The position of the ball with respect to goalpost when a
player scores might be important. This kind of relation is a spatial relation. There are 9 relation
names for the ball with respect to goalpost. These are left-bottom, middle-bottom, right-bottom,
left-middle, middle-middle, right-middle, left-top, middle-top, and right-top. These locations are
shown in Figure 14. Each of these relations has some degree of similarity among them. These
relation names can be stated with a threshold. ”Retrieve all goals scored to the left-top(0.8) of
the goalpost” is a sample query. The players can also have spatial relationships with other players
such as left-of and right of. ” Retrieve all goals by Shearer who scored the ball to the left-top of the
goalpost with his head towards the end of the game near the goalpost” is a complex query for an
object.

The properties about the players can also be stated. The player has a team name, height, age

27

Goalpost

@~

lefttop Middletop yight-top

left-middle Middie-middle right-middl

eft-bottom Middle-bottom rignt-potto

Figure 14: Spatial Relation

sedect clip s from football_database
where
description teamnamel = "England” avd description teamscorel = 2 and description teamname2 = "Germany”
aad description.matchtype = "Wotld-Cup™ and desaiption.stadium = "51d Trafford” esd desaiption audience = 50000-80000(0.5)

ad description.airtype = "sunny'(0.3) sed description. poalacunt = "many"(0.8) ead eventname = "poal”

and eventwhen="at the end of match"(0.9 e eventhew = "head™ and eventwhere = "near™ aud eventobjectlname = "ball”
aad event.object[1] relation = "left-top" (0.9) aad eventobject Lrelatedobjedt = "godbar™ aud eventobject[2]role = "scorer”

and event.object [Z].age = "young"(0.8) and event.object[2] height = "short"(0.8) and event.object [2] playertype = "middle-field"(0.8)

Figure 15: Sample Query

and player property. Height and age are fuzzy attributes. The player type has object/class level
of uncertainty. As mentioned before, the player can be a middle-field player and a forward player
with different degrees of membership. ”Retrieve all goals scored by young, tall, defender players” is
a sample query about player properties. Young, tall, and defender are fuzzy values. A very simple

query about a player is ”retrieve all clips in which Shearer exists”.
7.1.4 Querying for Event & Object

Finally, the following is a combination of the previously stated attributes that a user can specify:
"Retrieve all clips in which a young(0.8), short(0.8), and a middle-field(0.8) player scores the ball to
the left-top(0.9) of the goalpost with his head towards the end of the game(0.9) near the goal-post
in videos in which England scored 2 against Germany in a World Cup which 50000-60000(0.8)
audience watched the game in stadium ”Old Trafford” in a sunny(0.8) day and where many(0.8)
goals are scored”. This query can be expressed more formally as in Figure 15. The numbers in
the parenthesises next to fuzzy values are thresholds for the fuzzy attributes. If threshold is not
defined, it is assumed 1. If no condition had been specified, then all clips from selected videos

would have been retrieved.

7.2 Querying Process

The next step after the specification of information about events and objects, is the processing of

attributes of objects and events. The core part in the querying process is the comparison of the

28

attributes. Exact matching of crisp values either corresponds to checking the equality of values
or checking the membership of value to a class. If an attribute in the database object is fuzzy
and the corresponding attribute in the query is multivalued, a set of fuzzy values is created using
the similarity matrix and the threshold for the attribute. If the database object has a crisp value
and the corresponding attribute in the query is multivalued, the range values are computed for
the attribute. Both of these computations are done once for a query. The membership value
of the query object to the database object needs to be computed if an attribute in the query is
incomplete-valued. If the uncertainty is at class/object level, the membership of the query object
to the class is computed. Null-valued attributes are compared using the similarity matrix for

null-valued attributes. The detailed algorithm for comparisons of attributes is given in Figure 16.

elseif d, is crisp then
boolsan isCandidate(in g,in o) obtain RV according to g,andr,
/*q query object, & database object, F this is done once for the attribute =/
a eattribute set of g, if d, ¢ RV then
gy valueof aing, d, vaueof aind, lgnored=true;
#40,6) the membership of valus of ain g tovalue of ain d E_"d'f
1, threshold for & endif
FV: set of fuzzy values elseif q,is incompistevalued then
RV range values compute g, d)
ignored: hoolean whether o should be ignored if 2 ,0) < 2, then
v ignored=true,
endif
ignored=false; endif
if uncertainty is at attribute level then endif
foreach a do elseif g, is nuil-valuad
if G, is crisp then if g, e{no_inrformation, unknown, does_nof_exist}
perform exact matching retrieve using the similarity between uncertainty
elseif g, s muitivalued or Incompletevaiuad then else
if 7, 15 not defined then perform exact matching
perform exact matching endif
elseif -, is defined then end foreach
ifa,is mullivalued then elseif uncertainty is at class/object level then
if d, is fuzzy then compute the inclusion values for its class
create FV from the similarity matrix whose value = 1, compute the membership degree s,
/* this is done once for the attribute */ if 4, < =, then
ifd, ¢ FV then ignorad=true,
ignored=true; endif
endif endif
return (nof ignored)

Figure 16: Algorithm for comparison of imprecise values.

7.3 Experiments

After the user submits the query, the results of the query are presented to the user. The user can
see the information about the video, clips, events, and objects. The user can navigate through the
videos, the clips in a video, the events in a clip or the event objects. The user can play a clip by
selecting the clip or can play all the video (Figure 17).

The database update and insertion are more convenient than in traditional databases. The

main reason is that the user can enter data at any level of uncertainty. Whatever information that

29

IIL: Query Results

EEEE
10 N

Figure 17: Query Results

is available at the moment is entered and used in retrieval. For example, the kick events are entered
using XOR semantics when the kick event is not exactly known. The card events are entered with
OR semantics when the user is not sure of the card event. The distance information can be entered
with fuzzy terms without knowing the exact distance values. In a traditional database, the user has
to guess the distance value. Since the guessed distance is less likely to be the exact value, wrong
information is kept in a traditional database. The creation of our database is easier since the user
did not have to have the all exact information at the moment. The uncertain, imprecise, or fuzzy
attributes can be converted to crisp values when the exact values are ready.

The users query the database easier than that in traditional databases. Since they have no idea
on how the data is stored or actually what the type of data is, they are able to perform queries
using fuzzy terms. For a football game, only experts know the correct measures of the field. Since
users do not have idea of the actual distances of the field, it is hard for them to construct proper
queries. In a traditional database, the user would perform a range query for a distance. Since the
user does not need to know the actual distances in the field, he would perform a couple of queries
until he actually receives what he needs. In our prototype, we have fuzzy terms for distances like
very-close, close, far, and very-far. The user can use any of these fuzzy values without actually
knowing the actual distances in the field. The user does not have to worry about range queries
either since these parts are automatically performed by the query processor using fuzzy values.

The database consists of around 40 world cup and friendly games among national teams. The

30

performance of the prototype is not degraded by the fuzzy information. This has been detected
by performing separate queries for crisp values and fuzzy values. From the perspective of the user,
the system responded these queries at similar times. The major difference from traditional query
processing arises from the comparison of the attributes. For a fuzzy attribute, either the query or
the database object may contain fuzzy values. Whenever an attribute has a fuzzy value, a set of
fuzzy values are generated using the similarity matrix. Then fuzzy value is checked whether it is
in the set. If the value is crisp then range values are computed for the attribute. The values are
checked whether they are in the set or in the range. Both of the set and range computations are
done once for a query. Similar computation for incomplete-valued values is performed. Therefore,
the difference between traditional comparison and this one is that comparison of attributes having
fuzzy, multivalued or incomplete-valued attributes turns into range or set containment check. For
class/subclass level uncertainty, for each probable object (i.e., where the rest of the attributes fit to
the query), the membership to the class has to be computed. This membership computation can be
performed once and stored in the database. Therefore there will not be an additional computation

for class/subclass level uncertainty.

8 Conclusion

In this work, we presented an approach for designing multimedia database applications at the
conceptual level and the logical level. This work has three components. At the high level, the
conceptual modeling of multimedia database applications using ExIFO, data model is performed.
At the next level, this conceptual model is mapped to FOOD data model. At the low level, queries
and retrieval based on FOOD model are done. The user can request retrieval of objects having
fuzzy, uncertain values as well as the crisp values for the same attribute. The user can navigate
through the retrieved objects and can watch them if he desires. In our work, we modeled the
media where the multimedia objects are presented and the multimedia objects themselves. We
also modeled the multimedia objects and the relations between them. The ExIFO2 model presents
relationships of ISA type by generalization and specialization links and PART_OF relationships
by complex constructors such as grouping and aggregation. The user subjectivity is minimized by
keeping similarity matrices for fuzzy attributes. We can perform queries about spatial relationships

among objects. These queries include fuzzy values. A detailed conceptual modeling of imprecise

31

data for multimedia database applications has been provided in this paper. This model is mapped
into a logical model (FOOD) to show the applicability and the power of the model. The user is
allowed to submit queries having values at different levels of uncertainty. In this work, the queries on
temporal attributes such as time can be submitted. These queries include both uncertain and crisp
values. For future work, the temporal relationships such as before, after between the objects should
also be performed by comparison of clip starting and ending frames. In this paper, our goal is to
show incorporation and management of fuzzy data in multimedia database applications. Although
the performance in our prototype is sufficient, for large databases efficient indexing structures

should be used to increase the performance.

References

[1] S. Abiteboul, R. Hull, “IFO: A formal semantic database model,” ACM Transactions on
Database Systems, Vol.12, pp. 525-565, 1987

[2] S. Adali, S. Candan, S. Chen, K. Erol, S. Subrahmanian, “The advanced video information

systems: data structures and query processing,” Multimedia Systems, Vol.4, pp. 172-186, 1996

[3] M. Adiba, “STORM: an object-oriented multimedia DBMS,” Multimedia Database Systems,
pp. 47-88, 1996.

[4] S. Aygun, A. Yazici, and N. Arica, “Conceptual Data Modeling of Multimedia Database
Applications”, The proceedings of the 4th International Workshop on Multi-Media Database

Management Systems, pp. 182-189, Dayton, Ohio, August 1998

[5] M. Bouzeghoub, E. Mtais, “Semantic modeling of object-oriented databases,” In Proc. VLDB,
pp- 3-14, 1991

[6] S-C. Chen, R. L. Kashyap, “A spatio-temporal semantic model for multimedia database sys-
tems and multimedia information systems,” IEEE Trans. on Knowledge and Data Engineering,

Vol. 13, No. 4, July/August 2001

[7] Y. F. Day, S. Dagtas, M. Iino, A. Khokhar, A. Ghafoor. “Object-oriented conceptual modeling
of video data,” 11th Conf. on Data Engineering, Taiwan, March, 1995, pp:401-408

32

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Fagin, “Fuzzy queries in multimedia database systems,” Proc. 1998 ACM Symposium on

Principles of Database Systems, 1998 pp. 1-10

A. Ghafoor, “Special Issue on Multimedia Database Systems,” Multimedia Systems, Vol. 3(5-
6), pp. 179-181, 1995

S. Gibbs, C. Breiteneder, D. Tsichritzis, “Audio/Video databases: an object-oriented ap-
proach”, ICDE, 1993, pp. 381-390.

V. Gudivada, V. Raghavan, “Modeling and retrieving images by content,” Information Pro-

cessing & Processing. Vol. 333, No.4, pp. 427-452, 1997

P. Loucoupolous, R. Zicari, Conceptual modeling, databases and CASE: an integrated view of

information systems development, Wiley Professional Computing, 1992.
A. D. Narasimhalu, “Multimedia databases,” Multimedia Systems, Vol. 4, pp. 226-249, 1996

E. Oomoto, K. Tanaka, “OVID: design and implementation of a video object database system,”
IEEE Transactions on Knowledge Data Eng., 1993, Vol. 5, pp. 629-643

F. Petry, Fuzzy Databases, Principles and Applications, Kluwer Academic Publishers, Boston
(USA), 1996

G. Schloss, M. Wynblatt, “Providing definition and temporal structure for multimedia data,”
Multimedia Systems, Vol. 3, pp. 264-277, 1995

C. Sernadas, J. Fiadeiro, “Towards object-oriented conceptual modeling,” Data & Knowledge

Engineering, Vol. 6, pp. 479-508, 1991

M. Teisseire, P. Poncelet, R. Cicchetti, “Towards event-driven modelling for database design,”

In Proc. of the 20th VLDB Conference, Santiago, Chile, 1994, pp. 285-196

M. Vazirgiannis, ”Multimedia Data Base Object and Application Modeling Issues and an
Object-Oriented Model,” in the book ”Multimedia Database Systems: Design and Implemen-
tation Strategies ” (editors Kingsley C. Nwosu, Bhavani Thuraisingham and P. Bruce Berra),

Kluwer Academic Publishers, 1996, pp. 208-250

33

[20] L. Yang, J. Wu, “Towards a semantic image database system,” Data & Knowledge Engineering,

Vol. 22, pp. 207-227, 1997

[21] Yazici, A., B. P.Buckles, F.E. Petry, "Handling Complex and Uncertain Information in the
ExIFO and NF2 Data Models,” IEEE Trans. on Fuzzy Systems, Vol. 7, No. 6, December 1999

[22] A. Yazici, A. Cinar, “Conceptual modeling for the design of fuzzy OO databases,” Knowledge
Management in Fuzzy Databases, Edited By O. Pons, A. Vila and J. Kacprzyk, Physica-
Verlag, Heidelberg and New York, Vol 39., pp: 12-35, 2000

[23] A. Yazici, R. George, Fuzzy Database Modeling, Physica-Verlag, Heidelberg, 1999

[24] A. Yazici, R. George, D. Aksoy. Design and Implementation Issues in the Fuzzy Object-
Oriented Data Model, Information Sciences Vol. 108/1-4, pp. 241-260, 1998

[25] L. A. Zadeh, “Similarity relations and fuzzy orderings,” Information Sciences, Vol.3, No.2:

177-200, 1971

34

