
GPU Based Robust Image Registration for
Composite Translational, Rotational and Scale

Transformations
Semih Dinc

Department of Computer Science
University of Alabama in Huntsville

Huntsville, AL USA
sd0016@uah.edu

Ramazan S. Aygun
Department of Computer Science

University of Alabama in Huntsville
Huntsville, AL USA

aygunr@uah.edu

Farbod Fahimi
Mechanical and Aerospace Engineering

University of Alabama in Huntsville
Huntsville, AL USA

ff0002@uah.edu

Abstract—This paper presents a GPU based image registration
algorithm that utilizes Hough Transform and Least Square
Optimization to calculate the transformation between two images.
In our approach, we calculate the transformation parameters of
all possible combination solutions of matched feature points by
exploiting parallel processing power of the GPU. We applied
our algorithm on a variety of images including the problem of
mosaic image generation. Experimental results show that our
method is robust to the outliers (incorrect matches) and it can
achieve very accurate registration (numeric and visual) results
with much faster (up to 20 times) than CPU implementation.

Keywords-Image Registration, GPU Programming, CUDA,
Hough Transform, Least Squares Optimization

I. INTRODUCTION

Image registration is the process of aligning multiple images
using distinctive visual features of the images [1]. It is com-
monly used in many applications such as medical imaging,
geospatial visualization or mosaic image generation and in
the literature, there are a large number of image registration
studies [2] [3] having different perspectives. All these CPU
based methods suffer from the trade-off between speed and
accuracy, since extracting and matching image features is
not a trivial task to complete. Moreover, these algorithms
are generally iterative and they cannot be parallelized di-
rectly. GPU architectures may provide better accuracy without
sacrificing the speed. There are a few image registration
studies using GPU based solutions. However, most of these
studies are limited to a problem domain or do not support
significant transformations. Kubias et al. [4] studied the 2D/3D
image registration for only translation and rotation on X-Ray
like images. Kohn et al. [5] proposed both rigid and non-
rigid image registration system on medical images but the
registration accuracy is not provided in the paper. Sinha et al.
[6] proposed a GPU based feature tracking technique using
SIFT and KLT. In that paper, matching features are tracked
but image frames are not registered.

We propose an alternative GPU based image registration
technique using NVIDIA CUDA libraries [7]. Our system
computes the transformation by exhaustively checking all

possible combinations of matched feature points using the
parallel power of GPU and the Hough transform [8]. Since
feature points are processed exhaustively, our method supports
transformations with significant translation, scaling, or rota-
tion. Our experiments show significant speed-ups with respect
to CPU time while generating robust image registration results.

II. CALCULATION OF TRANSFORMATION PARAMETERS

Image registration requires determining a geometric trans-
formation including Translation, Rotation, and Scale, which
involves 4 parameters to calculate: tx, ty (translation), s
(scale), and θ (rotation) given in Equation (1), x′

y′

1

 =

 s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

 x
y
1

 (1)

where (x′, y′) is a pixel coordinate in original image and
(x, y) is the corresponding pixel in transformed image. When
4 transformation parameters are known, this transformation
matrix can be used to register moving image to the fixed image
space. Equation (1) can be solved by reorganizing its terms
such that all unknowns stay as a single vector T with the
coefficient matrix Q on one side of the equation, and constant
vector W stays on the other side (Eq. (2)). At least 2 pixel
matches are necessary to solve this system, since Q must be
non-singular.

W︷ ︸︸ ︷[
x′

y′

]
=

Q︷ ︸︸ ︷[
x −y 1 0
y x 0 1

]
T︷ ︸︸ ︷

s cos θ
s sin θ
tx
ty

 (2)

Solving all unknowns individually requires nonlinear calcu-
lations. In order to keep all computations linear, we assumed
the entries of T are our 4 unknowns because solving T is
sufficient to find the transformation. Based on these consid-
erations, if we rewrite Eq. (2) for the following unknowns as
a = s cos θ, b = s sin θ, c = tx, d = ty , and add the second
match to the equation, the final form of the equation becomes

raygun
Text Box
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The final published version is available at http://dx.doi.org/10.1109/ISM.2015.51.




x′1
y′1
x′2
y′2

 =


x1 −y1 1 0
y1 x1 0 1
x2 −y2 1 0
y2 x2 0 1



a
b
c
d

 (3)

The equation can be solved using any technique as long as
Q has full rank. We prefer Least Squares Optimization (LSO)
because it is simple and effective method. LSO is independent
from the number of matches in the equation and robust to
uniform or Gaussian noise on pixel coordinates. Equation (4)
shows the calculation of the T vector using least squares.

T = (Q′Q)−1(Q′W ) (4)

When T is calculated, the original transformation parame-
ters can be obtained. c and d are assigned to tx and ty , respec-
tively. s and θ are obtained using the following calculations:
s =
√
a2 + b2 and θ = atan2(b/a).

III. GPU BASED ROBUST IMAGE MATCHING

LSO may be negatively affected in the presence of incorrect
matches (outliers). Feature extraction techniques (such as
SIFT) usually extract outliers, which may cause a failure in the
calculations. In the literature, RANSAC [9] like methods are
preferred to eliminate the outliers, however, they are mostly
CPU based solutions and our experiments showed that using
such methods still may not be accurate enough. To solve
this problem, we propose a robust approach that calculates
all possible solutions and searches for a common solution in
the solution space. This method is an exhaustive approach
following the idea of Hough transform, which transforms the
problem into the parameter space and searches for a common
solution. As mentioned earlier, this idea may not be practical
for CPU implementation but can be a good solution for GPU
implementation.

A. Method

Assume that N matching features are extracted using SIFT
descriptor. Since only 2 matches are needed to solve un-
knowns, we can choose all possible combinations of 2 matches
out of N . So there will be M =

(
N
2

)
number of equation

systems, for which we solve 4 unknowns and store the results.
Our assumption is that the majority of matches are correct
and those will return correct solution. Actually, the majority
assumption can be relaxed further, and our method may work
even if the correct combinations are less than the half of the
matches but if they are the most popular. In this manner,
we can eliminate the incorrect matches that cannot agree on
a single solution. After all combinations are solved, correct
solutions will be closer to each other in the solution space
and incorrect solutions will be outliers. Finally, if we calculate
the histogram in 4 dimensional space and group the solutions
based on their distances, the most populated histogram bin
(with the most number of matches) will be the final solution
to the problem. In our experiments, we prefer the range of
[-500, 500] with 0.01 interval for the histogram bins of tx and

ty . Histogram for s is selected in [0, 3] range using 0.001
interval. And finally histogram for θ has [−π, π] range with
0.001 interval. The complexity of our solution is O(n2), where
n is the number of matches and the power 2 is related to the
number of combinations necessary.

B. GPU Implementation

In CUDA kernel, we employ two input matrices and one
output matrix as given in Figure 1. One CUDA thread is
assigned to one combination in the combination matrix that
stores the match indices. The thread loads the corresponding
matching pixels from the match matrix and calculates the
unknowns for that equation. Finally it stores the solution into
the corresponding index of the solution matrix.

Fig. 1. Pixel matches generated by SIFT

There are M =
(
N
2

)
number of solutions in the solution

matrix. Since the calculation of a solution is independent, the
equations can be solved simultaneously. The best solution is
determined by selecting the most populated bin center of the
solution histogram.

IV. EXPERIMENTS

A. Registration Results

1) Real Image Registration: Since our registration algo-
rithm calculates 4 transformation parameters (a rigid transform
of images), real images can be problematic due to perspective
or affine effect. For this reason, we captured images where
there is only rotation, translation, and scale. Figure 2 shows
the registration results. In the first example, two images are
registered where there is a significant rotation difference (about
45 degrees) and very minor translation and scale difference.
In the second example, two images are captured where there
is a significant scale and translation.

2) Application to Mosaic Image Generation: Our second
experiment is mosaic image generation. A mosaic image is
large composite view of an object or a scene, which is formed
by a collection of small images that partially covers the
object [10]. For the experiments, 3 synthetic video datasets
(having 50, 150 × 150 resolution frames) are generated. All



Fig. 2. Image registration for significant rotation (top row), for significant
translation and scale (bottom row)

3 transformations (translation, rotation, and scale) are applied
to subimages and then they are saved in the synthetic video.
In Figure 4, the first column shows the original images, while
the rest of images in each row are sample frames. In the first
dataset (painting), we performed a composite transformation
with significant amount of translation (0 to 400 pixels in x
and y directions), rotation (0 to π), and scale (1 to 0.5). In
the second dataset (shuttle), only translational transformations
(-150 to 150 pixels in x and y directions) are applied with
a circular motion on the original image. Finally, in the third
dataset (earth), significant translational (0 to 300 pixels in x, -
150 to 150 pixels in y direction) and scale (1 to 1.7) factors are
applied. Figure 3 shows the captured frames from the original
image in white rectangular regions.

Fig. 3. Generating video frames from 3 datasets. White rectangular windows
represent transformed frames on the synthetic videos

To generate the mosaic image, video frames are processed
in order, using our algorithm. A weighted averaging strategy
is used for overlapping pixels after registration. To evaluate
the accuracy, the mean of squared error (MSE) is calculated
for each transformation parameter and also the peak signal-
to-noise ratio (PSNR) is measured between the original and
the mosaic image. The results are compared with another
GPU based image registration method called imregdemons
provided in MATLAB (M-GPU). MSE results in Table I
show a significant improvement in the second dataset for all
parameters. In the first dataset, there is a good amount of
improvement in s and θ and slightly better results for tx and
ty . Finally in the third dataset, significant accuracy increase is
achieved for tx, ty , and s. M-GPU could not generate proper
mosaic for this dataset, since it made a transformation error
that propagated to the rest of the frames. In general, both

methods generate acceptable PSNR values, however, there is a
clear superiority of the proposed method over M-GPU on the
second dataset. Visual results of our method are also provided
in Figure 5 that shows no significant defect on the mosaic
images. In such applications, it is often unavoidable to lose
information (or quality) due to scaling up frames. Particularly,
this problem can be seen in the central regions of earth dataset,
where the frames need to be enlarged up to 1.7 times.

Fig. 5. First row shows the ground truth images and second row shows the
results of our algorithm.

TABLE I
MSE AND PSNR VALUES AND IMPROVEMENT RATIO OF THE PROPOSED

METHOD

etx ety es eθ PSNR

Proposed Painting 0.192 1.895 0.001 0.000 28.341
Method Shuttle 0.079 0.034 0.000 0.008 27.630

Earth 0.012 0.005 0.000 0.000 27.383
Painting 0.227 2.009 0.001 0.006 28.965

M-GPU Shuttle 0.777 0.168 0.015 0.035 22.984
Earth 0.057 0.073 0.005 0.005 27.891

Painting 15.1% 5.6% 92.2% 93.5% N/A
Imp(%) Shuttle 89.7% 79.31% 99.7% 97.9% N/A

Earth 79.2% 93.1% 97.6% -6.9% N/A

B. Performance Results

1) Processing Times: Total processing time of our algo-
rithm depends on feature extraction and image transformation,
while the complexity of M-GPU depends on directly image
size since it uses a hierarchical registration method without
feature extraction. In Table II, the processing time of two
methods are measured by examining 10 different sizes of the
same image pair from 326×245 (10%, 65 feature points) to
3264×2448 (100%, 1543 feature points). In the table feature
extraction times are not included, however, this stage can also
be done quite fast [11], in which it takes around 0.11 seconds
to extract 2500 features from a 1080p video frame. So, even if
feature extraction is included in timing, our method performs
significantly faster than M-GPU.



Fig. 4. A subset of all frames in our 3 datasets. First frames of the rows represent the original image and rest of them are transformed frames for that
dataset. In painting (first row), there is significant amount of rotation, translation and scale. In shuttle (second row), there is only translation. Finally in earth
(third row), there is significant translation and scale applied to the frames.

TABLE II
TOTAL PROCESSING TIMES OF THE PROPOSED METHOD AND M-GPU FOR

VARYING IMAGE SIZE (IN SECONDS)

10% 20% 40% 60% 80% 100%

Proposed* 0.043 0.044 0.048 0.053 0.061 0.072
M-GPU 1.727 2.208 3.998 6.842 10.402 15.213

* without feature extraction time.

2) CPU vs. GPU Implementation: In the GPU side of the
program, first data is transferred from RAM to GPU memory
and then kernel function is executed. After the execution is
done, results are sent back to the memory. We assigned 1
dimensional block of threads and 1 grid in the CUDA kernel.
The block size is assigned to 256, which is a proper value
for our hardware. In CUDA, we used “shared memory” and
“tiling” techniques to reduce the total data transfer time. A
sequential CPU version of our algorithm is also implemented
for a CPU vs GPU comparison. We ran the code on NVIDIA
GeForce 320M graphics card and Intel Core 2 Duo 2.4 GHz
CPU. According to the results in Table III, CPU runs faster
than GPU up to 160 matching features. After that point, GPU
becomes faster and the difference is getting larger as the
number of matching pixels gets larger.

TABLE III
CPU AND GPU PROCESSING TIMES DEPENDING ON THE NUMBER OF

FEATURES (IN MILLISECONDS)

#Features CPU (ms) GPU Total (ms) GPU Kernel (ms)

100 13.926 48.02 0.045
200 56.261 38.355 0.049
300 127.992 44.607 0.066
400 226.608 45.184 0.084
500 352.415 49.598 0.09
600 504.607 53.366 0.071
700 686.567 48.19 0.077
800 891.314 51.646 0.071

V. CONCLUSION AND FUTURE WORK

This paper presents a GPU based image registration method
using the idea of Hough transform to calculate the trans-
formation. Massively parallel execution capability of GPU
is exploited to solve the combinations of matching image
pixels extracted by SIFT descriptor. Our algorithm is applied
to real and synthetic images achieving high precision on
registration and much fast processing times compared to CPU.
As future work, we plan to enhance our method for affine and
perspective transformations.

REFERENCES

[1] Richard Szeliski, Computer Vision: Algorithms and Applications,
Springer-Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[2] Lisa Gottesfeld Brown, “A Survey of Image Registration Techniques,”
ACM Comput. Surv., vol. 24, no. 4, pp. 325–376, Dec. 1992.

[3] Yudong Zhang and Lenan Wu, “Rigid Image Registration by PSOSQP
Algorithm,” Advances in Digital Multimedia, vol. 1, no. 1, pp. 4–8,
2012.

[4] A Kubias, F Deinzer, T Feldmann, D Paulus, B Schreiber, and Th.
Brunner, “2D/3D image registration on the GPU,” Pattern Recognition
and Image Analysis, vol. 18, no. 3, pp. 381–389, 2008.

[5] Alexander Köhn, Johann Drexl, Felix Ritter, Matthias König, and Heinz-
Otto Peitgen, “GPU accelerated image registration in two and three
dimensions,” in Bildverarbeitung f{ü}r die Medizin 2006, pp. 261–265.
Springer, 2006.

[6] Sudipta N Sinha, Jan-Michael Frahm, Marc Pollefeys, and Yakup Genc,
“Feature tracking and matching in video using programmable graphics
hardware,” Machine Vision and Applications, vol. 22, no. 1, pp. 207–
217, 2011.

[7] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron, “Scal-
able Parallel Programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53,
Mar. 2008.

[8] D H Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111–122, 1981.

[9] Martin A. Fischler and Robert C. Bolles, “Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
June 1981.

[10] Yi Chen and Ramazan Savas Aygün, “Synthetic Video Generation for
Evaluation of Sprite Generation,” International Journal of Multimedia
Data Engineering and Management, vol. 1, no. 2, pp. 34–61, Jan. 2010.

[11] Hannes Fassold and Jakub Rosner, “A real-time gpu implementation of
the sift algorithm for large-scale video analysis tasks,” in IS&T/SPIE
Electronic Imaging. International Society for Optics and Photonics,
2015, pp. 940007–940007.




