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Abstract—One of the difficulties for proper imaging in micro-
scopic image analysis is defocusing. Microscopic images such as
cellular images, protein images, etc. need properly focused image
for image analysis. A small difference in focal depth affects the
details of an object significantly. In this paper, we introduce a
novel auto-focusing approach based on Harris Corner Response
Measure (HCRM) and compare the performance with some
existing auto-focusing methods. We perform our experiments on
protein images as well as a simulated image stack to evaluate the
performance of our method. Our results show that our HCRM-
based technique outperforms other techniques.

I. INTRODUCTION

Image or photo capture may generate images where some
sections of the image are blurred or out of focus. This is due
to varying depth of the scene from the camera. In microscopy,
a plate may have 3D objects that may appear at different levels
of a solution. Therefore, a single image may have in-focus and
out-of-focus regions. This is related to the depth of field of the
camera. Areas that lay in the depth of field are in focus and
the rest of the areas are out of focus. Therefore, a single image
may not be sufficient to capture all details of an object.

Fig. 1 shows how images can be captured by changing
the depth of field. Assume that initially the depth of field is
located at the top indicated by solid lines. The areas of the
object that lay in this depth of field are generated properly
and the rest of the areas usually appear as blurred. To see
details at other levels, the microscope lens is moved up and
down, so that the depth of field also moves up and down. If
the depth of field corresponds to the area indicated by dashed
lines, the corresponding regions are in focus and the rest are
out of focus. In this way, a series of images are captured by
moving the depth of field. This is a typical scenario for protein
crystal growth trials where protein crystals may lie at different
depths in a solution.

To resolve this problem, a sequence of images is captured
by changing the depth of field. Since the depth of field is
different for each image, each image may contain different
focused regions. Then, we may either select the image that has
overall clarity or fuse these images to obtain the best focused
image.

Selecting the best focused image is a simple approach since
it is usually based on the comparison of a clarity measure for
each image independently. The general approach is to apply
an objective function such as Laplacian, variance, Vollath F4

Fig. 1. Depth of field illustration for a microscope.

[1], Vollath F5 [1], entropy, etc. to find the best focused
image. The comparison of selecting the best focused image
has been studied in [2], [3], and [4]. Forero at al. [5] have
discussed about the drawbacks of using Laplacian and variance
as objective functions. One major drawback of this approach is
that it does not benefit from clear and sharp parts that appear
in other images.

Another approach to solve the problem is focal (or focus)
stacking. Focal stacking aims to produce a single image with
extended depth of field, hopefully with all regions under focus.
Thus, it would be good to generate a single image combining
the focused regions. This has been also considered as image
fusion in some literature [6]. This approach can be categorized
into two: pixel-based focal stacking and neighborhood-based
focal stacking. In pixel-based focal stacking, every pixel at
position (x, y) of all input stack images is compared using
an objective function. The best pixel value is picked using a
predefined selection criteria to obtain the final focused image.
In neighborhood-based focal stacking, after picking the best
pixel value at coordinate (x, y) as in pixel-based approach,
it looks neighborhood around that location to achieve spatial
consistency.

Image transformation is an alternative method to find the
in-focus areas in image. An input image is transformed into a
new space in order to analyze the details of the image. This
approach was implemented by [6] using real and complex
wavelet transforms. Bercovici et al. [7] provide a list of
software (both free and commercial) which can be used to
solve the issue. However, the majority of them are designed
for photographers using “macro” mode of camera.

This paper introduces a novel focal stacking technique
based on Harris Corner Response Measure (HCRM) [8]. In our
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experiments, we have chosen existing auto-focusing algorithms
and compared with our approach. We have also used simulated
data for quantitative comparison.

This paper is divided into 6 sections. The following section
briefly discusses the types of auto-focusing techniques and
existing algorithms considered in the experiments. In Section
3, our auto-focusing technique using Harris corner measure
response is described. Data sets used in the experiments are
described in Section 4. In Section 5, results and analysis of our
experiments are provided. Finally, the last section concludes
our paper with future work.

II. AUTO-FOCUSING TECHNIQUES

Let I represent an image set {I1, I2, I3...., Ik } and |I|
represent the number of images in the set. These images are
captured with varying depth of field. All these images have
the same size, i.e., image resolution is W x H. The pixel at
(x, y) in ith image Ii is represented as Ii(x, y).

Auto-focusing technique can be categorized into 4 distinct
categories: best-focused image selection, transform-based focal
stacking, pixel-based focal stacking, and neighborhood-based
focal stacking.

A. Best-focused image selection method

In this auto-focusing technique, an image is selected as
the best focused image out of all the images in the set. It
uses an objective function to determine image having the
best clarity and details. Let Fm(I) be an image function that
measures the quality of image I with respect to method m.
Let If represent the best focused image in I. Let BF (I, Fm)
represent the function for finding best focused image in I
using objective measure Fm. BF (I, Fm) is computed as
BF (I, Fm) = If where Fm(If ) = max

1≤i≤|I|
Fm(Ii), If ∈ I,

and 1 ≤ f ≤ |I|.

Some of the objective functions with their mathematical
expressions are listed below.

1) Vollath F4:

Fvol4(Ii) =

W−1∑
x=1

H∑
y=1

Ii(x, y).Ii(x+ 1, y)−

W−2∑
x=1

H∑
y=1

Ii(x, y).Ii(x+ 2, y) (1)

2) Vollath F5:

Fvol5(Ii) =

W−1∑
x=1

H∑
y=1

Ii(x, y).Ii(x+ 1, y)−WH(Ii)
2 (2)

where Ii is the average value of pixels in image Ii.

3) Normalized Variance:

Fnormvar(Ii) =
1

WH(Ii)

W∑
x=1

H∑
y=1

[Ii(x, y)− Ii]
2 (3)

4) Laplacian:

Flap(Ii) =

W∑
x=1

H∑
y=1

[Ii(x−1, y)+Ii(x, y−1)+Ii(x+1, y)+

Ii(x, y + 1)− 4 ∗ Ii(x, y)]2 (4)

We consider Laplacian and VollathF4 in our evaluations
since these give enough information about the performance of
selecting the best-focused image.

B. Transform based focal stacking

In this method, an image transform is applied to the image
set to determine regions that contain clear and sharp areas. For
example, the complex wavelet transform (CWT) is applied to
the input stack image set I to analyze image content [4].

C. Pixel-based Focal Stacking

In this approach, the best pixel at coordinate (x, y) is
determined from input stack image set I. The best repre-
sentative pixel value at that position is determined using an
objective function and selection criteria. Laplacian is one of
the objective functions used in this approach. Using a certain
kernel function we find the Laplacian (L) value for every
pixel position (x, y). For each image in Ii ∈ I, a Laplacian
image Li is created. Then we use maximum selection crite-
ria to determine best representative pixel at position (x, y):
Pixel(x, y) = Ik(x, y) where Lk(x, y) = max

1≤i≤|I|
Li(x, y)}

and 1 ≤ i ≤ |I|.

D. Neighborhood-based focal stacking

This method is an improvement to pixel based focal stack-
ing. While using selection criteria, it does not look only at a
coordinate position (x, y) but also checks the neighborhood
around the coordinate. After using the selection criteria, this
method tries to satisfy spatial consistency. If pixels are taken
from different images in a small neighborhood, this may cause
discontinuity around the chosen pixel. The neighborhood-
based method helps to eliminate or minimize discontinuity
problem.

III. AUTO-FOCUSING TECHNIQUE USING HARRIS
CORNER RESPONSE MEASURE

In this section, we introduce our Harris Corner Response
Measure(HCRM) based auto-focusing measure. Harris et al.
introduced a measure for detecting corners in an image [8].
We use this measure as a basis of our auto-focusing technique.
Before discussing our auto-focusing method, HCRM is briefly
discussed.

Harris corner detector provides improvement to Moravec’s
corner detector. In Moravec’s corner detector, the change in
pixel intensities around a pixel is analyzed in four directions,
and the minimum change is used as the interest measure for
a pixel among changes in four directions. The basic idea
is that the minimum change for a corner will still be high
and this helps to distinguish a corner from an edge. The
major limitation is the number of directions considered. To
resolve this problem, Harris corner method uses the principal



curvatures of a 2-dimensional matrix local auto correlation
matrix based on the first derivatives of an image. Let this
matrix A is represented as

A =

[
SxSx SxSy

SxSy SySy

]
(5)

where SxSx, SySy , and SxSy are obtained using multiplication
of first derivatives (Sx, Sy) using a smooth circular window w
such as Gaussian.

SxSx =

(
∂I

∂x

)2

⊗ w (6)

SySy =

(
∂I

∂y

)2

⊗ w (7)

SxSy =

(
∂I

∂x

∂I

∂y

)
⊗ w (8)

Then, Harris corner response measure at a specific pixel
(x,y) is computed as

M(x, y) = Det(A(x, y))− k(Trace(A(x, y)))2 (9)

We can benefit from HCRM for auto-focusing problem. For
example, consider an image having flat regions, a boundary,
and a corner in Fig. 2. The right image shows these compo-
nents when the image is out of focus. If an image is out of
focus, pixels are smoothed by neighboring pixels. Hence, the
difference in intensity between neighboring pixels (flat, corner,
edge) of defocused image is less in comparison to focused im-
age. Harris Corner Response Measure (HCRM) depends on the
difference in intensity. Hence, in a focused image, the variation
from a pixel to its neighbor will be higher than in defocused
image. Using HCRM as an objective function we introduce
our auto-focusing techniques: pixel-based autofocusing using
HCRM and neighborhood-based autofocusing using HCRM.

Fig. 2. Focused and defocused image with flat, edge, and corner components

A. Pixel-based focal stacking using HCRM

In this method, HCRM Mi(x, y) is calculated for ev-
ery pixel position (x, y) in each image in I. Then maxi-
mum selection criteria is used to determine the best rep-
resentative pixel for every position (x, y) : Pixel(x, y) =
Ik(x, y) where Mk(x, y) = max

1≤i≤|I|
Mi(x, y) and 1 ≤ i ≤ |I|.

The pseudo-code for this algorithm is provided next in
procedure PixelBFS − HCRM which returns the focused
image. Input parameters to the algorithm are the input image
stack (I), image width (W) and image height (H).

1: procedure PIXELBFS-HCRM(I, W, H )
2: for x = 1 to W do
3: for y = 1 to H do
4: Mmax = 0
5: imgMmax = 0
6: for img_i = 1 to |I| do
7: M = HCRM at pixel (x,y) of image img i
8: if M > Mmax then
9: Mmax= M

10: imgMmax = img_i
11: end if
12: end for
13: final_img(x,y) = get_pixel(x,y) of imgMmax

14: end for
15: end for
16: return final_img
17: end procedure

B. Neighborhood-based focal stacking using HCRM

This method also uses HCRM as an objective function.
This approach uses neighborhood information for determining
the best representative pixel. Mode statistical tool is used to
find the image which is mostly picked around the neighbor-
hood as selection criteria. After using the selection criteria,
this method tries to satisfy spatial consistency.

The pseudo-code for this algorithm is provided next in pro-
cedure NeighborBFS −HCRM which returns the focused
image. Input parameters to the algorithm are the input image
stack (I), image width (W), image height (H), neighborhood
size (xwsize x ywsize), and track table array (track). Track
table array is used to track which image is used as the final
pixel for every (x, y) position.

1: procedure NEIGHBORBFS-HCRM(I, W, H, xwsize, ywsize, track)
2:
3: //Find HCRM values for every pixel (x,y) for images I
4: M[img][x,y]= HCRM at pixel (x,y) of image img
5:
6: //Generating final focused image
7: for n = 1 to M.size() do
8: Mcur = nth highest M value from array M[img][x,y]
9: (x,y) = (x,y) value corresponding to Mcur

10: imgmod = Mode of img value in track table in the
neighborhood

11: if ( imgmod is NULL ) then
12: imgmod = img value corresponding to Mcur

13: end if
14: left_xwsize = -(xwsize-1)/2
15: right_xwsize = (xwsize-1)/2
16: above_ywsize = -(ywsize-1)/2
17: below_ywsize = (ywsize-1)/2
18: for dx = left_xwsize to right_xwsize do
19: for dy = above_ywsize to below_ywsize do
20: if ( track(x+dx,y+dy)is NULL ) then
21: final_img(x+dx,y+dy) = get_pixel(x+dx, y+dy)

of imgmod

22: track(x+dx,y+dy) = imgmod

23: end if
24: end for
25: end for
26: end for
27: return final_img
28: end procedure

IV. DATASETS

In this study, we applied auto-focusing algorithms to a
protein crystal image set. 6 images of the same protein well
with different depths of field were captured using the protein
image acquisition system described in [9]. The size of all
images used in the experiment is 320 x 240. Fig. 3 shows
the 6 images of a single protein-well used in this experiment.



As can be seen in Fig. 3(d), Fig. 3(e) and Fig. 3(f), there
is a region in the bottom-right that is visible only in these
images. The details of this region are missing in other images.
However, Fig. 3(b) and Fig. 3(c) provide better quality for the
rest of the regions.

For quantitative analysis of our research we created simu-
lated synthetic data of a texture image. Fig. 4 shows the texture
images used in the paper. To simulate the images with different
focal depth of a microscope from a single image, we applied
Gaussian smoothing for varying depth of field. We mapped the
image to 2D normal distribution model to create different focus
level for a 2D texture (see Fig. 5 ). Then, using the height of
each pixel as a smoothing parameter, we apply the smoothing
partially for different parts of the image. Fig. 6 shows the set
of 6 images with different focal depth for the texture image
shown in Fig. 4(a).

V. EXPERIMENTS AND ANALYSIS

Auto-focusing technique discussed in this paper is applied
to a protein image set and two simulated image sets.

We have used the following filter as Laplacian pixel-based
focal stacking: [

1 1 1
1 −8 1
1 1 1

]
A window size of 15x15 pixels is used for

neighborhood-based focal stacking. Accord.NET Framework
(https://code.google.com/p/accord/) was used for calculation
of Harris Corner Response Measure. Extended depth of field
plugin of ImageJ application was used to test transform-based
focal stacking using complex wavelet transform (CWT) [6].
We used fast speed and high quality parameters of this plugin
in our experiments. The results of autofusing experiments
for the protein image and simulated data sets are provided
in Fig. 7 and Fig. 8, respectively. We provide the subjective
and quantitative analyses of experiments below. We should
note that to observe the results of experiments, the readers
are recommend to zoom in these images on the digital file of
this paper.

A. Subjective Analysis

1) Best-focused image selection method: While the Lapla-
cian and VollathF4 methods have chosen different images for
the protein image set (Fig. 7(a-b)), they have chosen the same
image for the simulated data set (Fig. 8(a-b)). For the protein
image set, the Laplacian method picked the image having the
bottom-right in focus. The VollathF4 method has chosen the
image having the bottom-middle region in focus. It can be
seen that each image has different areas in focus and out of
focus. If objects appear at different depths, a single image
may not capture all objects with clarity. The similar problem
occurs even for a large 3D object that cannot be captured with
a single depth of field. This method is only useful if objects
are almost flat and lay at the same distance from the lens. In
microscopic images, objects may appear at different depths and
when crystals grow they may have a large 3D shapes. Thefore,
these techniques are not beneficial for protein image sets.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Protein crystal image (a-f) captured with 6 different focal depths

(a) (b)

Fig. 4. Original texture image which was subjected for Gaussian blur to
create 6 different focused simulated data stack.

Fig. 5. Application of 2D Normal Distribution on texture image shown in
Fig. 4(a)

(a) (b) (c)

(d) (e) (f)

Fig. 6. Simulated synthetic data for texture image in Fig. 4(a) created using
Gaussian blur

2) Transform-based focal stacking: The results of applying
autofocusing using CWT on protein image set are provided
in Fig. 7(c-d). The fast speed and high quality versions both



(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 7. Results of autofocusing experiments on protein image set (a) best-
focused image using Laplacian (b) best-focused image using VollathF4 (c)
CWT (fast speed) (d) CWT (high quality) (e) pixel-based Laplacian (f) pixel-
based HCRM (g) neighborhood-based HCRM.

introduce noise for the final images. The enlargement of
problematic regions are shown in Fig. 9. The fast speed version
(Fig. 9(a)) introduces another layer around the high intensity
region. The smaller region had a gap or a black border in the
middle. The high quality version performed little bit better than
the fast speed version. In the high quality version, the bottom
region has still some noise and does not have the expected
smooth boundary (Fig. 9(b)).

3) Pixel-based focal stacking using Laplacian: Since pixel-
based method using Laplacian picks the best pixel for every
pixel location, this technique introduces significant discon-
tiuity. This also gives an impression like noise is added to
the final image. The problem can be observed in Fig. 7(e).
This type of fusing images is not suitable for further image
analysis.

4) Our pixel-based focal stacking using HCRM: This
method also selects pixels from different images to get the
final image. The noise problem that appeared in Laplacian
version has been significantly reduced by the pixel-based
HCRM (Fig. 7(f)). However, this method could not eliminate
the discontinuity problem. We highlight this problem in Fig.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 8. Results of autofocusing experiments on simulated data set shown
in Fig. 6 (a) best-focused image using Laplacian (b) best-focused image
using VollathF4 (c) CWT (fast speed) (d) CWT (high quality) (e) pixel-based
Laplacian (f) pixel-based HCRM (g) neighborhood-based HCRM.

10(a). Abrupt change in image intensity around the bottom
region is clearly visible.

5) Our neighborhood-based focal stacking using HCRM:
The result on protein image set is provided in Fig. 7(g). It
maintains all the regions at proper clarity. It further minimizes
the discontinuity in the final focused image with repect to
its pixel-based version. The reduction in discontinuity can be
visualized in Fig. 10(b). The discontiuity problem is minimized
by picking the neighborhood pixels that minimize the noise
when a certain pixel is chosen. This method worked well with
both simulated and protein image data set. We should also
note that the neighborhood size may affect the output quality.
If two closed objects lie within the neighborhood size and are
at different depths, then we may miss some details in the final
focused image.

B. Quantitative Analysis

For quantitative analysis, we have chosen PSNR (Peak
Signal to Noise Ration) as the objective function. High PSNR
values indicate good focused image generation. PSNR is
calculated as follows:



(a)

(b)

Fig. 9. Problem with CWT based method (a) fast speed (b) high quality

(a) (b)

Fig. 10. Analysis of focused image created by (a) Pixel-based HCRM (b)
Neighborhood-based HCRM

MSE =
1

WH

W∑
i=1

H∑
j=1

[X(i, j)− Y (i, j)]2 (10)

PSNR = 20 ∗ log10(Pmax/
√
MSE) (11)

where X is the actual true focused image (ground-truth), Y
is an output focused image, and Pmax is the maximum pixel
value of image X.

Since we need the ground-truth, PSNR values are computed
on simulated data sets. PSNR values for both data sets using
the techniques covered in this paper are provided in Table I.
The table shows that the PSNR values (around 36.5) of best-
focused image selection methods for Laplacian and VollathF4
are same because images selected as best focused for both
data sets are same. Only pixel-based Laplacian performs worse
then these best-focused image selection methods. Its PSNR
values are in lower 30s. Transform-based focal stacking using
CWT made a significant improvement by generating PSNR
values above 40. The PSNR values of the fast speed version
(around 45) is a little bit better than the PSNR values of the
high quality version. This suggests that CWT with fast speed
performs better for our data set.

TABLE I. PSNR VALUES IN DB FOR DIFFERENT AUTOFOCUSING

Auto-focusing technique Dataset I Dataset II
Best-focused image using Laplacian 36.5931 36.4619
Best-focused image using VollathF4 36.5931 36.4619

CWT (fast speed) 44.1436 45.0108
CWT (high quality) 41.1891 43.2657

Pixel-based Laplacian 31.0175 32.0342
Pixel-based HCRM 47.7262 53.8972

Neighborhood-based HCRM 47.0687 53.4681

Our pixel-based HCRM performed significantly better than
its Laplacian version. It had around 16db to 21db on PSNR val-
ues with respect to the pixel-based Laplacian. In addition, our
pixel-based HCRM also performed better than the fast speed
version of the complex wavelet transform. Our neighborhood-
based method performed as good as the pixel-based HCRM.
However, our observations indicate that neighborhood-based
HCRM introduces less discontinuity.

VI. CONCLUSION

In this paper, we introduced new auto-focusing technique
using HCRM and compared with some existing auto-focusing
techniques. Our autofocusing based on HCRM performed
better than the others. Our neighborhood-based HCRM intro-
duced lesser discontinouity than its pixel-based version despite
their PSNR values are close. Our early results show some
of the problems in the existing algorithms in the literature.
Our HCRM-based autofocusing techniques may resolve those
issues. We plan to apply our techniques in other domains and
further protein image data sets.
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