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Abstract—There had been significant research on background 
mosaic or sprite generation in the past. In some application 
domains such as surveillance, the complete view of an object 
might be of interest rather than the background scene. In this 
paper, we present object mosaicking for reconstruction of a 
moving object from its partial views due to limited view or object 
occlusion. Object mosaicking may play important role in 
identification and tracking of objects and face recognition. Our 
algorithm has three steps: automatic rectangular boundary 
detection, elimination of static temporal texture, and application 
of mosaic generation algorithms with varying blending methods. 
We have applied our object mosaicking on three sets of video 
objects and obtained promising results for object mosaicking. 

Keywords—mosaic generation; image registration 

I. INTRODUCTION  
The research on computer vision systems has increased 

more and more in the last decade as the technology for 
capturing and storing video data have become cheaper and 
easier with the proliferation of user friendly, portable, and 
smart hand-held devices. Today, even low-end smart phones 
can capture high quality video at the push of a button. This has 
led to production of enormous video content as people carry 
their smart phones with them. The videos have been accessible 
to public as social networks such as Facebook [1] and Twitter 
[2], and news sites like CNN [3] enabled their users to upload 
and share videos. However, indexing videos based on content 
is still a challenging problem due to detection and recognition 
of objects. Partial view or incomplete appearance of an object 
makes detection and recognition even harder. In this paper, we 
look into the construction of moving objects from partial 
views. 

In many videos, the objects of interest are moving or the 
camera is moving or both. Since the camera has a limited 
field-of-view, as the camera moves new scenes from the world 
are captured that were not visible in the previous frames of a 
video. The frames of a video may not necessarily capture a 
complete scene or a complete object due to the field-of-view 
of the camera or object occlusions. An important area in 
computer vision is mosaic generation. Basically, a background 
mosaic or a background sprite is the complete static view of 
an environment that cannot be captured in a single frame of a 
video. Image stitching, background extraction, or video 

panorama generation research has also overlaps with mosaic 
generation research. Mosaic generation has also been studied 
as sprite generation in MPEG-4 standard [4] for video 
compression purposes  

The significant majority of mosaic generation research has 
been performed for the background scene [5-8]. Now, suppose 
that instead of generating an entire panorama of a scene, a user 
is interested in only a certain section of the scene such as an 
object of importance that the user wishes to focus on. There 
are videos where a single object in a video can only be 
captured partially due to object occlusion. Object might be 
behind or in between other objects such as trees. It is possible 
that at each frame a partial view of the object might be 
captured. For example, consider a surveillance camera in a 
convenience store. The purpose of this camera is to make sure 
that anyone who tries to rob the store will end up on camera. 
So the object of importance in this example would be the 
robber's face. However, there might not be any single video 
frame that contains the robber's entire face.  

In this paper, we propose a method to reconstruct the object 
from its partial views. We call such mosaic generation as 
“Object Mosaicking” since the mosaic is generated for the 
object not for the background. Therefore, object mosaicking is 
the process of recreating a single object from the parts of the 
object present in all the frames of the video in question. Using 
object mosaicking on the above convenience store example, a 
user would reconstruct the robber's face from the different 
parts of his or her face seen in the frames of the surveillance 
video. 

Wang et al. proposed multimodal temporal panorama for 
moving vehicle detection and reconstruction [9]. They utilize 
visual, audio, and motion data to recreate the full image of 
cars passing by a PTZ camera. Their system requires manual 
setting of the boundaries of the region of interest. If the view 
of the camera is not parallel to the ground (i.e., the camera is 
viewing the road from an angle), manual input is needed to 
identify the slant of road with respect to the camera pose.  The 
authors do not clearly mention about the blending technique 
they use. It is not clear if the vehicle needs to have a constant 
speed or not. We wonder if the vehicle can be elongated if the 
car is moving slowly. 

In this paper, we propose an object mosaicking method 
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based on our previous sprite generation technique used for 
background mosaic generation. Our proposed system detects 
the borders of the occlusion or the visible scene area. Our 
system does not require manual settings of the boundary and 
the moving object does not need to be parallel to the ground 
because we use affine motion model for global motion 
estimation. The object does not need to move at a steady 
speed. As long as the global motion can be estimated, the 
object may move at any irregular speed. In addition, the 
regions in the scene which may deteriorate the mosaicking are 
eliminated by ignoring those regions during motion estimation 
and blending. We apply traditional mosaic generation based 
on averaging and our sprite generation technique based on 
fusion of mosaics. 

This paper is organized as follows. The following section 
provided information about mosaic generation. Section 3 
explains our method for object mosaicking including automatic 
border detection and constant region elimination. Section 4 
provides experimental results and discussion. The last section 
concludes our paper. 

II. BACKGROUND 
Mosaic generation is composed of three major steps: global 

motion estimation (GME), warping, and blending. GME 
identifies how much the change is between two frames. The 
motion parameters that are determined by GME are used to 
find the proper coordinates on the mosaic where the next 
frame should be placed. Warping step aligns corresponding 
images on top of each other based on their content. Blending 
phase determines the output pixel value for the overlapping 
areas of images when they are mapped onto the mosaic. 
Warping and blending are used to make sure the mosaic 
comes out as clean and artifact-free as possible. 

GME is the most computation extensive part of mosaic 
generation. Therefore, usually 2D motion models are utilized 
for the motion parameter estimation in real-time applications. 
2D GME corresponds to the estimation of 8 motion 
parameters. Equation 1 provides how pixel coordinates of one 
image is mapped to the pixel coordinates of another image: 
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where tx and ty correspond to translational parameters. Given 
images I and I’, a pixel at I(x,y) is mapped to I’(x’,y’) using 
the 3x3 matrix provided in (1). If zoom operation is 
considered, a1=a2=a4=a5=0, and a0 and a3 are estimated. 
Parameters a0, a1, a2, and a3 are related to rotation angle of θ 
when a0=a3=cosθ and -a1=a2=sinθ. Parameters a4 and a5 
correspond to perspective motion. For affine motion, a4 and a5 
are set to 0. Here, for affine motion, GME is estimated in a 
hierarchical fashion. At the lowest level, a GME is estimated 
and for the next level translational parameters are multiplied 
by 2 [11]. Then Levenberg-Marquardt optimization is applied 
at each level. The translational motion is estimated by direct 
motion estimation at the given resolution of the image. 

After GME, the blending plays critical role on the accuracy 

of the mosaic. We use the sprite generator tool that is 
developed in [10]. This sprite generator tool may input a 
variety of video formats or an image sequence to generate the 
sprite. Let P be the motion parameter matrix to map a frame to 
the mosaic, M: 
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Typically, a blending algorithm, Blend, is used for 

determining what the final value is: 
M(i’,j’)=Blend(M,i’,j’,fk,i,j). In this expression, fk is a frame, 
M represents the mosaic, and the pixel at fk(i,j) is mapped 
M(i’,j’) on the mosaic. 

Our sprite generator tool provides basic averaging as a 
blending technique as well as the novel the sprite fusion [10]. 
Sprite fusion is performed by merging the results of two 
mosaics: assertive and conservative mosaic. In assertive, a 
pixel from a new frame overwrites the existing pixel value. In 
conservative mosaic, a pixel from a new frame is written to the 
mosaic unless there is no pixel value written to that position 
before. As an artifact, assertive mosaic keeps the last frame on 
the mosaic; on the hand, conservative mosaic keeps the first 
frame on the mosaic. As long as there is a frame in the video 
that does not intersect with the first frame in the sequence and 
if the moving objects do not appear at the borders of a frame, 
sprite fusion can eliminate moving objects from the assertive or 
conservative mosaic given the motion parameters. We cleaned 
up, optimized, and improved the original sprite generator tool 
and then added new modules for this project.  

III. OBJECT MOSAICKING 
In this section, we propose our object mosaicking method. 

As mentioned in the previous section, the first step of mosaic 
generation is the global motion estimation. The global motion 
estimation may represent the camera motion if the camera is 
moving and the (moving) objects in the video are small. One of 
the problems for background mosaic generation is the presence 
of large objects. If the moving object is very large (e.g., if it 
occupies a half of a frame), the background mosaic cannot be 
generated, because the motion does not correspond to the 
camera motion anymore. In our object mosaicking, we are 
going to get benefit from this limitation. 

Object Mosaicking is the process of recreating a single 
object from the parts of the object present in all frames of the 
video in question. To be able to generate the object mosaic, we 
should be able to determine the object motion. One challenge is 
that the size of the object might be respectively small. Another 
challenge is that the object might be partially visible due to 
occlusion by other objects. If we are able to reduce the region 
to be processed about the size of the object, the mosaic to be 
generated will be equivalent to the mosaic of the object. 

The steps of our method are provided in Fig. 1. The two 
major steps are automatic border detection and temporal 
texture elimination. Automatic border detection is used if the 
object is being captured from a structured but textured and 
limited view. The automatic border detection system finds 
automatically which areas of the picture contain “useless” data 
and then ignores those areas.  



 
Fig. 1. Object mosaicking method 

Temporal texture elimination step generates a texture map 
for each frame to develop a clear mosaic by eliminating areas 
that contain similar textures or colors which could cause 
inaccurate mosaic generation. Temporal texture elimination 
enables to focus on mostly the object area since the non-
moving background is static. 

Consider the following notation for this section:  

Notation Explanation 
fi ith frame of the input video 

fi[*,k] the kth column of frame fi 
fi[m,*] the mth row of frame fi 
fi

u[*,k] the upper half of the kth column of frame fi 
fi

b[*,k] the bottom half of the kth column of frame fi 
fi

l[m,*] the left half of the mth row of frame fi 
fi

r[m,*] the right half of the mth row of frame fi 
W the width of a frame 
H the height of a frame 
Ρ gap between two columns or rows 

Mode the most frequent value 

countIF 
returns the number of values that satisfies a 

condition in a set 
µ functioning returning the average value 

 

A. Automatic Border Detection 
Automatic Border Detection involves the determining the 

irrelevant object regions in the video, i.e., the parts where no 
movement exists, and telling our tool to ignore those parts. 
Algorithm 1 provides our algorithm for automatic border 
detection. Firstly, the left, right, top, and bottom borders are 
found for each frame. Rather than comparing consecutive 
columns or rows, rows and columns ρ pixels apart are 

evaluated to determine the change of average intensity. Since 
(top and bottom) or (left and right) sides of a frame may differ, 
each column and each row is divided into half. Since there 
could be many candidate borders, the algorithm determines the 
left-most (or top-most) and the right-most (or bottom-most) 
borders (marked red (re-edited to highlight the border) in Fig. 2 
(a)). After determining the borders of a frame, the system finds 
the mode (or the most frequent border) of all borders from all 
frames. Fig. 2 (b) displays the frame after out-of-border area is 
eliminated. 

Algorithm 1: Automatic Border Detection 
IN: A video with n frames 
OUT: L (left), R (right), U (Top), B(bottom) borders 
VARIABLES: 
δi: candidate vertical borders of fi 
δi

l: left border of fi; δi
r: right border of fi 

λi: candidate horizontal borders of fi 
λi

u: top border of fi; λi
b: bottom border of fi 

begin 
  for i = 0 to n do 
    for k=1 to (w/δ)-1 do 
        if |µ(fiu[*,k]) -  µ(fiu[*,k-1])|≥τ  
             and |µ(fib[*,k]) -  µ(fib[*,k-1])|≥τ then 
   δi ← δi U {k} 
        endif 
        δil=min(δi)+1; // the left border 
        δir=(min(δi)-1) if (δir+1)∉ δi //the right border 
      endfor 
  for m = 1 to (h/ ρ)-1 do 
     if |µ(fil[m,*]) -  µ(fil[m-1,])|≥τ  
          and |µ(fiu[m,*]) -  µ(fiu[m-1,*])|≥τ then 
        λi ← λi U {m} 
     endif 
     λi u=min(λi)+1; // the top border 
     λi b=(min(λi)-1) if (λib+1) ∉ λi // the bottom border 
  endfor 
 endfor 
 L=mode(δil); R=mode(δir); U=mode(λiu); 
 B=mode(λib);  
   where 0≤i<n // left, right, top, bottom borders 
end 
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Fig. 2. Automatic border detection a) red borders indicate left and right borders, b) scene after border removal, and c) the texture mask 
for car example. 

(a) (b) 



B. Static Temporal Texture Elimination 
Temporal texture elimination involves scanning the parts of 

the video left after automatic border detection and generating a 
texture map that eliminates any homogenous parts of the 
remaining part of the video. The static temporal texture 
elimination algorithm is provided in Algorithm 2. The frame 
difference between consecutive frames is computed. The 
difference frame is split into macro-blocks. If the number of 
difference values that are equal to 0 is more than the half, the 
macro-block is considered as a texture block and not used for 
object mosaicking. Fig. 2 (c) displays the mask for texture 
mask elimination. The white regions correspond to object and 
the black regions correspond to the texture area. 

 Algorithm 2: Static Temporal Texture Elimination 

ASSUME: macro-block size is 16x16. 
IN: frames fi and fi+1(size: h x w) 
begin 
  ∆f=|fi-fi+1| // difference of images 
  Split into ∆f into macroblocks 
  row= h/16; column=w/16 
  for i = 1 to row do 
    for j = 1 to column do 
      foreach MB(i,j) do 
        if countIF(MB(i,j),’=0’)>((16*16)/2) then 
           eliminate MB(i,j) // static texture 
       else MB(i,j) belongs to object  
       endif 
    endfor 
  endfor 
end    
 

C. Mosaic Generation for an Object 
There are several factors that affect the quality of a mosaic. 

The GME is the first step of the mosaic generation. An error on 
GME will lead errors on warping and, hence, on the blending. 
GME is sensitive to a number of factors: the motion model that 
is used by the GME component; the varying depth in the scene; 
the resiliency of GME to static patterns; and other objects that 
do not conform to the global motion. The blending is also 
critical when GME introduces errors. Averaging technique 
blurs the mosaic; however, it is more resilient to errors in 
GME. Sprite fusion technique produces sharper mosaic; 
however, it is more sensitive to GME. Sprite fusion is not 
affected by slow moving objects or patterns in the scene or 

object. We use average, assertive, and conservative mosaics in 
our experiments. 

IV. EXPERIMENTS 
For the experiments we have chosen a set of 3 videos (Fig. 

3). A toy car was chosen that has a variable continuous pattern 
along the side and complex motion with the wheels. A toy train 
example was chosen since it had text on the side of it. The final 
experiment was a face. This was chosen because of the 
complex nature of aligning parts of a face. In our test videos, 
the target object is partially visible since the target object is 
occluded. We have generated the videos in our lab. Although at 
first sight the green background may be considered as simple, 
it deteriorates the performance of the global motion estimation. 
If the majority of the background is static as in our example, 
GME usually yields almost no motion. 

Traditional mosaic generation. Before providing the 
results of the proposed approach in this paper, we would like to 
present the results of traditional approaches. Fig. 4 (a) shows 
the results of traditional mosaics for the car example. In Fig. 
4(a), we do not apply any pre-processing and get the blurred 
partial car with the presence of the borders. The major reason is 
that the original GME targets the global motion. In Fig. 4(b), 
we present the results after identifying the borders and just 
processing the area within the borders. The car image is still 
blurry. We are able to obtain a rough overview of the car but it 
is very blurry and does not contain all details of the car. 

 
(a)   

 
          (b) 
Fig. 4. Traditional mosaics for the car example a) without border 

detection and b) with border detection. 

(a) (b) (c) 

Fig. 3. Sample frames a) car, b) train with text, and c) face 



Experimental Results using Border Detection Without 
Texture Elimination. The result for car sequence is provided 
in Fig. 4 (b). Fig. 5 provides the results for the train and the 
face examples using the areas within the border. The text on 
the body result of the train car is blurred and not readable. 
However, we were able to get somewhat acceptable mosaic for 
the face example. The reason is that after considering the areas 
within the borders, the face occupies the majority of the scene. 
Therefore, GME detects the motion of the face. The border 
detection made a significant improvement on the mosaic 
generation. However, the mosaics are still blurred significantly. 

  
(a)                     (b) 

Fig. 5. Traditional mosaics after detecting the borders and considering the 
area within the borders a) train example and b) face example. 

Experiments with the Border detection and Texture 
Elimination. 

Car. The three results of blending (averaging, assertive, and 
conservative) are close to each other with small errors in each 
one of them (Fig. 6). The average blending produced an image 
that is fairly blurry especially in the wheels where the complex 
motion existed (Fig. 6 (a)). The assertive blending created a 
more detailed object. The spokes in the wheels are easier to 
distinguish but the roof of the car was cut off early (Fig. 6 (b)). 
The conservative blending created a slightly elongated car but 
the wheels are very distinguishable (Fig. 6 (c)). 

Train. For the train test the biggest thing was the readability 
of the text on the side. Due to the scaling of these images a lot 
of the details where lost. The average mosaic created a very 
readable text on the larger images (Fig. 7 (a)). The assertive 

mosaic produced text that was readable but it was slightly 
misaligned (Fig. 7 (b)). The conservative mosaic was very 
close to the assertive except it doubled the letters at the end of 
the last word (Figure 7 (c)). 

For the face experiment the blending results for all except 
one method was almost perfect. Both the average (Fig. 8 (a)) 
and assertive (Fig. 8 (b)) blending produced nearly perfect 
results. The conservative (Fig. 8 (c)) blending produced 
misaligned results that can be attributed to an error in motion 
detection. For this test we have provided a graph of the PSNR 
(Peak Signal-to-Noise Ratio) values that represents the 
correctness of our mosaic (Fig. (9)). The dip in the left and 
right sides of the values can be due to the object not actually 
appearing in the frame at that moment. The average PSNR 
value is 28.66. The PSNR values are generated by regenerating 
the object regions using the estimated global motion and 
comparing the regenerated image to the original images used 
for generating the mosaic (by first  computing the minimum 
squared error).  

Discussion. One problem that we faced while preparing our 
experimental data is the automatic zooming of the camera. 
Since the target object was occluded by another object that was 
closer to the camera, automatic zooming tends to maintain 
focusing on the closer object not the target object. This led to 
blurring of the target object to be mosaicking even before any 
mosaicking is applied. 

When we compare three blending techniques for 
mosaicking, the averaging technique in general provides an 
overall structure of the target object properly with some 
blurring. On the other hand, assertive and conservative 
mosaicking techniques provide sharp object mosaics, however, 
if the global motion is not estimated correctly, it causes 
discontinuity and line breakings. We believe that these three 
mosaicking techniques complete each other. If the global 
motion is estimated properly, assertive and conservative 
mosaic generation algorithms can outperform the averaging 
technique. If the global estimation is poor, averaging technique 
can be preferred to assertive and conservative mosaics. 

 

 

(c) Conservative (b) Assertive (a) Average 
Fig. 6. Object mosaics for car example. 

(c) Assertive (b) Assertive (a) Average 
Fig. 7. Object mosaics for car example. 



 

 
V. CONCLUSION 

In this paper, we proposed object mosaicking. Object 
mosaicking may help users to build a complete view of an 
object from partial views of an object. Two major steps are 
automatic border detection and temporal texture elimination. 
We have tested our algorithm on a different set of videos.  

We were able to generate the objects at a satisfactory level. 
We have obtained very good results for generating the mosaic 
of a face. Our results for object mosaicking are promising. 
Especially, the mosaic for face was very good in terms of 
visual quality and PSNR values. While average blending 
produced blurred but acceptable mosaics, the assertive and 
conservative mosaics generated sharper but sometimes slightly 
misaligned mosaics. 

We have obtained promising results for the future work. 
However, we had to conduct many experiments until we get 
the desired results. The parameters for our experiments are 
related to the threshold gap between rows/columns of the 
border selection, 2D motion models (affine, translational, pan-
tilt-zoom), and starting and ending frames of a sequence. For 
future work, the most critical improvement is needed for the 
object motion estimation. In addition, we plan to test our 
system for outdoor environments and see the performance of 
object detection with various types of limited view or object 
occlusion. We plan to increase the number of videos to be 
tested. The view of the object may appear in any type of 
convex or concave region. We plan to extend our research for 
different types of view with extended border detection.  
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(c) Conservative (b) Assertive (a) Average 
Fig. 8. Object mosaics for face example. 

 Fig. 9. PSNR values for the face experiment. 
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