
Object Mosaicking: Reconstruction of Moving
Objects Captured Through a Limited View*

Richard Caywood, Justin Edwards and Ramazan S. Aygun
Computer Science Department

University of Alabama in Huntsville
Huntsville, AL, USA

{rcc0005,jge0002,aygunr}@uah.edu

Abstract—There had been significant research on background
mosaic or sprite generation in the past. In some application
domains such as surveillance, the complete view of an object
might be of interest rather than the background scene. In this
paper, we present object mosaicking for reconstruction of a
moving object from its partial views due to limited view or object
occlusion. Object mosaicking may play important role in
identification and tracking of objects and face recognition. Our
algorithm has three steps: automatic rectangular boundary
detection, elimination of static temporal texture, and application
of mosaic generation algorithms with varying blending methods.
We have applied our object mosaicking on three sets of video
objects and obtained promising results for object mosaicking.

Keywords—mosaic generation; image registration

I. INTRODUCTION
The research on computer vision systems has increased

more and more in the last decade as the technology for
capturing and storing video data have become cheaper and
easier with the proliferation of user friendly, portable, and
smart hand-held devices. Today, even low-end smart phones
can capture high quality video at the push of a button. This has
led to production of enormous video content as people carry
their smart phones with them. The videos have been accessible
to public as social networks such as Facebook [1] and Twitter
[2], and news sites like CNN [3] enabled their users to upload
and share videos. However, indexing videos based on content
is still a challenging problem due to detection and recognition
of objects. Partial view or incomplete appearance of an object
makes detection and recognition even harder. In this paper, we
look into the construction of moving objects from partial
views.

In many videos, the objects of interest are moving or the
camera is moving or both. Since the camera has a limited
field-of-view, as the camera moves new scenes from the world
are captured that were not visible in the previous frames of a
video. The frames of a video may not necessarily capture a
complete scene or a complete object due to the field-of-view
of the camera or object occlusions. An important area in
computer vision is mosaic generation. Basically, a background
mosaic or a background sprite is the complete static view of
an environment that cannot be captured in a single frame of a
video. Image stitching, background extraction, or video

panorama generation research has also overlaps with mosaic
generation research. Mosaic generation has also been studied
as sprite generation in MPEG-4 standard [4] for video
compression purposes

The significant majority of mosaic generation research has
been performed for the background scene [5-8]. Now, suppose
that instead of generating an entire panorama of a scene, a user
is interested in only a certain section of the scene such as an
object of importance that the user wishes to focus on. There
are videos where a single object in a video can only be
captured partially due to object occlusion. Object might be
behind or in between other objects such as trees. It is possible
that at each frame a partial view of the object might be
captured. For example, consider a surveillance camera in a
convenience store. The purpose of this camera is to make sure
that anyone who tries to rob the store will end up on camera.
So the object of importance in this example would be the
robber's face. However, there might not be any single video
frame that contains the robber's entire face.

In this paper, we propose a method to reconstruct the object
from its partial views. We call such mosaic generation as
“Object Mosaicking” since the mosaic is generated for the
object not for the background. Therefore, object mosaicking is
the process of recreating a single object from the parts of the
object present in all the frames of the video in question. Using
object mosaicking on the above convenience store example, a
user would reconstruct the robber's face from the different
parts of his or her face seen in the frames of the surveillance
video.

Wang et al. proposed multimodal temporal panorama for
moving vehicle detection and reconstruction [9]. They utilize
visual, audio, and motion data to recreate the full image of
cars passing by a PTZ camera. Their system requires manual
setting of the boundaries of the region of interest. If the view
of the camera is not parallel to the ground (i.e., the camera is
viewing the road from an angle), manual input is needed to
identify the slant of road with respect to the camera pose. The
authors do not clearly mention about the blending technique
they use. It is not clear if the vehicle needs to have a constant
speed or not. We wonder if the vehicle can be elongated if the
car is moving slowly.

In this paper, we propose an object mosaicking method

This material is based upon work supported by the National Science
Foundation under Grant No. 0812307. REU students were funded with REU
Supplement by the National Science Foundation Grant. No. 1240395.

raygun
Text Box
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The final published version is available at http://dx.doi.org/10.1109/SECON.2014.6950741.

based on our previous sprite generation technique used for
background mosaic generation. Our proposed system detects
the borders of the occlusion or the visible scene area. Our
system does not require manual settings of the boundary and
the moving object does not need to be parallel to the ground
because we use affine motion model for global motion
estimation. The object does not need to move at a steady
speed. As long as the global motion can be estimated, the
object may move at any irregular speed. In addition, the
regions in the scene which may deteriorate the mosaicking are
eliminated by ignoring those regions during motion estimation
and blending. We apply traditional mosaic generation based
on averaging and our sprite generation technique based on
fusion of mosaics.

This paper is organized as follows. The following section
provided information about mosaic generation. Section 3
explains our method for object mosaicking including automatic
border detection and constant region elimination. Section 4
provides experimental results and discussion. The last section
concludes our paper.

II. BACKGROUND
Mosaic generation is composed of three major steps: global

motion estimation (GME), warping, and blending. GME
identifies how much the change is between two frames. The
motion parameters that are determined by GME are used to
find the proper coordinates on the mosaic where the next
frame should be placed. Warping step aligns corresponding
images on top of each other based on their content. Blending
phase determines the output pixel value for the overlapping
areas of images when they are mapped onto the mosaic.
Warping and blending are used to make sure the mosaic
comes out as clean and artifact-free as possible.

GME is the most computation extensive part of mosaic
generation. Therefore, usually 2D motion models are utilized
for the motion parameter estimation in real-time applications.
2D GME corresponds to the estimation of 8 motion
parameters. Equation 1 provides how pixel coordinates of one
image is mapped to the pixel coordinates of another image:

 �
𝑥′

𝑦′

1
� = �

𝑎0 𝑎1 𝑡𝑥
𝑎2 𝑎3 𝑡𝑦
𝑎4 𝑎5 1

� �
𝑥
𝑦
1

� (1)

where tx and ty correspond to translational parameters. Given
images I and I’, a pixel at I(x,y) is mapped to I’(x’,y’) using
the 3x3 matrix provided in (1). If zoom operation is
considered, a1=a2=a4=a5=0, and a0 and a3 are estimated.
Parameters a0, a1, a2, and a3 are related to rotation angle of θ
when a0=a3=cosθ and -a1=a2=sinθ. Parameters a4 and a5
correspond to perspective motion. For affine motion, a4 and a5
are set to 0. Here, for affine motion, GME is estimated in a
hierarchical fashion. At the lowest level, a GME is estimated
and for the next level translational parameters are multiplied
by 2 [11]. Then Levenberg-Marquardt optimization is applied
at each level. The translational motion is estimated by direct
motion estimation at the given resolution of the image.

After GME, the blending plays critical role on the accuracy

of the mosaic. We use the sprite generator tool that is
developed in [10]. This sprite generator tool may input a
variety of video formats or an image sequence to generate the
sprite. Let P be the motion parameter matrix to map a frame to
the mosaic, M:

 �
𝑖′
𝑗′
1

� = 𝑃 × �
𝑖
𝑗
1

� (2)

Typically, a blending algorithm, Blend, is used for

determining what the final value is:
M(i’,j’)=Blend(M,i’,j’,fk,i,j). In this expression, fk is a frame,
M represents the mosaic, and the pixel at fk(i,j) is mapped
M(i’,j’) on the mosaic.

Our sprite generator tool provides basic averaging as a
blending technique as well as the novel the sprite fusion [10].
Sprite fusion is performed by merging the results of two
mosaics: assertive and conservative mosaic. In assertive, a
pixel from a new frame overwrites the existing pixel value. In
conservative mosaic, a pixel from a new frame is written to the
mosaic unless there is no pixel value written to that position
before. As an artifact, assertive mosaic keeps the last frame on
the mosaic; on the hand, conservative mosaic keeps the first
frame on the mosaic. As long as there is a frame in the video
that does not intersect with the first frame in the sequence and
if the moving objects do not appear at the borders of a frame,
sprite fusion can eliminate moving objects from the assertive or
conservative mosaic given the motion parameters. We cleaned
up, optimized, and improved the original sprite generator tool
and then added new modules for this project.

III. OBJECT MOSAICKING
In this section, we propose our object mosaicking method.

As mentioned in the previous section, the first step of mosaic
generation is the global motion estimation. The global motion
estimation may represent the camera motion if the camera is
moving and the (moving) objects in the video are small. One of
the problems for background mosaic generation is the presence
of large objects. If the moving object is very large (e.g., if it
occupies a half of a frame), the background mosaic cannot be
generated, because the motion does not correspond to the
camera motion anymore. In our object mosaicking, we are
going to get benefit from this limitation.

Object Mosaicking is the process of recreating a single
object from the parts of the object present in all frames of the
video in question. To be able to generate the object mosaic, we
should be able to determine the object motion. One challenge is
that the size of the object might be respectively small. Another
challenge is that the object might be partially visible due to
occlusion by other objects. If we are able to reduce the region
to be processed about the size of the object, the mosaic to be
generated will be equivalent to the mosaic of the object.

The steps of our method are provided in Fig. 1. The two
major steps are automatic border detection and temporal
texture elimination. Automatic border detection is used if the
object is being captured from a structured but textured and
limited view. The automatic border detection system finds
automatically which areas of the picture contain “useless” data
and then ignores those areas.

Fig. 1. Object mosaicking method

Temporal texture elimination step generates a texture map
for each frame to develop a clear mosaic by eliminating areas
that contain similar textures or colors which could cause
inaccurate mosaic generation. Temporal texture elimination
enables to focus on mostly the object area since the non-
moving background is static.

Consider the following notation for this section:

Notation Explanation
fi ith frame of the input video

fi[*,k] the kth column of frame fi
fi[m,*] the mth row of frame fi
fi

u[*,k] the upper half of the kth column of frame fi
fi

b[*,k] the bottom half of the kth column of frame fi
fi

l[m,*] the left half of the mth row of frame fi
fi

r[m,*] the right half of the mth row of frame fi
W the width of a frame
H the height of a frame
Ρ gap between two columns or rows

Mode the most frequent value

countIF
returns the number of values that satisfies a

condition in a set
µ functioning returning the average value

A. Automatic Border Detection
Automatic Border Detection involves the determining the

irrelevant object regions in the video, i.e., the parts where no
movement exists, and telling our tool to ignore those parts.
Algorithm 1 provides our algorithm for automatic border
detection. Firstly, the left, right, top, and bottom borders are
found for each frame. Rather than comparing consecutive
columns or rows, rows and columns ρ pixels apart are

evaluated to determine the change of average intensity. Since
(top and bottom) or (left and right) sides of a frame may differ,
each column and each row is divided into half. Since there
could be many candidate borders, the algorithm determines the
left-most (or top-most) and the right-most (or bottom-most)
borders (marked red (re-edited to highlight the border) in Fig. 2
(a)). After determining the borders of a frame, the system finds
the mode (or the most frequent border) of all borders from all
frames. Fig. 2 (b) displays the frame after out-of-border area is
eliminated.

Algorithm 1: Automatic Border Detection
IN: A video with n frames
OUT: L (left), R (right), U (Top), B(bottom) borders
VARIABLES:
δi: candidate vertical borders of fi
δi

l: left border of fi; δi
r: right border of fi

λi: candidate horizontal borders of fi
λi

u: top border of fi; λi
b: bottom border of fi

begin
 for i = 0 to n do
 for k=1 to (w/δ)-1 do
 if |µ(fiu[*,k]) - µ(fiu[*,k-1])|≥τ
 and |µ(fib[*,k]) - µ(fib[*,k-1])|≥τ then
 δi ← δi U {k}
 endif
 δil=min(δi)+1; // the left border
 δir=(min(δi)-1) if (δir+1)∉ δi //the right border
 endfor
 for m = 1 to (h/ ρ)-1 do
 if |µ(fil[m,*]) - µ(fil[m-1,])|≥τ
 and |µ(fiu[m,*]) - µ(fiu[m-1,*])|≥τ then
 λi ← λi U {m}
 endif
 λi u=min(λi)+1; // the top border
 λi b=(min(λi)-1) if (λib+1) ∉ λi // the bottom border
 endfor
 endfor
 L=mode(δil); R=mode(δir); U=mode(λiu);
 B=mode(λib);
 where 0≤i<n // left, right, top, bottom borders
end

Border
Detection Input video

Generate
Texture
Mask

Detect
Motion

Blend frames
and output

(c)

Fig. 2. Automatic border detection a) red borders indicate left and right borders, b) scene after border removal, and c) the texture mask
for car example.

(a) (b)

B. Static Temporal Texture Elimination
Temporal texture elimination involves scanning the parts of

the video left after automatic border detection and generating a
texture map that eliminates any homogenous parts of the
remaining part of the video. The static temporal texture
elimination algorithm is provided in Algorithm 2. The frame
difference between consecutive frames is computed. The
difference frame is split into macro-blocks. If the number of
difference values that are equal to 0 is more than the half, the
macro-block is considered as a texture block and not used for
object mosaicking. Fig. 2 (c) displays the mask for texture
mask elimination. The white regions correspond to object and
the black regions correspond to the texture area.

 Algorithm 2: Static Temporal Texture Elimination

ASSUME: macro-block size is 16x16.
IN: frames fi and fi+1(size: h x w)
begin
 ∆f=|fi-fi+1| // difference of images
 Split into ∆f into macroblocks
 row= h/16; column=w/16
 for i = 1 to row do
 for j = 1 to column do
 foreach MB(i,j) do
 if countIF(MB(i,j),’=0’)>((16*16)/2) then
 eliminate MB(i,j) // static texture
 else MB(i,j) belongs to object
 endif
 endfor
 endfor
end

C. Mosaic Generation for an Object
There are several factors that affect the quality of a mosaic.

The GME is the first step of the mosaic generation. An error on
GME will lead errors on warping and, hence, on the blending.
GME is sensitive to a number of factors: the motion model that
is used by the GME component; the varying depth in the scene;
the resiliency of GME to static patterns; and other objects that
do not conform to the global motion. The blending is also
critical when GME introduces errors. Averaging technique
blurs the mosaic; however, it is more resilient to errors in
GME. Sprite fusion technique produces sharper mosaic;
however, it is more sensitive to GME. Sprite fusion is not
affected by slow moving objects or patterns in the scene or

object. We use average, assertive, and conservative mosaics in
our experiments.

IV. EXPERIMENTS
For the experiments we have chosen a set of 3 videos (Fig.

3). A toy car was chosen that has a variable continuous pattern
along the side and complex motion with the wheels. A toy train
example was chosen since it had text on the side of it. The final
experiment was a face. This was chosen because of the
complex nature of aligning parts of a face. In our test videos,
the target object is partially visible since the target object is
occluded. We have generated the videos in our lab. Although at
first sight the green background may be considered as simple,
it deteriorates the performance of the global motion estimation.
If the majority of the background is static as in our example,
GME usually yields almost no motion.

Traditional mosaic generation. Before providing the
results of the proposed approach in this paper, we would like to
present the results of traditional approaches. Fig. 4 (a) shows
the results of traditional mosaics for the car example. In Fig.
4(a), we do not apply any pre-processing and get the blurred
partial car with the presence of the borders. The major reason is
that the original GME targets the global motion. In Fig. 4(b),
we present the results after identifying the borders and just
processing the area within the borders. The car image is still
blurry. We are able to obtain a rough overview of the car but it
is very blurry and does not contain all details of the car.

(a)

 (b)
Fig. 4. Traditional mosaics for the car example a) without border

detection and b) with border detection.

(a) (b) (c)

Fig. 3. Sample frames a) car, b) train with text, and c) face

Experimental Results using Border Detection Without
Texture Elimination. The result for car sequence is provided
in Fig. 4 (b). Fig. 5 provides the results for the train and the
face examples using the areas within the border. The text on
the body result of the train car is blurred and not readable.
However, we were able to get somewhat acceptable mosaic for
the face example. The reason is that after considering the areas
within the borders, the face occupies the majority of the scene.
Therefore, GME detects the motion of the face. The border
detection made a significant improvement on the mosaic
generation. However, the mosaics are still blurred significantly.

(a) (b)

Fig. 5. Traditional mosaics after detecting the borders and considering the
area within the borders a) train example and b) face example.

Experiments with the Border detection and Texture
Elimination.

Car. The three results of blending (averaging, assertive, and
conservative) are close to each other with small errors in each
one of them (Fig. 6). The average blending produced an image
that is fairly blurry especially in the wheels where the complex
motion existed (Fig. 6 (a)). The assertive blending created a
more detailed object. The spokes in the wheels are easier to
distinguish but the roof of the car was cut off early (Fig. 6 (b)).
The conservative blending created a slightly elongated car but
the wheels are very distinguishable (Fig. 6 (c)).

Train. For the train test the biggest thing was the readability
of the text on the side. Due to the scaling of these images a lot
of the details where lost. The average mosaic created a very
readable text on the larger images (Fig. 7 (a)). The assertive

mosaic produced text that was readable but it was slightly
misaligned (Fig. 7 (b)). The conservative mosaic was very
close to the assertive except it doubled the letters at the end of
the last word (Figure 7 (c)).

For the face experiment the blending results for all except
one method was almost perfect. Both the average (Fig. 8 (a))
and assertive (Fig. 8 (b)) blending produced nearly perfect
results. The conservative (Fig. 8 (c)) blending produced
misaligned results that can be attributed to an error in motion
detection. For this test we have provided a graph of the PSNR
(Peak Signal-to-Noise Ratio) values that represents the
correctness of our mosaic (Fig. (9)). The dip in the left and
right sides of the values can be due to the object not actually
appearing in the frame at that moment. The average PSNR
value is 28.66. The PSNR values are generated by regenerating
the object regions using the estimated global motion and
comparing the regenerated image to the original images used
for generating the mosaic (by first computing the minimum
squared error).

Discussion. One problem that we faced while preparing our
experimental data is the automatic zooming of the camera.
Since the target object was occluded by another object that was
closer to the camera, automatic zooming tends to maintain
focusing on the closer object not the target object. This led to
blurring of the target object to be mosaicking even before any
mosaicking is applied.

When we compare three blending techniques for
mosaicking, the averaging technique in general provides an
overall structure of the target object properly with some
blurring. On the other hand, assertive and conservative
mosaicking techniques provide sharp object mosaics, however,
if the global motion is not estimated correctly, it causes
discontinuity and line breakings. We believe that these three
mosaicking techniques complete each other. If the global
motion is estimated properly, assertive and conservative
mosaic generation algorithms can outperform the averaging
technique. If the global estimation is poor, averaging technique
can be preferred to assertive and conservative mosaics.

(c) Conservative (b) Assertive (a) Average
Fig. 6. Object mosaics for car example.

(c) Assertive (b) Assertive (a) Average
Fig. 7. Object mosaics for car example.

V. CONCLUSION

In this paper, we proposed object mosaicking. Object
mosaicking may help users to build a complete view of an
object from partial views of an object. Two major steps are
automatic border detection and temporal texture elimination.
We have tested our algorithm on a different set of videos.

We were able to generate the objects at a satisfactory level.
We have obtained very good results for generating the mosaic
of a face. Our results for object mosaicking are promising.
Especially, the mosaic for face was very good in terms of
visual quality and PSNR values. While average blending
produced blurred but acceptable mosaics, the assertive and
conservative mosaics generated sharper but sometimes slightly
misaligned mosaics.

We have obtained promising results for the future work.
However, we had to conduct many experiments until we get
the desired results. The parameters for our experiments are
related to the threshold gap between rows/columns of the
border selection, 2D motion models (affine, translational, pan-
tilt-zoom), and starting and ending frames of a sequence. For
future work, the most critical improvement is needed for the
object motion estimation. In addition, we plan to test our
system for outdoor environments and see the performance of
object detection with various types of limited view or object
occlusion. We plan to increase the number of videos to be
tested. The view of the object may appear in any type of
convex or concave region. We plan to extend our research for
different types of view with extended border detection.

REFERENCES
[1] www.facebook.com
[2] www.twitter.com
[3] www.cnn.com
[4] T. Sikora. The mpeg-4 video standard verification model, IEEE Trans.

Circuits Syst. Video Technology 7 (1997) 19–31, 1997.
[5] J.-H. Lai; C.-C. Kao; S.-Y. Chien, "Super-resolution sprite with

foreground removal," Multimedia and Expo, 2009. ICME 2009. IEEE
International Conference on , vol., no., pp.1306-1309, June 28 2009-
July 3 2009.

[6] M. Kunter, P. Krey, A. Krutz, and T. Sikora, "Extending H.264/AVC
with a background sprite prediction mode," Image Processing, 2008.
ICIP 2008. 15th IEEE International Conference on , vol., no., pp.2128-
2131, 12-15 Oct. 2008.

[7] P. Parikh and C.V. Jawahar, , "Enhanced Video Mosaicing using
Camera Motion Properties," Motion and Video Computing, 2007.
WMVC '07. IEEE Workshop on , vol., no., pp.26, Feb. 2007

[8] H.-K. Cheung and W.-C. Siu, "Robust global motion estimation and
novel updating strategy for sprite generation," Image Processing, IET ,
vol.1, no.1, pp.13-20, March 2007.

[9] T. Wang, Z. Zhu, and C.N. Taylor, "Multimodal Temporal Panorama for
Moving Vehicle Detection and Reconstruction," Multimedia (ISM),
2011 IEEE International Symposium on , vol., no., pp.571-576, 5-7 Dec.
2011

[10] Y. Chen, A.A. Deshpande, and R.S. Aygun, “Sprite generation using
sprite fusion.” ACM Trans. Multimedia Comput. Commun. Appl. 8, 2,
Article 22 (May 2012), 24 pages.

[11] Y. Chen and R.S. Aygün. "Synthetic Video Generation for Evaluation of
Sprite Generation." IJMDEM 1.2 (2010): 34-61. Web. 21 Sep. 2012.
doi:10.4018/jmdem.2010040103

(c) Conservative (b) Assertive (a) Average
Fig. 8. Object mosaics for face example.

 Fig. 9. PSNR values for the face experiment.

	I. Introduction
	II. Background
	III. Object mosaicking
	A. Automatic Border Detection
	B. Static Temporal Texture Elimination
	C. Mosaic Generation for an Object

	IV. Experiments
	V. Conclusion
	References

