
 1

Improving Global Motion Estimation Using Texture Masks

Yi Chen

Computer Science Department

University of Alabama in Huntsville

Huntsville, USA

yichen@cs.uah.edu

Ramazan S. Aygün

Computer Science Department

University of Alabama in Huntsville

Huntsville, USA

raygun@cs.uah.edu

Abstract— Global motion estimation (GME) is a critical step

for image alignment, image registration, and sprite generation.

Direct methods use all pixels to estimate the motion.

Eliminating pixels for GME is important since it may reduce

the processing time and may also help to obtain correct motion

parameters. In this paper, we firstly consider using fixed

masks to observe the performance of GME. Then, we generate

and use texture masks to eliminate texture regions to improve

the performance of GME. The texture regions may include

water, grass, ground, sky, etc. Our results indicate that

adapting suitable masks reduces the processing time and

improves the correctness of GME.

Keywords- Sprite Generation; Global Motion Estimation;

Texture Masks

I. INTRODUCTION

Global motion is usually considered as the transformation
of pixel coordinates due to camera motion. 2D Global
motion estimation (GME) uses a transformation matrix to
represent this transformation. GME plays a critical role in the
quality of sprite generation. Since most GME algorithms are
based on optimization (minimization or iterative) algorithms
[1], these algorithms might get trapped in local minimum
due to regions having surrounding similar regions. There
might be multiple regions in the target frame that a current
region can map to. Our motivation can be shown with the
example in Fig. 1. The selected macro-block in Fig. 1(a) can
map to two different macro-blocks in Fig. 1(b). This macro-
block or region hardly contributes to correct GME. For this
example, it might be better to use the marked upper regions
of two frames for GME than to use the whole frames. We
believe that texture such as water, sky, and grass that follows
a certain pattern may not help to the GME in sprite
generation. They are better to be avoided in GME due to
time efficiency and correctness.

 Figure 1. Texture problem in GME

There had been research in the past to eliminate some
pixels and to use a subset of pixels for GME. Keller et al. [2]
divide frame into 100 subregions, and choose top 10% of
largest gradient magnitude pixels in each subregion for
GME. Wang et al. [3] add their region partition model to
Keller's method to select the pixels. Alzoubi et al. [4]
improve Keller’s method by proposing fixed subsampling
patterns and choosing one pixel for a group of neighboring
pixels. On the other hand, Qi et al. [5] use hierarchical
differential GME for video segmentation. In [6], the regions
that do not have significant changes are called as
“insignificant” or “detail-irrelevant” regions for video
coding, and these regions are not transmitted to the receiver.
In [7], the system uses a feature extraction method to create a
dictionary of textures to distinguish objects from shadows.

Gradient-based pixel choosing methods may also pick up
regions of textures that has high gradient magnitudes but not
helpful for GME. Those methods may also benefit from our
texture masks or fixed masks by just avoiding unnecessary
regions of a frame. In this sense, any GME algorithm
whether it is hierarchical or not may benefit from our
proposed masks.

In this paper, we show that eliminating textures improves
the running time and accuracy of GME. Since our goal is just
to show the impact of textures, we did not use complex and
unnecessary texture detection algorithms. Meanwhile, we
also show that the majority of fixed masks can work fine for
GME, and these masks may not heavily depend on the video
content.

This paper is organized as follows. The following section
describes fixed masks and texture mask generation method.
Section III explains experimental results and the last section
concludes our paper.

II. OUR METHOD

In this paper, we firstly, propose a variety of fixed masks

and see whether they influence the final sprite and time

performance. Secondly, we propose a texture mask

generator (TMG) algorithm to automatically detect

repeating textures such as water and grass whether they

appear on a foreground object or not.

A. Fixed-Mask Collection

In our mask collection, we adapt 6 types of masks:
center, diagonal, horizontal band, vertical band, horizontal,
and vertical. Fig. 2 presents the general masks we adapted. A

raygun
Text Box
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The final published version is available at http://dx.doi.org/10.1109/ISM.2011.103.

 2

fixed mask can be chosen based on the layout of a video
frame.

Center0 Center1 Diagonal0 Diagonal1

Diagonal2 Diagonal3 Hor2M0 Hor2M1

Ver2M0 Ver2M1 Horizon0 Horizon1

Vertical0 Vertical1

Figure 2. 6 types of masks

B. Texture Mask Generation

Rather than using a fixed mask based on the video layout,

we may automatically identify macro-blocks that are not

helpful for GME by our texture mask generation (TMG)

algorithm (Algorithm 1). Our method checks whether a

macro-block resembles to its surrounding.

Frame No

13

(a)

1

(b)

0 (c)

112

(d)

4

(e)

Figure 3. Sample frames of (a) Stefan (b) Coastguard (c) Seashore (d)
Cooking show (e) Obelisk

 We resize and divide the selected frame into macro-blocks

having size 16*16. Fig. 3 shows sample frames of selected

sequences. The first column shows the selected frame to

apply our algorithm. We have only used one frame to

generate a texture mask. There is no comparison or mapping

between frames. We consider a window of [-8, 8] in both

horizontal and vertical directions.

For every macro-block in the frame, we consider the

following three steps. First, we compute the Sum of

Absolute Differences (SAD) between the current macro-

block and neighbor macro-blocks:

 
 



15

0

15

0

),(),(]),[],,[,(

r s

skrmIsjriIkmjiISAD

, where I corresponds to the current frame; and [i,j] and

[m,k] corrrespond to positions of two macroblocks to be

compared. Let MBmin be the macro-block with the minimum

SAD (SADmin). We apply a threshold τ on SADmin to

determine whether the current macro-block is similar to

MBmin. If the SADmin is greater than a threshold τ, we

consider that the current macroblock is different from all its

neighbor macro-blocks. Otherwise, the current macro-block

and MBmin might be similar.

Second, we check how many other neighbor macroblocks

have similar texture as the current macro-block. If the

difference between the SAD of a neighbor macroblock and

SADmin is less than a threshold α, we consider this neighbor

macro-block is also similar to the current macro-block. We

used α as 256 and τ as 1280 in our experiments.

At last, we mark the current macro-block as texture mask

region if it has at least two similar neighbor macro-blocks.

Algorithm 1 provides steps of the algorithm.

Algorithm 1: Texture Mask Generation

ASSUME: macro-block size is 16x16.

IN: frame f(size: height x width),

Search window [-p,p]

begin

 resize frame f

 row= height/16; column=width/16

 for i = 1 to row do

 for j = 1 to column do

 foreach MB(i,j) do

 store SAD(f,[i*16,j*16],[m,k]) where

 i*16-p≤m≤i*16+p j*16-p≤k≤j*16+p in

 SADArray, where m!=i*16 and k!=j*16

 maintain minimum SADmin for MB(I,j)

 endfor

 if SADmin ≥ τ then

 MB(i,j) is not a texture macroblock

 elseif |{SADval|SADval SADArray[i,j]

 and SADval-SADmin<α}| ≥2 then

 MB(i,j) is a texture macro-block

 else MB(i,j) is a texture macro-block

 endfor

 endfor

end

 3

III. EXPERIMENTS AND EVALUATION

We applied our algorithm on sequences such as Stefan,

Coastguard, Seashore, Obelisk, and Cookery. We also
generated the corresponding sprite using the sprite fusion
method [8] to observe the correctness of the sprite.
Moreoever, we use peak signal-to-noise ratio (PSNR):

nm

jifjif

MSE

m

i

n

j

*

)],(),([(

0 0

2'

 
 





MSE
PSNR

255
log*20 , where f is the original frame

and f’ is the regenerated frame from the sprite. The average
PSNR (of all frames) is used as a measure. We also compute
the processing time to determine the improvement using
masks.

A. Performance of TMG

In our experiments we do not consider the preprocessing
time to generate the mask since it is computed once.

Case 1. Texture masks enable sprite generation of
videos where original sprite generation algorithm fails.
We used frames from 50 to 112 of Cookery show video. Fig.
4 presents the texture mask generated from frame 112, and
its corresponding binary version. In Fig. 5, it can be seen that
the sprite cannot be generated correctly by using the
traditional GME. If we use the texture mask in Fig. 4 (b), the
sprite can be generated properly. Note that our aim is to
remove the texture area. Removal of textures whether they
appear on the background or foreground object can improve
the correctness of GME.

(a) (b)

Figure 4. Cookery show video (a) texture mask (b) binary texture mask.

 (a)

(b)

Figure 5. Sprite for Cookery show (a) without texture mask (b) with texture

mask

Case 2. Texture masks improve PSNR and reduce the
processing time. We generated texture masks for two
scenery videos including Seashore and Obelisk videos.

These videos have textures in the scene such as water, rock,
sky, and forest. Texture masks can be generated for any
video. Our method tries to locate the macro-blocks which
resemble to their neighbor macro-blocks regardless of
texture type. Fig. 6 and Fig. 8 present the texture masks and
corresponding binary versions for Seashore and Obelisk
videos, respectively. In Fig. 8, the right boundary is not
selected because of the black border. Fig. 7 and Fig. 9 show
traditional sprites and sprites using texture masks for these
two videos. In the case of Seashore, the average PSNR value
of traditional sprite is 24.924, and TMG improves PSNR by
0.56. For Obelisk video, the PSNR of TMG sprite is 0.6
more than the PSNR value of the traditional sprite (21.27).

The number of frames of Cookery, Seashore and Obelisk
videos are 63, 279, and 119, respectively. Table I shows
time performance of GME with TMG against the traditional
GME. The mask area of Cookery video is nearly 34% and
GME saves 3.37 second on the average per frame. The mask
areas of Seashore video and Obelisk are nearly 39%, the
GME saves 0.3 and 0.63 seconds on the average per frame,
respectively.

Summary. Using texture masks reduces running time
15% to 40% in our current evaluations. It enables to generate
sprite for videos that were not possible to generate the sprite.
Removal of texture regions helps global motion estimation
and correct sprite generation. The Cookery example in Fig. 5
is an example of this.

 (a)
 (b)

Figure 6. Seashore video (a) texture mask (b) binary texture mask.

 (a) (b)
Figure 7. Sprite for Seashore (a) with texture mask (b) without texture

mask

(a)
(b)

Figure 8. Obelisk video (a) texture mask (b) binary texture mask.

TABLE I. TIME PERFORMANCE OF GME WITH TEXTURE MASK

Video
Time performance

Time With Texture Mask (sec)
Improved Time

per frame(sec)

Cookery 702.19 489.46 3.37

Seashore 326.245 349.797 0.3

Obelisk 326.3 247.883 0.65

 4

 (a)

 (b)

Figure 9. Sprite for Obelisk (a) with texture mask (b) without texture mask

B. Performance of Fixed Masks

We check how different masks influence the efficiency
and correctness of GME. We test different fixed masks on
coastguard and Stefan sequences. These two sequences have
some texture areas such as green court texture or water. We
also use object mask when we process Stefan video. Fig. 10
and Fig. 11 present the texture masks that are generated for
Coastguard and Stefan videos, respectively.

(a) (b)

Figure 10. Coastguard video (a) texture mask (b) binary texture mask.

(a) (b)

Figure 11. Stefan video (a) texture mask (b) binary texture mask.

Table II presents processing time of GME when applying
different masks (including fixed masks) on Stefan and
Coastguard videos. Each statistics should be evaluated
within each video. It should be analyzed with the following
question: how much does a specific mask orientation of
specific size improve running time and does it generate the
sprite correctly?

Table II is not a comparison of results of two videos. Fig.
12 and Fig. 13 present the corresponding sprites for Stefan
and Coastguard videos, respectively. Sprites for Coastguard
and Stefan videos start with C1 and S1, respectively. (See
Table II, Fig. 12, and Fig. 13)

Most masks generate good quality sprite. For Stefan
video, using 46.7% of pixels in the center mask create
blurred part in the audience on the left in sprite. The upper
part of frames is important since Diagonal0 or Diagonal3
masks that miss upper part either create sprite with
misalignment or unable to generate sprites. Left-top triangle
part of frame is more important than right top triangle part
since Diagonal1 (S5) mask creates the best sprites and saves
30% of time as the audience on the left side of sprite got

blurred by applying Diagonal2. Horizontal masks (S8, S9 and
S12) stretch left audience part on the sprite. Ver2M0 mask
(S11) causes misalignment in the top left corner on the
audience side of the sprite. The average PSNR values are
21.98 for traditional sprite and 22.29 for sprite using texture
mask (S16).

 We used frame 120 to frame 300 in Coastguard video.
We found that all masks reduce the processing time for this
video. Without any mask (C1), there exists small
misalignment in the middle of the sprite. By using 40% of
boundary pixels (C2) rather than the center pixels, we are
able to generate correct sprite. However, 53% of center
pixels are not enough to generate the correct sprite. C2 saves
0.28 second on the average per frame for GME. The upper
region of frames is needed for GME as Diagonal0, Diagonal3,
Hor2M0, and Horizon1 masks generate incorrect sprites.
Using 50% of pixels (upper left triangle C5 , upper right
triangle C6, bottom part C9, left part C14, or right part of the
frame C15), or one third of pixels from the vertical center
C10, or two thirds of pixels C11 at vertical sides can save
0.21-0.29 seconds per frame. Using two thirds of horizontal
pixels can save 0.346 seconds per frame in GME, and
generate correct sprite. Our method can save 0.19 seconds
per frame by only ignoring texture macro-blocks (40% of the
frame) in the frame.

SUMMARY. CURRENTLY OUR MASKS OCCUPY FROM 38%

TO 60% AND MAJORITY OF MASKS CAN BE USED TO GENERATE

SPRITES. COMPARISON OF MASKS MAY ALSO HELP US

DETERMINE THE OPTIMUM SIZE OF A MASK. THE FIXED MASK

MAY NOT HEAVILY DEPEND ON THE VIDEO CONTENT. THIS

MAY BE DUE TO THE SIZE OF FIXED MASKS. HOWEVER, THE

QUALITY OF SPRITE DEPENDS ON THE MASK TO SOME EXTENT.
TO DETERMINE THE BEST MASK SOME OBJECTIVE MEASURES

SUCH AS PSNR CAN BE USED. DIAGONAL MASKS MAY

PRODUCE SPRITE WITH GOOD QUALITY. THEY MAY BE USED

ACCORDING TO THE COLOR LAYOUT OF THE FRAME. OUR

GOAL IS NOT TO USE THE FIXED MASKS RANDOMLY BUT THE

EVENTUAL GOAL IS TO DETERMINE WHICH FIXED MASK TO

USE BASED ON THE COLOR LAYOUT OF VIDEO FRAMES IN

FUTURE WORK.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a collection of fixed
background masks for frames to check how texture masks
influence the efficiency and correctness of GME. We also
proposed a texture mask generator (TMG) to identify the
macro-blocks that contribute least to GME for sprite
generation. Our method and results indicate that applying
texture masks reduces the time complexity significantly. It
may reduce 15% to 40% of GME time. In addition, the
majority of fixed masks works fine with GME. This
indicates a variety of masks can be used for GME. Using
texture masks enables to generate sprite for videos that were
not possible to generate the sprite. As future work, we plan
to generate a different variety of masks and to generate the
mask at intervals. We plan to figure out the optimum size of
masks to use, and to select the fixed masks according to the
color layout of video frames. In addition, we plan to improve
computation time of GME using texture masks.

 5

Stefan Video

S1

S5

S8

S9

S11

S12

S16

Figure 12. Stefan sprites using different texture and fixed masks

 6

TABLE II. BACKGROUND MASK STATISTIC RESULTS ON COASTGUARD AND STEFAN VIDEOS
Mask Type Videos

Coastguard Stefan

Texture mask Mask Area Time (sec) (%) Sprite Mask Area Time (sec) %() Sprite

None 0 196.225(100%) C1 Foreground 1192.82(100%) S1

Center0 112*84 (37.98%) 150.696 (76.8%) C2 126*94 (46.7%) 1041.491(87.3) S2

Center1 13300 (53.6%) 144.924 (73.9%) C3 S3

Diagonal0

172*72(50%)

150.688 (76.8%) C4

176*60 (50%)

791.976(66.4%) S4

Diagonal1 143.788 (73.3%) C5 843.016(70.7%) S5

Diagonal2 152.360 (77.6%) C6 784.463(65.8%) S6

Diagonal3 140.072 (71.4%) C7 Unable S7

Hor2M0 172*84 (58.3%) 134.484(68.5%) C8 176*72 (60%) 726.607(60.9%) S8

Hor2M1 172*60 (41.6%) 150.192(76.5%) C9 176*48 (40%) 977.089(81.9%) S9

Ver2M0 102*144(59.3%) 139.466(71.1%) C10 102*120 (57.95%) 782.737(65.6%) S10

Ver2M1 70*144 (40.7%) 150.380 (76.6%) C11 74*120 (42.05%) 980.338(82.2%) S11

Horizon0 172*72(50%) 148.398(75.6%) C12 176*60 (50%) 865.021(72.5%) S12

Horizon1 172*72(50%) 139.821(71.3%) C13 176*60 (50%) 733.180(61.5%) S13

Vertical0 86*144(50%) 145.548(74.2%) C14 88*120 (50%) 926.268(77.7%) S14

Vertical1 86*144(50%) 155.928(79.5%) C15 88*120 (50%) 784.460(65.8%) S15

TMG 40.4% 160.857(82%) C16 27.2% 1026.6 (86%) S16

 ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under Grant No. 0812307.

REFERENCES

[1] A Smolic and T Sikora, "Long-term global motion estimation and
its application for sprite coding, content description, and
segmentation" TCSVT 1999.

[2] Y.Keler and A.Averbuch, “ Fast gradient methods based on global
mtoion estimation for video compression” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 4, pp.
300–309, Apr. 2003.

[3] H. Wang, J. Wang, Q. Liu, and H. Lu, "Fast Progressive Model
Refinement Global Motion Estimation Algorithm with Prediction",
in Proc. ICME, 2006, pp.125-128.

[4] H. Alzoubi and W.D. Pan, "Very Fast Global Motion Estimation
using Partial Data", in Proc. ICASSP (1), 2007, pp.1189-1193.

[5] B. Qi, M. Ghazal and A. Amer, “Robust Global Motion Estimation
Oriented to Video Object Segmentation”, IEEE Transactions on
Image Processing, vol. 17, no. 6, pp. 958-967, June 2008.

[6] Bosch, M.; Fengqing Zhu; Delp, E.J.; , "Spatial Texture Models
for Video Compression," Image Processing, 2007. ICIP 2007.
IEEE International Conference on , vol.1, no., pp.I-93-I-96, Sept.
16 2007-Oct. 19 2007

[7] Leone, A.; Distante, C.; Ancona, N.; Stella, E.; Siciliano, P.; ,
"Texture analysis for shadow removing in video-surveillance
systems," Systems, Man and Cybernetics, 2004 IEEE International
Conference on , vol.7, no., pp. 6325- 6330 vol.7, 10-13 Oct. 2004

[8] Y Chen, A.A Deshpande and RS Aygun. “A Novel Sprite
Generation Method Using Sprite Fusion,” ACM Transactions on
Multimedia Computing,Communications and
Applications.(Accepted)

Coastguard Result

 C1 C2 C5

CCC_3

C6 C9 C10

C11 C12 C14

C15 C16
Figure 13. Coastguard sprites using different texture and fixed masks

