Model Checking Software
Volume 2318 of the series Lecture Notes in Computer Science pp 205-212. The final publication is available
at Springer via http://dx.doi.org/10.1007/3-540-46017-9_15.

Modeling and Verification of Interactive Flexible

Multimedia Presentations Using
PROMELA /SPIN *

Ramazan Savag Aygiin and Aidong Zhang

Department of Computer Science and Engineering,
State University of New York at Buffalo,
Buffalo NY 14260-2000, USA,
{aygun,azhang}@cse.buffalo.edu

Abstract. The modeling and verification of flexible and interactive mul-
timedia presentations are important for consistent presentations over
networks. There has been querying tools proposed whether the speci-
fication of a multimedia presentation satisfy inter-stream relationships.
Since these tools are based on the interval-based relationships, they can-
not guarantee the verification in real-life presentations. Moreover, the
irregular user interactions which change the course of the presentation
like backward and skip are not considered in the specification. Using
PROMELA/ SPIN, it is possible to verify the temporal relationships
between streams using our model allowing irregular user interactions.
Since the model considers the delay of data, the author is assured that
the requirements are really satisfied.

1 Introduction

There have been models proposed for the management of multimedia presen-
tations. The synchronization specification languages like SMIL [10] have been
introduced to properly specify the synchronization requirements. Multimedia
query languages have been developed to check the relationships defined in the
specification [5]. These tools check the correctness of the specification. However,
the synchronization tools do not satisfy all the requirements in the specification
or put further limitations. Moreover, the specification does not include user inter-
actions. The previous query-based verification techniques cannot verify whether
the system remains in a consistent state after a user interaction.

There are also verification tools to check the integrity of multimedia presen-
tations [7]. The user interactions are limited and interactions like backward and
skip are ignored. This kind of interactions is hard to model. The Petri-Nets are
also used to verify the specification of multimedia presentations [9]. But Petri-
Net modeling requires complex Petri-Net modeling for each interaction possible.
Authors usually do not have much information about Petri-Nets.

* This research is supported by NSF grant 1IS-9733730 and NSF grant 11S-9905603.

raygun
Text Box
Model Checking Software
Volume 2318 of the series Lecture Notes in Computer Science pp 205-212. The final publication is available at Springer via http://dx.doi.org/10.1007/3-540-46017-9_15.

PROMELA/SPIN is a powerful tool for modeling and verification of soft-
ware systems [6]. Since PROMELA /SPIN traces all possible executions among
parallel running processes, it provides a way of managing delay in the presenta-
tion of streams. In this paper, we discuss the properties that should be satisfied
for a multimedia presentation. We report on the complexity introduced by user
interactions. The experiments are conducted for parallel, sequential, and syn-
chronized presentations.

This paper is organized as follows. The synchronization model and PROMELA
are discussed in Section 2. Section 3 explains the properties that should be sat-
isfied for a multimedia presentation. Section 4 reports the experiments. The last
section concludes our paper.

2 DModeling of a Multimedia Presentation

The synchronization model is based on synchronization rules [2]. Synchroniza-
tion rules form the basis of the management of relationships among the multime-
dia streams. Each synchronization rule is based on the Event-Condition-Action
(ECA) paradigm. Our synchronization model has receivers, controllers and ac-
tors to handle events, condition expression and actor expression, respectively.
Timelines are kept for receivers, controllers, actors and actions to keep track
when events are signaled, when conditions are satisfied, and when actions start
and end. This synchronization model is favored over the others since it allows
interactions that change the course of the presentation.

2.1 Presentation

The presentation can be in idle, initial, play, forward, backward, paused, and
end states (Figure 1 (a)). The presentation is initially in the idle state. The user
interface is based on the model presented at [3]. When the user clicks START
button, the presentation enters play state. The presentation enters end state
when the presentation ends in the forward presentation. The presentation enters
the initial state when it reaches its beginning in the backward presentation. The
user may quit the presentation at any state. Skip can be performed in play,
forward, backward, initial, and end states. If the skip is clicked in play, forward,
and backward states, it will return to the same state unless skip to initial or end
state is not performed. If the presentation state is in end or initial states, skip
interaction will put into the previous state before reaching these states.

2.2 Containers and Streams

A container or a stream may enter 4 states. A container is in IdlePoint state
initially. Once started, a container is at InitPoint state in which it starts the
containers and streams that it contains. After the InitPoint state, a container
enters its RunPoint state. In RunPoint state, a container has some streams that
are being played. When all the streams it contains reach their end or when the

play-backwatd

RurPoint

(a)

Fig. 1. (a) Presentation states (b) container states (c) stream states

container is notified to end, it stops execution of the streams and signals its end
and then enter idle state again. In the backward presentation, the reverse path
is followed (Figure 1 (b)). If a stream has to signal an event, a new state is added
to RunPoint state per event. So after the stream signals its event, it will be still
in RunPoint state (Figure 1 (c)). The following is a portion of a PROMELA
code for playing a stream:

1 proctype playStream (byte stream) {

2 #if (FC==3 || FC==4 || FC==5 || FC==6)

3 progressIdleStreams:

4 #endif

5 do

6 #if FC!=4

7 : atomic{ (eventHandled && getState() == RUN) &&
8 (getStream(stream) == INIT_POINT) ->

9 setStream(stream, RUN_PQOINT);

10 if

11 (stream==A1)->timeIndex=1;

12 1: else -> skip;

13 fi; }

14 : atomic{ (eventHandled && getState() == RUN) &&
15 (getStream(stream) == RUN_POINT) ->

16 setStream(stream, END_POINT);}

17 :: atomic{ (eventHandled && getState() == RUN) &&
18 (getStream(stream) == END_POINT) ->

19 to_end: setStream(IDLE_POINT);

20 signalEvent (stream,END_POINT) }

21 #endif

45 :: atomic{ (eventHandled && getState() == QUIT) ->

46 to_playStream_quit: goto playStream quit;}

47 11 else -> skip;
43 od;
49 playStream quit: skip;}

The #if directives are used for hard-coded fairness constraints. There are 3
states for forward and backward presentations. The cases at lines 7, 14 and 17
correspond to forward presentation. The case at line 45 is required to quit the
process. The else statement at line 49 corresponds to IdlePoint state. Streams
signal events as they reach the beginning and end (lines 23 and 30). The variable
eventHandled is used to check whether the system enters a consistent state after
an user interaction. The checking and updating the stream state have to be
performed in a single step since the stream state may also be updated by the
system after an user interaction.

2.3 Receivers, Controllers and Actors

A receiver is set when it receives its event. When a controller is satisfied, it
activates its actors. And to disable the reactivation of the actors, the con-
troller is reset. An actor is either in idle or running state to start its action
after sleeping. Once it wakes up, it starts its action and enters the idle state.
The following is a code for receiver definition (lines 51-52), controller satisfac-
tion (lines 54-59) and actor activation (lines 61-64). The expression “receive-
dReceiver(receiver Main INIT)” (line 52) corresponds to the receipt of the event
when the main container starts. The expression “setActorState(...,RUN_POINT)”
activates the actors (line 58-59). The expression “activateActor(actor Main START)”
(line 63) elapses the time and the action follows (line 64).

51 #define Controller_Main START Condition

52 (receivedReceiver (receiver_Main INIT) && (direction==FORWARD))
53

54 :: atomic{(eventHandled

55 && !(satisfiedController{(controller_Main START))

56 && Controller_Main START Condition) ->

57 setController (controller_Main_START) ;

58 setActorState(actor_A1_START,RUN_POINT) ;

59 setActorState(actor_A2_START,RUN_POINT) }

60

61 :: atomic{(eventHandled

62 && getActorState(actor_Main START) == RUN_POINT) ->
63 activateActor (actor_Main START);

64 setContainerState(Main,INIT_POINT);}

3 Specification

Two basic properties that should be checked are safety properties and liveness
properties. Safety properties assert that the system may not enter undesired

state or “something bad will not happen”. Liveness properties on the other
hand assure that system executes as expected or “something good will eventu-
ally happen”. Fairness constraints are necessary to prove some properties of the
system. For example, to prove that “stream A is played before stream B”, no
skip operation should be allowed. Skip operation may skip to any segment of the
presentation and thus violating the above expression. To prove the properties of
the system, we should have at least the following fairness constraint: “Eventu-
ally the user clicks START button and no user interaction is allowed after that
(< (userStart — Onolnteraction))”. If a property is stated as undesirable, the

Properties LTL Formulas
1 (Clicking button for START enables
buttons for PAUSE, FORWARD, O (actionStartClicked — < actionToRun)
and BACKWARD, and it changes
the simulations state to RUN.
2 |Clicking button for PAUSE enables
buttons for PLAY, FORWARD, O (actionPauseClicked — < actionToPaused)
and BACKWARD and it changes the
presentation’s state to PAUSED.
3 |The presentation will eventually end. O (stateRun —! © stateEnd)
4 |A stream may start if it is active. & (streamRunPoint U streamInit Point)
5 |A stream may terminate if it is idle. O (streamlIdle Point U streamEndPoint)
6 |Stream A is before stream B. (QU((R AN M)U K))
7 |Stream A starts with stream B. O(P AN K)
8 |Stream A ends with stream B. S(@Q A L)
9 |Stream A is equal to stream B. O(P ANK AN SO(Q AN L))
10 |Stream B is not during stream A. (O(P AN OK) V O (Q AN OL))
11 |Stream B does not overlap stream A. (O(Q AN OK) vV O (L A 0Q))
12 |Stream A is played. O(P ANOQ)
13 |(a) The state is reachable (a) !Ostate
in forward presentation.
(b) It is possible to reach the (b) Olstate
state in the backward presentation.
14 |(a) The state is reachable (a) 'Ostate
in forward presentation.
(b) It is possible to reach the (b) Olstate
state after user interactions.

Table 1. Properties and LTL formulas

system should not allow it. The properties and their corresponding LTL formu-
las are given in Table 1. Properties 1 and 2 are sample properties about state
transitions that are allowed by buttons. For LTL formulas 1 and 2, actionBut-
tonClicked corresponds to successful clicking Button when the button is enabled.
actionToState corresponds to state transition to State after the action. Some of
the specification patterns are presented in [4, 8]. These specification patterns can

be used in the verification. The number of properties about the user interface and
state transitions can be increased. Property 3 corresponds to a liveness property
that should be checked whether the presentation reaches to its end once it starts.
Properties 4 and 5 are undesirable properties that allow streams to restart and
terminate when they are in RunPoint (active) and InitPoint states, respectively.
In [7], some properties between two consecutive user interactions based on
time are verified. In a distributed system, these constraints cannot be satisfied
due to delay of data. In our case, time is associated with actors. Since there is no
delay in passing of time, the actor elapses its time right away once it is activated.
Properties 6 to 11 are related with verification of Allen’s [1] temporal rela-
tionships. Properties 10 and 11 are undesirable. For LTL formulas 6 to 11, P =
streamA_InitState, () = streamA_EndState, R = streamA_IdleState, K =
streamB_InitState, L = streamB_EndState, and M = streamB_IdleState.
Property 12 checks whether stream A is eventually played. For a multimedia
presentation, the states of streams that are possible to visit in the backward
presentation should also be reachable in the forward presentation. So, Property
13 is stated as two fold. Part (a) is an undesirable property. If the part (a) is
wrong, then Part (b) is verified. The number of states that need to be checked
is |m™| where m is the number of states that a stream may enter and n is the
number of streams. Eventually, we need to convert Property 13 to Property 14.

4 Experiments

We firstly developed a complex model to handle the user interactions. Since this
user interface increases the number of initial states significantly, we removed the
user interface during verification. Only buttons change their states as part of
the user interface. We considered the number of streams and their organization.
The streams are presented in a sequential order or in parallel. If the streams are
presented in parallel, they may also be presented in a synchronized fashion. A
tool is developed for automatic generation of PROMELA code for this kind of
presentations. For each interaction, there is a fairness constraint and these are
hard-coded in the model (e.g. FC==3 in line 2 of PROMELA code in Section 2.2).

We conducted tests for each type of interaction using only buttons. The
complexity of verification in terms of states and depth are given for no interaction
and all interactions in Table 3. The elapsed time of verification of properties is
given in Figure 3.

5 Ewvaluation

The previous work on checking the integrity of multimedia presentations deal
with presentations that are presented in nominal conditions (i.e., no delay). Since
the processes may iterate at different states as long as they are enabled, this in-
troduces processes proceeding at different speeds. From the perspective of a mul-
timedia presentation, this may correspond to delay of data in the network. The
detection of non-progress cycles when all the user interactions are allowed yields

Type| No of ||Depth|States| Transitions| Memory| |Depth| States | Transitions| Memory
streams
single 1 67 177 306 1.5 745 | 24586 46364 4.8
seq 2 99 432 865 1.5 1954 |103197| 200756 18.5
seq 3 143 | 1021 2321 1.6 5717 |424039| 846276 85
seq 4 209 | 2347 5868 2.0 18676(2.21 K| 4.50 K 500
par 2 101 | 488 1021 1.5 1509 (184092| 351747 31
par 3 139 | 1699 4642 1.8 3571 |1.75 K| 3.42 K 318
sync 2 73 185 334 1.5 823 | 30299 57461 6.1
sync 3 78 201 398 1.5 869 | 38179 74420 8.3
sync 4 83 233 542 1.5 871 [53939 | 109319 12
Table 2. No interaction. Table 3. All interactions allowed
Parallel Presentation Sequential Presentation Synchronized Presentation

14000 16000
a0t 14000

30

B 50
=
§ o

12000 Mo interactien

10000 ® o

5000 4--- 2000
»

B000 - B

400 1--- v 4000 4o

2000

—#—FaseReume
——Skip

—— Badaard P lay
—#—All interactions

5 0
Lnt---
D SEE T ECCEEPT PR e e

Tirne in 01 seconds

Time

¥ 2000
0 = ; 0 : o
1 i 3 4 1 i 3 4 I 5 5 4
Noof streams Moof streams

(a) (b) (c)

Fig. 2. Elapsed time for verification of properties on (a) parallel (b) sequential
(c)synchronized presentations.

No of dreams

a general status of the presentation model. During the initial modeling phases of
our model, SPIN verifier detected a case which naturally is less likely to occur.
In this case, the user starts the presentation and then clicks the BACKWARD
button just before the presentation proceeds. This leads to an unexpected state
where the presentation enters an infinite loop. After the user starts a presenta-
tion and just before the presentation proceeds if the user attempts to backward
the presentation, the presentation then enters an unexpected state and stays in
this state forever.

Multimedia presentations which provide interactions that change the course
of the presentation like skip and backward restricts using PROMELA structures
like message channels. If processes are blocked and an interaction (interrupt)
requires these processes to abort, significant coding is required to cope with
the blocked processes. The PROMELA language does not provide time in the
modeling. Thus it is not possible to incorporate time directly in the model.
RT-SPIN [11] enables the declaration of time constraints and checks acceptance
cycles, non-progress cycles and some liveness properties. The first problem is
some guards may be skipped due to lazy behavior of RT-SPIN. In our case,
most of the time constraints are equality constraints. Also the interactions like
pause, resume, skip, and backward requires the guard condition to be updated

after these interactions even when waiting for the guard condition to be satisfied.
When there are still processes enabled, the SPIN verifier may yield acceptance
cycles. If those processes were allowed to proceed, those cycles would be removed.
Progress labels are inserted to break these cycles. The never claims are added
with np_ to check non progress cycles.

6 Conclusion

In this paper, we presented how interactive multimedia presentations can be
modeled using PROMELA and verified by SPIN. A subset of these properties is
given in Section 3. Since the PROMELA code can be generated automatically,
it allows automatic verification of the properties. However, the time complex-
ity of parallel presentations is exponential. This makes the verification difficult
when the number of streams increases and requires further optimization in the
model. SPIN’s tracing of all possible states provides a way of modeling of delay
for multimedia presentations. The synchronization model will be incorporated
into the NetMedia [12] system, a middleware design strategy for streaming mul-
timedia presentations in distributed environments. It is necessary to assure that
the system will present a consistent presentation after the user interactions.

References

1. J. Allen. Maintaining Knowledge about Temporal Intervals. Communications of
ACM, 26(11):823-843, November 1983.

2. R. S. Aygun and A. Zhang. Middle-tier for multimedia synchronization. In 2001
ACM Multimedia Conference, pages 471,474, Ottawa, Canada, October 2001.

3. CMIS. http://www.cis.ksu.edu/ robby/classes/spring1999/842/index.html.

4. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of 21st International Conference on
Software Engineering, May 1999.

5. S. Hibino and E. A. Rundensteiner. User interface evaluation of a direct ma-
nipulation temporal visual query language. In ACM Multimedia’97 Conference
Proceedings, pages 99-107, Seattle, USA, November 1997.

6. G. J. Holzmann. The model checker spin. IEEE Transactions on Software Engi-
neering, 23(5):279-295, May 1997.

7. 1. Mirbel, B. Pernici, T. Sellis, S. Tserkezoglou, and M. Vazirgiannis. Checking
temporal integrity of interactive multimedia documents. VLDB Journal, 9(2):111—
130, 2000.

8. D. O. Paun and M. Chechik. Events in linear-time properties. In Proceedings of
4th International symposium on Requirements Engineering, June 1999.

9. B. Prabhakaran and S. Raghavan. Synchronization Models for Multimedia Pre-
sentation with User Participation. Multimedia Systems, 2(2), 1994.

10. SMIL. http://www.w3.org/AudioVideo.

11. S. Tripakis and C. Courcoubetis. Extending promela and spin for real time. In
Proceedings of TACAS, LNCS 1055, 1996.

12. A.Zhang, Y. Song, and M. Mielke. NetMedia: Streaming Multimedia Presentations
in Distributed Environments. IEEE Multimedia, 9(1):56-73, 2002.

