
Design and Code Complexity Metrics for OO Classes

Letha Etzkorn, Jagdish Bansiya, and Carl Davis

The University of Alabama in Huntsville

{ letzkorn, jbansiya, cdavis} @cs.uah.edu

Software complexity metrics for the

procedural development paradigm have

been extensively studied. Metrics such

as McCabe’s cyclomatic complexity

metric1 and Halstead’s Software Science

metrics2 are well known and frequently

used to measure software complexity in

the procedural paradigm. All the

traditional, procedural complexity

metrics measured the complexity of the

code in a particular software product.

More recently, software metrics that

are tailored to the measurement of

complexity in the object-oriented

paradigm have been developed. The use

of the object-oriented paradigm has

allowed for the development of class

complexity metrics that will operate at

design time, and that can predict the

complexity that will be present in a fully

implemented class. Thus, for OO

software, there are two categories of

complexity metrics:

� code complexity metrics

� design complexity metrics

The primary advantage of design

complexity metrics over code

complexity metrics is that they can be

used at design time, prior to code

implementation. This permits the

quality of designs to be analyzed as the

designs are developed, which allows

improvement of the design prior to

implementation.

In this article, we will examine the

implementation and usage of various OO

code and design complexity metrics. We

will introduce a new OO code metric,

Average Method Complexity (AMC),

that measures certain aspects of code

complexity not handled by current code

complexity metrics. We will also discuss

a new OO design metric, called Class

Design Entropy (CDE), that uses the

information content of a class as a

measure of complexity. Over a set of

C++ classes, we will compare the

complexity determinations of several

OO code and design metrics to the

complexity ratings of a team of highly

trained C++ experts. Finally, we will

discuss some of the measurement

differences between OO design metrics

and OO complexity metrics.

OO CODE COMPLEXITY

METRICS

One OO complexity metric that has

been widely examined is the Weighted

Methods per Class (WMC) metric3,4.

The definition of this metric is as

follows4:

Consider a Class C1, with methods

M1,...Mn that are defined in the class. Let

c1...cn be the complexity of the methods.

Then:

 n
 WMC = � ci

 i= 1

 If all method complexities are

considered to be unity, then WMC = n,

the number of methods.

In the case when WMC is equal to the

number of methods (since all the method

complexities are unity), then WMC can

be considered to be a design complexity

metric, since the number of methods of a

class is determined from the class

header, and is thus available at design

time. However, if the method

complexities are not considered to be

unity, and are measured using a standard

procedural complexity metric (such as

McCabe’s cyclomatic complexity), then

WMC is an OO code complexity metric.

A closer specification of the WMC code

complexity metric occurs in Li and

Henry5,6:

The WMC is calculated as the sum of

McCabe’s cyclomatic complexity of

each local method: WMC = summation

of McCabe’s cyclomatic complexity of

all local methods, ranging from 0 to N,

where N is a positive integer.

WMC Implementation

There are some variations on the WMC

metric that are independent of which

definition is used. Some of these

variations include the determination of

exactly which member functions take part

in the calculations.

 Churcher and Shepperd discussed some

of these implementation variations for the

Chidamber and Kemerer WMC

definition7. They discussed at length the

different ways in which the number of

methods of a class, which is integral to

the calculation of the WMC metric, can

be counted. To discuss some of the

issues raised by Churcher and Shepperd,

the C++ code in Figure 1 is provided.

This code was drawn from a graphical

user interface system8.

 One of the questions raised by Churcher

and Shepperd is whether or not methods

from inherited classes should be included

in the count of methods for the current

class. In Figure 1, the class GnCommand

is derived from the class GnObject. In

this case the question is whether methods

in GnObject should be included in a

count of methods for GnCommand. If so,

then

Figure 1. An Illustration of WMC Implementation Issues

should any private methods in GnObject

(which are not directly accessible by

GnCommand) be included in the count

for GnCommand?

Another question raised by Churcher and

Shepperd is whether methods should be

counted before or after a pre-processor

has been applied to the code. In Figure 1,

class GnCommand : public GnObject {
 friend class GnHistoryTool;
 friend class GnView;
 friend class GnApplication;
 friend class GnDocument;
 protected:
 GnDocument *document;
 GnView *view;
 int view_x_offset;
 int view_y_offset;
 public:
 GnCommand(GnDocument *, GnView * = 0, int create_checkpoint = 0);
 public:
 virtual char *name() = 0;
 virtual void submit();
 protected: // IO (optional)
 virtual int IsStorable();
 virtual int WriteToStream(ostream &p_ostr);
 virtual int ReadFromStream(istream &p_istr);
 protected:
 virtual int executable() { return(1); } ;
 virtual int undoable() { return(1); } ;
 virtual int clock_cursor() { return(0); } ;
 virtual int causes_change() { return(1); } ;

 virtual void doit ();
 virtual void redoit ();
 virtual void undoit ();
 virtual void commit (int undone = 1);

 virtual void scroll_before_redo();
 virtual void scroll_before_undo ();

 void submit_to_framework ();
 void execute_undoit();
 void execute_redoit();

 void undoit_before();
 void redoit_before();
 private:
 META_DEF_1(GnCommand,GnObject);
} ;

the macro META_DEF_1 will result in

the definition of several more methods;

however, this method definition will not

occur until after preprocessing.

 There are several friend classes defined

in the class shown in Figure 1. Churcher

and Shepperd mention briefly that a C++

friend class may subvert the normal C++

access rules. Therefore should methods

from a friend class be counted in the

method count for the current class?

 Other issues that Churcher and

Shepperd were concerned with was

whether overloaded methods that employ

the same name (such as multiple

constructors) should be counted as

multiple methods or as a single method,

and whether or not operators should be

counted as a method.

 Chidamber and Kemerer's response9 to

Churcher and Shepperd indicated that

their principle was that methods which

required additional design effort and are

defined in the class should be counted,

inherited methods and methods from

friend classes are not defined in the class,

and so should not be included. Also, all

distinct methods and operators in the

class should be counted even when they

share an operator. Methods should be

counted prior to preprocessing.

 Basili et. al.10 mention that they believe

the different counting rules proposed by

Churcher and Shepperd correspond to

different metrics, all of which are similar

to the WMC metric but not the same.

They say that each counting rule should

be separately validated.

 Given these decisions, we would like to

pose an additional implementation

question. First, if methods are to be

Figure 2. An Example of Conditional Compilation in C++

counted prior to pre-processing (that is,

based on the source code itself), how

should conditional compilation (such that

certain methods are defined in one path

of the conditional compilation, whereas

others are defined in another conditional

compilation path) be handled? This is a

commonly-occurring phenomenon. The

class wxWindow: public wxbWindow
{
 public:
 // When doing globale cursor changes, the current cursor may need to be saved for each window
 Cursor currentWindowCursor;
#ifdef wx_xview
 Xv_opaque dropSite;
#endif
 // Constructors/Destructors
 wxWindow(void);
 ~wxWindow(void);
 void GetSize(int *width, int *height);
 void GetPosition(int *x, int *y);
 void GetClientSize(int *width, int *height); // Size client can use
 . . .
 // Sometimes in Motif there are problems popping up a menu
 // (for unknown reasons); use this instead when this happens.
#ifdef wx_motif
 Bool FakePopupMenu(wxMenu *menu, float x, float y);
#endif

 void Show(Bool show);
 wxCursor *SetCursor(wxCursor *cursor);
 void SetColourMap(wxColourMap *cmap);

 float GetCharHeight(void);
 float GetCharWidth(void);
 void GetTextExtent(const char *string, float *x, float *y, float *descent = NULL, float *externalLeading = NULL);

 int CharCodeXToWX(KeySym keySym);
 KeySym CharCodeWXToX(int id);

#ifdef wx_motif
 virtual Bool PreResize(void);
 virtual void PostDestroyChildren(void);
 int wxType;
#endif
 // Get the underlying X window
 virtual Window GetXWindow(void);
 virtual Display *GetXDisplay(void);
} ;
#endif // IN_CPROTO
#endif

code in Figure 2, which is drawn from another graphical user interface package,

illustrates such an example11. In this

example, note that if the compilation flag

wx_motif is defined instead of the flag

wx_xview, then three additional member

functions are defined. However, if these

functions are counted prior to

preprocessing, then the wx_motif-specific

methods would be counted, even when

the wx_xview compilation is intended.

Our feeling is that the WMC metric

normally should be calculated for a

particular compilation. Thus at least

some preprocessing of conditional

compilation operators is required prior to

the calculation of the WMC metric.

Average Method Complexity

During the course of a study that

compared the complexity values of OO

complexity metrics to the complexity

determinations of a team of highly trained

C++ experts (this study will be discussed

in detail later in this article), an anomaly

was noted when comparing the experts’

complexity rating of certain classes to

that of the code complexity WMC metric

(the Li and Henry version of the WMC

metric). The experts rated certain classes

as not complex, even though the classes

had a very large number of member

functions, which is contradictory to the

way any definition of the WMC metric

works. In these cases, the member

functions in general were very simple

member functions, but due to the large

number of member functions the WMC

value, which is additive, tended to be a

fairly large number. Our observation was

that in such cases the mental complexity

measure employed by the experts was not

additive. Thus an average measure

would better reflect the complexity of

that type of class. For this reason we

define a new metric, Average Method

Complexity (AMC):

Let c1, … cn be the static complexity of

the methods. Then

 n
 AMC = (1/n) � ci

 i= 1

In this metric, the complexity of each

method should never be unity; rather, it

should be measured using a static

complexity metric such as the McCabe’s

cyclomatic complexity metric.

The use of the AMC metric gives a

better indication of the complexity of a

class with a large number of uncomplex

member functions than does the code

complexity metric WMC (the Li and

Henry WMC), which adds the McCabe’s

cyclomatic complexity numbers of all

member functions in the class.

OO DESIGN COMPLEXITY

MEASURES

The definition of the WMC metric,

with the complexity of each method set to

unity such that WMC is the number of

methods in a class is a design complexity

metric, since it can be calculated based on

the class definition alone. The purpose of

the design complexity metric for a class is

to predict the complexity of the

implemented class. However, the WMC

metric is simply a count of the number of

member functions in a class, and in some

cases is not a particularly good predictor

of the eventual complexity of an

implemented class. For example,

consider a class A that has a small

number (n) of very simple member

functions, and another class B that has a

large number(n) of very complex member

functions. Since the number of member

functions is the same, at design time the

WMC metric would predict the same

complexity for each of the two classes,

whereas obviously class B is

considerably more complex than class A.

These weaknesses of the WMC metric

as a design complexity metric have been

addressed by the Class Design Entropy

(CDE) metric, which is a measure of the

information content of a class12.

Entropy, defined in terms of the

information content of software, has been

used to measure code complexity in the

procedural paradigm for C programs13,

and for FORTRAN and COBOL

programs14. Torress and Samadzadeh

showed that entropy provides a measure

of program control complexity, and

showed an inverse relationship between

the information content of software

subsystems and their reusability14. All of

this work was based on the work by

Zweben and Halstead, which showed that

operator usage in a program could be

used to measure a program’s information

content15,16. Operators were defined to be

either a special symbol, reserved word, or

function call.

However, in order to determine the

information content of OO designs, this

operator-based approach is not appealing,

since the goal is to assess a design prior

to implementation. Thus, in the CDE

design metric, the term “operators” is

redefined as “special symbols which refer

to simple strings, or user-defined strings

such as object, operation, attribute, or

association names.” Thus a string, a

sequence of alphabetic characters, is

defined to be a special symbol, and is the

basic unit of information for the CDE

design metric. The amount of

information conveyed by a string Si, is

inversely related to its probability (Pi) of

occurring. The amount of information, Ii,

in abstract units called “bits” , conveyed

by a single string Si, with probability of

occurrence Pi, is
12:

Ii = - log2 Pi

Information is additive�the

information conveyed by two strings is

the sum of their individual information

content.

The probability, Pi, of the ith most

frequently occurring string is equal to the

percentage of total string occurrences it

contributes:

Pi = fi / N1

where N1 is the total number of

non-unique name string operators used in

the class definition, and fi is the number

of occurrences of the ith most frequently

occurring operator. Therefore, the

average amount of information

contributed by each symbol operator in a

class design, called the empirical object-

class design entropy, is:

 n1
H = - ���� Pi log2 Pi

 i = 1

where n1 is the total number of

unique symbol operators

The Class Design Entropy (CDE)

design complexity metric is defined as:

 n1
CDE = - ���� (fi / N1) log2 (fi / N1)

 i = 1

where:

 n1 is the number of unique special

string names,

N1 is the total number of non-unique

string names, and

f i, 1 � i � n, is the frequency of

occurrence of the ith special string name.

The CDE metric measures the average

entropy of a class design, and gives an

indication of the design complexity of

the class. This is an ordinal measure that

associates a number based on the usage

and frequency of symbol operators in a

class definition. It should be noted that

this measure only provides for a relative

comparison of complexity between two

or more classes. No information can be

drawn as to the scale, or level, of

complexity that goes with each value of

the metric. Thus the CDE metric is not

recommended for comparing classes

from different design domains, since the

operator sets used by the designs would

be different. However, the CDE metric

provides a way to order classes

according to their relative complexity in

a given design domain. This will allow

identification of classes whose

implementation would be overly

complex, and those that are relatively

trivial.

STUDY OF OO COMPLEXITY

METRICS

Various classes and hierarchies of

classes were chosen from three different

C++ Graphical User Interface packages.

Each class was examined by a team of

highly trained C++ and GUI domain

experts. The experts rated each class

for complexity on a scale where not

complex = 100%, fairly complex = 50%,

and very complex = 0%. Then the AMC

metric and the Li and Henry version of

the WMC metric (both OO code

complexity metrics) were calculated

using the PATRicia system17,18,19

(Program Analysis Tool for Reuse), and

the CDE metric (an OO design metric)

was calculated using QMOOD++20,21,22.

The values of these metrics for each

class examined are shown in Table 1.

The rankings of the classes for each

metric are shown in Table 2.

In Table 1, note that for class # 17 the

AMC ranking is much closer to the

expert’s ranking than is the WMC

ranking. This class is an example of a

class with a large number of very simple

member functions (see earlier discussion

on the AMC metric). Also, for classes

1,4,5,9,10, 14, and 16, the AMC metric

ranking better matches the experts’

ranking. In some cases the AMC metric

measures complexity better than does

the WMC metric; however, this is not

true for all types of classes. Thus, AMC

is not intended primarily as a

replacement for the WMC metric

(although since, as we will see later, it

correlates well with the experts’

determination of complexity it could be

used as such), but rather as an additional

way to examine particular classes for

complexity.

Spearman’s rank correlation was used

to determine the correlation of the

nonparametric data in Table 1. The

correlation coefficient, rs, is a measure of

the ability of one rank-variable to predict

the value of another rank-variable. If E1

and E2 are two independent evaluations

of ‘n’ items that are to be correlated,

then the values of E1 and E2 are ranked

(either in increasing or decreasing order)

from 1 to ‘n’ according to their relative

size within the evaluations. For each E1,

E2 pair in the relative rankings, the

difference in the ranks ‘d’ is computer.

The sum of all the d2s, denoted �d2 is

used to compute rs according to the

formula:

rs = 1 - 6 ����d2
���������������� -1.00 � rs � 1.00
n (n2 - 1)

Using Spearman’s rank correlation

coefficient, each of the metrics, CDE,

code complexity WMC (Li and Henry

WMC), and AMC, was correlated

separately to the experts’ evaluations.

Additionally, the CDE metric, which is a

design complexity metric, was compared

to the code complexity WMC metric.

Class Names Class
Numbers

Expert
Ratings

CDE Metric
Values

Li & Henry
WMC

Values

AMC Metric
Values

wxObject 1 0.95 1.49 2 1
wxTimer 2 0.94 1.85 6 1.5
wxbTimer 3 0.99 2.36 4 0.67
wxEvent 4 0.98 2.59 6 0.75

GnContracts 5 0.97 2.88 3 1
wxMenu 6 0.5 2.92 36 2.77

GnMouseDownCommand 7 0.71 3.05 33 1.57
GnObject 8 0.96 3.07 10 1.11
wxbButton 9 0.9 3.16 8 1
wxButton 10 0.79 3.17 16 1.23

wxWindow 11 0.43 3.24 31 1.03
wxbMenu 12 0.86 3.34 26 2

wxbWindow 13 0.89 3.38 38 0.78
wxItem 14 0.64 3.4 21 1.24

GnCommand 15 0.92 3.67 28 1.27
wxMouseEvent 16 0.93 2.35 48 1.71

wxbItem 17 1 3.48 19 0.73
Table 1. Class Complexity Metric Values

Class Names Class

Numbers
Expert
Rank

CDE
Rank

WMC
Rank

AMC
Rank

WxObject 1 12 17 17 12
WxTimer 2 11 16 14 5
WxbTimer 3 16 14 15 17
WxEvent 4 15 13 13 15

GnContracts 5 14 12 16 13
WxMenu 6 2 11 3 1

GnMouseDownCommand 7 4 10 4 4
GnObject 8 13 9 11 9

WxbButton 9 8 8 12 11
WxButton 10 5 7 10 8

WxWindow 11 1 6 5 10
WxbMenu 12 6 5 7 2

WxbWindow 13 7 4 2 14
WxItem 14 3 3 8 7

GnCommand 15 9 1 6 6
WxMouseEvent 16 10 10 1 3

WxbItem 17 17 17 9 16

Table 2. Relative Ranking of the 17 Classes Based on the Metric Values

Complexity
Correlation

Experts
with CDE

Experts
with WMC

Experts
with AMC

CDE
with WMC

Using the first 15
Classes

0.56 0.76 0.79 0.63

Using all 17 Classes 0.34 0.63 0.68 0.44
Table 3. Correlations Between Complexity Measures

We wish to test the hypothesis that

there is a significant correlation between

the current metric data set (either CDE,

WMC, or AMC) and the experts'

evaluations.

Hypothesis 1

H0: � = 0. There is no significant

correlation between the current metric

and the experts’ evaluations.

H1: � � 0. There is a significant

correlation between the current metric

and the experts evaluations.

We also wish to test the hypothesis that

there is a significant correlation between

the design complexity metric CDE and

the code complexity version of WMC.

Hypothesis 2

H0: � = 0. There is no significant

correlation between CDE and WMC.

H1: � � 0. There is a significant

correlation between CDE and WMC.

The rankings of the data used to

calculate the Spearman’s rank correlation

coefficient are shown in Table 2. The

Spearman’s rank correlation coefficient

for each test performed are shown in

Table 3.

Complexity Metric Difficulties That

Can affect Analysis

All the complexity metrics examined

had difficulties with certain types of

classes:

� abstract classes consisting

solely of virtual functions

� classes with a number of

member functions, where one

particular member function was

much more complex than the other

member functions.

In the case of a class consisting solely

of virtual functions, the following

problems were identified for each metric:

� The code complexity WMC

metric, since it calculates the

McCabe’s cyclomatic complexity

for each member function,

calculates an empty virtual

function as cyclomatic complexity

= 1. Thus empty virtual functions

add to the complexity measure of a

class. The AMC metric has a

similar problem, although due to

the averaging nature of the metric

the problem is not as bad as with

the WMC metric.

� The design complexity WMC

metric can include pure virtual

functions in the method count,

which can give an erroneous

prediction of the implementation

complexity of a class. For

example, a function such as:

 virtual void func1(void) = 0;

could be included in the method

count. It is possible that a rule

should be instituted for the

measurement of the design

complexity WMC metric, that

pure virtual functions should not

be included in the method count.

(Empty virtual functions could

eventually have default code

added during the implementation

process, and thus probably should

take part in the WMC complexity

calculation).

�� The CDE metric, since it looks

at string names, would consider

each virtual function and its

parameters as separate strings.

This could give an erroneous

prediction of the implementation

complexity of an abstract class.

� In the case of a class with a number

of member functions, where one

particular member function was much

more complex than the other member

functions:

�� The design complexity WMC

metric has the difficulty discussed

earlier in this article, that it cannot

differentiate at design time

between a member function that

will be implemented with complex

code, and a member function

whose implementation will be

uncomplex.

For these reasons, the statistical

analysis was performed with and without

classes including the characteristics

discussed above�thus Table 3 is shown

with two categories, one with 17 classes,

and one with 15 classes.

Results of Complexity Metrics Study

For a sample size of 17 and � = 5%

(0.05), the Spearman’s cutoff for

accepting H0 in Hypothesis 1 is 0.48.

Since the computed rs in the correlations

for code complexity WMC and AMC is

well above the cutoff, the null

hypothesis H0 of no correlation between

WMC and the experts’ evaluations, and

of AMC and the experts’ evaluations is

rejected. For CDE, no significant

correlation is shown between CDE and

the experts evaluations. This is due to

the difficulties discussed with the CDE

metric in measuring abstract classes

(similar to difficulties that other

complexity metrics have with the same

kind of class).

For the second test we remove the

problem classes, which indeed can be

considered to be statistical outliers. For a

sample size of 15 and � = 5% (0.05), the

Spearman’s cutoff for accepting H0 in

Hypothesis 1 is 0.525. Since the

computed rs in the correlations for code

complexity WMC, AMC, and CDE is

well above the cutoff, the null

hypothesis H0 of no correlation between

WMC and the experts’ evaluations,

between AMC and the experts’

evaluations, and between CDE and the

experts’ evaluations, is rejected. This

indicates that there is indeed a

significant correlation between WMC

and the expert’s evaluations, between

AMC and the expert’s evaluations, and

between CDE and the expert’s

evaluations. A similar argument is made

for Hypothesis 1, which compares CDE

to WMC. Thus there is a significant

correlation between CDE and WMC.

CONCLUSIONS

There are two different categories of

OO complexity measures: code

complexity measures and design

complexity measures. Each type of

complexity measure has advantages and

disadvantages.

The Average Method Complexity

(AMC) metric solves one particular

problem with the code complexity WMC

metric, that is, that it does not correctly

measure the complexity of a class with a

large number of uncomplex member

functions. The AMC metric can be used

itself as a separate code complexity

measure, or it can be used in addition to

the code complexity WMC metric to

give two different views of the

complexity of a class. The AMC metric

correlates well with experts’ evaluations

of complexity.

The Class Design Entropy (CDE)

metric solves a particular problem with

the design complexity WMC metric, in

that it can differentiate somewhat

between the complexity of different

member functions which have not yet

been implemented, whereas the design

complexity WMC metric would simply

count each separate member function

equally. The CDE metric correlates well

with experts’ evaluations of complexity,

and with the code complexity WMC

metric, when certain types of fringe

classes are not included.

References

1. McCabe, T.J. A complexity measure,

IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING 2(4):

308-320, 1976.

2. Halstead, M.H. ELEMENTS OF

SOFTWARE SCIENCE, Elsevier

North-Holland, New York, 1977.

3. Chidamber, S.R., and C.F. Kemerer.

Towards a metrics suite for object-

oriented design, PROCEEDINGS:

OOPSLA '91, July 1991, pp. 197-

211.

4. Chidamber, S.R., and C.F. Kemerer.

A metrics suite for object-oriented

design, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, 20(6)

June 1994, pp. 476-493.

5. Li, W. and S. Henry. Maintenance

metrics for the object-oriented

paradigm, PROCEEDINGS OF THE

FIRST INTERNATIONAL

SOFTWARE METRICS

SYMPOSIUM, May 21-22, 1993, pp.

52-60.

6. Li, W., S. Henry, D. Kafury, and R.

Schulman. Measuring object-oriented

design, JOURNAL OF OBJECT-

ORIENTED PROGRAMMING,

JULY/AUGUST 1995, pp. 48-55.

7. Churcher, N., and Shepperd, M.J.,

Comments on 'A Metrics Suite for

Object Oriented Design', IEEE

Transactions on Software

Engineering, 21(3), March, 1995, pp.

263-265.

8. Babatz, R., Baecker, A., GINA

Manual, Version 2.0, German

National Research Institute for

Computer Science, anonymous ftp at

ftp.gmd.de, directory gmd/ginaplus,

1991.

9. Chidamber, S. and Kemerer, C.,

Authors reply to "Comments on 'A

Metrics Suite for Object-Oriented

Design'", IEEE Transactions on

Software Engineering, 21(3), March

1995, pp. 263-265.

10. Basili, V., L. Briand, and W.L. Melo,

A validation of object-oriented

metrics as quality indicators, IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING, 22(10), October

1996, pp.751-761.

11. Smart, J., wxWindows Users Manual,

Version 1.60, Artificial Intelligence

Applications Institute, University of

Edinburgh, Scotland, UK,

http://www.aiai.ed.ac.uk/~jacs/wx,

1994.

12. Bansiya, J., and Davis, C., "An

Entropy Based Complexity Measure

For Object-Oriented Designs,”

Submitted to the journal Theory and

Practice of Object Systems,

November 1996.

13. Harrison, W., An Entropy-Based

Measure of Software Complexity,

IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING,

18(11), Nov. 1992, pp. 1025-1029.

14. Torres, W.R., and Samadzadeh,

M.H., Software Reuse and

Information Theory Based Metrics,

IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING,

17(11), Nov. 1991, pp.1025-1029.

15. Davis, J., and LeBlanc, R., A Study

of the Applicability of Complexity

Measures, IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING,

14(9), Sept., 1988, pp. 1366-1372.

16. Zweben, S., and Halstead, M., The

Frequency Distribution of Operators

in PL/1 Programs, IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING, 5(11), Nov. 1979,

pp. 91-95.

17. Etzkorn, L., Davis, C., and Li, W.,

"A Practical Look at the Lack of

Cohesion in Methods Metric,"

Journal of Object-Oriented

Programming, accepted, to appear

1998.

18. Etzkorn, L.H., and Davis, C.G.,

"Automatically Identifying Reusable

Components in Object-Oriented

Legacy Code," IEEE Computer,

30(10), October, 1997, pp. 66-71.

19. Etzkorn, Letha, A Metrics-Based

Approach to the Automated

Identification of Object-Oriented

Reusable Software Components,

doctoral dissertation, The University

of Alabama in Huntsville, 1997.

20. Bansiya, J., Etzkorn, L., Davis, C.,

and Li, W., "A Class Cohesion

Metric for Object-Oriented Design,"

Journal of Object-Oriented

Programming, accepted, to appear

1998.

21. Bansiya, Jagdish, A Hierarchical

Model for Quality Assessment of

Object-Oriented Designs, doctoral

dissertation, The University of

Alabama in Huntsville, 1997.

22. Bansiya, J., and Davis, C.,

“Automated Metrics for Object-

Oriented Development,” Dr.

Dobb’s Journal, Vol. 272, December

1997, pp. 42-48.

