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Software complexity metrics for the 

procedural development paradigm have 

been extensively studied.  Metrics such 

as McCabe’s cyclomatic complexity 

metric1 and Halstead’s Software Science 

metrics2 are well known and frequently 

used to measure software complexity in 

the procedural paradigm.  All the 

traditional, procedural complexity 

metrics measured the complexity of the 

code in a particular software product. 

More recently, software metrics that 

are tailored to the measurement of 

complexity in the object-oriented 

paradigm have been developed.  The use 

of the object-oriented paradigm has 

allowed for the development of class 

complexity metrics that will operate at 

design time, and that can predict the 

complexity that will be present in a fully 

implemented class.  Thus, for OO 

software, there are two categories of 

complexity metrics: 

�  code complexity metrics 

�  design complexity metrics 

The primary advantage of design 

complexity metrics over code 

complexity metrics is that they can be 

used at design time, prior to code 

implementation.  This permits the 

quality of designs to be analyzed as the 

designs are developed, which allows 

improvement of the design prior to 

implementation. 

In this article, we will examine the 

implementation and usage of various OO 



code and design complexity metrics. We 

will introduce a new OO code metric, 

Average Method Complexity (AMC), 

that measures certain aspects of code 

complexity not handled by current code 

complexity metrics. We will also discuss 

a new OO design metric, called Class 

Design Entropy (CDE), that uses the 

information content of a class as a 

measure of complexity. Over a set of 

C++ classes, we will compare the 

complexity determinations of several 

OO code and design metrics to the 

complexity ratings of a team of highly 

trained C++ experts. Finally, we will 

discuss some of the measurement 

differences between OO design metrics 

and OO complexity metrics. 

 

 

OO CODE COMPLEXITY 

METRICS 

One OO complexity metric that has 

been widely examined is the Weighted 

Methods per Class (WMC) metric3,4.  

The definition of this metric is as 

follows4: 

Consider a Class C1, with methods 

M1,...Mn that are defined in the class.  Let 

c1...cn be the complexity of the methods.  

Then: 

        n 
 WMC = � ci 

       i= 1  

 If all method complexities are 

considered to be unity, then WMC = n, 

the number of methods. 

In the case when WMC is equal to the 

number of methods (since all the method 

complexities are unity), then WMC can 

be considered to be a design complexity 

metric, since the number of methods of a 

class is determined from the class 

header, and is thus available at design 

time.  However, if the method 

complexities are not considered to be 



unity, and are measured using a standard 

procedural complexity metric (such as 

McCabe’s cyclomatic complexity), then 

WMC is an OO code complexity metric.  

A closer specification of the WMC code 

complexity metric occurs in Li and 

Henry5,6: 

The WMC is calculated as the sum of 

McCabe’s cyclomatic complexity of 

each local method:  WMC = summation 

of McCabe’s cyclomatic complexity of 

all local methods, ranging from 0 to N, 

where N is a positive integer. 

 

WMC Implementation 

There are some variations on the WMC 

metric that are independent of which 

definition is used. Some of these 

variations include the determination of 

exactly which member functions take part 

in the calculations. 

  Churcher and Shepperd discussed some 

of these implementation variations for the 

Chidamber and Kemerer WMC 

definition7.  They discussed at length the 

different ways in which the number of 

methods of a class, which is integral to 

the calculation of the WMC metric, can 

be counted.  To discuss some of the 

issues raised by Churcher and Shepperd, 

the C++ code in Figure 1 is provided.  

This code was drawn from a graphical 

user interface system8. 

  One of the questions raised by Churcher 

and Shepperd is whether or not methods 

from inherited classes should be included 

in the count of methods for the current 

class.  In Figure 1, the class GnCommand 

is derived from the class GnObject.  In 

this case the question is whether methods 

in GnObject should be included in a 

count of methods for GnCommand.  If so, 

then 



Figure 1. An Illustration of WMC Implementation Issues  

should any private methods in GnObject 

(which are not directly accessible by 

GnCommand) be included in the count 

for GnCommand? 

 

Another question raised by Churcher and 

Shepperd is whether methods should be 

counted before or after a pre-processor 

has been applied to the code.  In Figure 1, 

class GnCommand : public GnObject {  
    friend class GnHistoryTool; 
    friend class GnView; 
    friend class GnApplication; 
    friend class GnDocument; 
  protected: 
    GnDocument *document; 
    GnView     *view; 
    int         view_x_offset; 
    int         view_y_offset; 
  public: 
    GnCommand(GnDocument *, GnView * = 0, int create_checkpoint = 0 ); 
  public: 
    virtual char *name() = 0; 
    virtual void submit(); 
  protected: // IO (optional) 
    virtual int IsStorable(); 
    virtual int WriteToStream(ostream &p_ostr); 
    virtual int ReadFromStream(istream &p_istr); 
  protected: 
    virtual int executable()    {  return(1); } ; 
    virtual int undoable()      {  return(1); } ; 
    virtual int clock_cursor()  {  return(0); } ; 
    virtual int causes_change() {  return(1); } ; 
 
    virtual void doit (); 
    virtual void redoit (); 
    virtual void undoit (); 
    virtual void commit ( int undone = 1 ); 
     
    virtual void scroll_before_redo(); 
    virtual void scroll_before_undo (); 
 
    void submit_to_framework (); 
    void execute_undoit(); 
    void execute_redoit(); 
 
    void undoit_before(); 
    void redoit_before(); 
  private: 
    META_DEF_1(GnCommand,GnObject); 
} ; 



the macro META_DEF_1 will result in 

the definition of several more methods; 

however, this method definition will not 

occur until after preprocessing. 

 There are several friend classes defined 

in the class shown in Figure 1.  Churcher 

and Shepperd mention briefly that a C++ 

friend class may subvert the normal C++ 

access rules.  Therefore should methods 

from a friend class be counted in the 

method count for the current class? 

  Other issues that Churcher and 

Shepperd were concerned with was 

whether overloaded methods that employ 

the same name (such as multiple 

constructors) should be counted as 

multiple methods or as a single method, 

and whether or not operators should be 

counted as a method. 

  Chidamber and Kemerer's response9 to 

Churcher and Shepperd indicated that 

their principle was that methods which 

required additional design effort and are 

defined in the class should be counted, 

inherited methods and methods from 

friend classes are not defined in the class, 

and so should not be included.  Also, all 

distinct methods and operators in the 

class should be counted even when they 

share an operator.  Methods should be 

counted prior to preprocessing. 

  Basili et. al.10 mention that they believe 

the different counting rules proposed by 

Churcher and Shepperd correspond to 

different metrics, all of which are similar 

to the WMC metric but not the same.  

They say that each counting rule should 

be separately validated. 

  Given these decisions, we would like to 

pose an additional implementation 

question.  First, if methods are to be 



Figure 2.  An Example of Conditional Compilation in C++ 

counted prior to pre-processing (that is, 

based on the source code itself), how 

should conditional compilation (such that 

certain methods are defined in one path 

of the conditional compilation, whereas 

others are defined in another conditional 

compilation path) be handled? This is a 

commonly-occurring phenomenon. The 

class wxWindow: public wxbWindow 
{  
 public: 
  // When doing globale cursor changes, the current cursor may need to be saved for each window 
  Cursor currentWindowCursor; 
#ifdef wx_xview 
  Xv_opaque dropSite; 
#endif 
  // Constructors/Destructors 
  wxWindow(void); 
  ~wxWindow(void); 
  void GetSize(int *width, int *height); 
  void GetPosition(int *x, int *y); 
  void GetClientSize(int *width, int *height); // Size client can use 
 .  .  . 
  // Sometimes in Motif there are problems popping up a menu 
  // (for unknown reasons); use this instead when this happens. 
#ifdef wx_motif 
  Bool FakePopupMenu(wxMenu *menu, float x, float y); 
#endif 
 
  void Show(Bool show); 
  wxCursor *SetCursor(wxCursor *cursor); 
  void SetColourMap(wxColourMap *cmap); 
 
  float GetCharHeight(void); 
  float GetCharWidth(void); 
  void GetTextExtent(const char *string, float *x, float *y, float *descent = NULL, float *externalLeading = NULL); 
 
  int CharCodeXToWX(KeySym keySym); 
  KeySym CharCodeWXToX(int id); 
 
#ifdef wx_motif  
  virtual Bool PreResize(void); 
  virtual void PostDestroyChildren(void); 
  int wxType; 
#endif 
  // Get the underlying X window 
  virtual Window GetXWindow(void); 
  virtual Display *GetXDisplay(void); 
} ; 
#endif // IN_CPROTO 
#endif 
 



code in Figure 2, which is drawn from another graphical user interface package, 

illustrates such an example11.  In this 

example, note that if the compilation flag 

wx_motif is defined instead of the flag 

wx_xview, then three additional member 

functions are defined.  However, if these 

functions are counted prior to 

preprocessing, then the wx_motif-specific  

methods would be counted, even when 

the wx_xview compilation is intended.  

Our feeling is that the WMC metric 

normally should be calculated for a 

particular compilation.  Thus at least 

some preprocessing of conditional 

compilation operators is required prior to 

the calculation of the WMC metric. 

 

Average Method Complexity 

During the course of a study that 

compared the complexity values of OO 

complexity metrics to the complexity 

determinations of a team of highly trained 

C++ experts (this study will be discussed 

in detail later in this article), an anomaly 

was noted when comparing the experts’  

complexity rating of certain classes to 

that of the code complexity WMC metric 

(the Li and Henry version of the WMC 

metric).  The experts rated certain classes 

as not complex, even though the classes 

had a very large number of member 

functions, which is contradictory to the 

way any definition of the WMC metric 

works.  In these cases, the member 

functions in general were very simple 

member functions, but due to the large 

number of member functions the WMC 

value, which is additive, tended to be a 

fairly large number.  Our observation was 

that in such cases the mental complexity 

measure employed by the experts was not 

additive.  Thus an average measure 

would better reflect the complexity of 

that type of class.  For this reason we 



define a new metric, Average Method 

Complexity (AMC): 

Let c1, … cn be the static complexity of 

the methods. Then 

                           n 
 AMC = (1/n) � ci 

                    i= 1  

In this metric, the complexity of each 

method should never be unity; rather, it 

should be measured using a static 

complexity metric such as the McCabe’s 

cyclomatic complexity metric. 

The use of the AMC metric gives a 

better indication of the complexity of a 

class with a large number of uncomplex 

member functions than does the code 

complexity metric WMC (the Li and 

Henry WMC), which adds the McCabe’s 

cyclomatic complexity numbers of all 

member functions in the class.   

 

OO DESIGN COMPLEXITY 

MEASURES 

The definition of the WMC metric, 

with the complexity of each method set to 

unity such that WMC is the number of 

methods in a class is a design complexity 

metric, since it can be calculated based on 

the class definition alone.  The purpose of 

the design complexity metric for a class is 

to predict the complexity of the 

implemented class. However, the WMC 

metric is simply a count of the number of 

member functions in a class, and in some 

cases is not a particularly good predictor 

of the eventual complexity of an 

implemented class.  For example, 

consider a class A that has a small 

number (n) of very simple member 

functions, and another class B that has a 

large number(n) of very complex member 

functions. Since the number of member 

functions is the same, at design time the 

WMC metric would predict the same 

complexity for each of the two classes, 



whereas obviously class B is 

considerably more complex than class A. 

These weaknesses of the WMC metric 

as a design complexity metric have been 

addressed by the Class Design Entropy 

(CDE) metric, which is a measure of the 

information content of a class12. 

Entropy, defined in terms of the 

information content of software, has been 

used to measure code complexity in the 

procedural paradigm for C programs13, 

and for FORTRAN and COBOL 

programs14.  Torress and Samadzadeh 

showed that entropy provides a measure 

of program control complexity, and 

showed an inverse relationship between 

the information content of software 

subsystems and their reusability14.  All of 

this work was based on the work by 

Zweben and Halstead, which showed that 

operator usage in a program could be 

used to measure a program’s information 

content15,16.  Operators were defined to be 

either a special symbol, reserved word, or 

function call.   

However, in order to determine the 

information content of OO designs, this 

operator-based approach is not appealing, 

since the goal is to assess a design prior 

to implementation.  Thus, in the CDE 

design metric, the term “operators” is 

redefined as “special symbols which refer 

to simple strings, or user-defined strings 

such as object, operation, attribute, or 

association names.”  Thus a string, a 

sequence of alphabetic characters, is 

defined to be a special symbol, and is the 

basic unit of information for the CDE 

design metric.  The amount of 

information conveyed by a string Si, is 

inversely related to its probability (Pi) of 

occurring.  The amount of information, Ii, 

in abstract units called “bits” , conveyed 

by a single string Si, with probability of 

occurrence Pi, is
12: 

Ii  = - log2 Pi 



Information is additive�the 

information conveyed by two strings is 

the sum of their individual information 

content. 

The probability, Pi, of the ith most 

frequently occurring string is equal to the 

percentage of total string occurrences it 

contributes: 

Pi = fi / N1 

where N1 is the total number of 

non-unique name string operators used in 

the class definition, and fi is the number 

of occurrences of the ith most frequently 

occurring operator.  Therefore, the 

average amount of information 

contributed by each symbol operator in a 

class design, called the empirical object-

class design entropy, is: 

            n1 
H  =  - ���� Pi log2 Pi 

                    i = 1 
 
where n1 is the total number of 

unique symbol operators 
 

The Class Design Entropy (CDE) 

design complexity metric is defined as: 

          n1 
CDE = - ���� (fi / N1) log2 (fi / N1) 

          i = 1 
  

where: 

 n1 is the number of unique special 

string names, 

N1 is the total number of non-unique 

string names, and 

f i, 1 � i � n, is the frequency of 

occurrence of the ith special string name. 

The CDE metric measures the average 

entropy of a class design, and gives an 

indication of the design complexity of 

the class.  This is an ordinal measure that 

associates a number based on the usage 

and frequency of symbol operators in a 

class definition.  It should be noted that 

this measure only provides for a relative 

comparison of complexity between two 

or more classes.  No information can be 

drawn as to the scale, or level, of 

complexity that goes with each value of 



the metric.  Thus the CDE metric is not 

recommended for comparing classes 

from different design domains, since the 

operator sets used by the designs would 

be different.  However, the CDE metric 

provides a way to order classes 

according to their relative complexity in 

a given design domain.  This will allow 

identification of classes whose 

implementation would be overly 

complex, and those that are relatively 

trivial. 

 

STUDY OF OO COMPLEXITY 

METRICS 

Various classes and hierarchies of 

classes were chosen from three different 

C++ Graphical User Interface packages.  

Each class was examined by a team of 

highly trained C++ and GUI domain 

experts.  The experts  rated each class 

for complexity on a scale where not 

complex = 100%, fairly complex = 50%, 

and very complex = 0%.  Then the AMC 

metric and the Li and Henry version of 

the WMC metric (both OO code 

complexity metrics) were calculated 

using the PATRicia system17,18,19 

(Program Analysis Tool for Reuse), and 

the CDE metric (an OO design metric) 

was calculated using QMOOD++20,21,22.  

The values of these metrics for each 

class examined are shown in Table 1.  

The rankings of the classes for each 

metric are shown in Table 2. 

In Table 1, note that for class # 17 the 

AMC ranking is much closer to the 

expert’s ranking than is the WMC 

ranking.  This class is an example of a 

class with a large number of very simple 

member functions (see earlier discussion 

on the AMC metric).  Also, for classes 

1,4,5,9,10, 14, and 16, the AMC metric 

ranking better matches the experts’  

ranking.  In some cases the AMC metric 

measures complexity better than does 



the WMC metric; however, this is not 

true for all types of classes.  Thus, AMC 

is not intended primarily as a 

replacement for the WMC metric 

(although since, as we will see later, it 

correlates well with the experts’  

determination of complexity it could be 

used as such), but rather as an additional 

way to examine particular classes for 

complexity. 

Spearman’s rank correlation was used 

to determine the correlation of the 

nonparametric data in Table 1. The 

correlation coefficient, rs, is a measure of 

the ability of one rank-variable to predict 

the value of another rank-variable. If E1 

and E2 are two independent evaluations 

of ‘n’  items that are to be correlated, 

then the values of E1 and E2 are ranked 

(either in increasing or decreasing order) 

from 1 to ‘n’  according to their relative 

size within the evaluations.  For each E1, 

E2  pair in the relative rankings, the 

difference in the ranks ‘d’  is computer.  

The sum of all the d2s, denoted �d2  is 

used to compute rs according to the 

formula: 

 

rs = 1  -  6 ����d2 
����������������    -1.00 � rs  � 1.00 
n (n2 - 1) 
 

 

Using Spearman’s rank correlation 

coefficient, each of the metrics, CDE, 

code complexity WMC (Li and Henry 

WMC), and AMC, was correlated 

separately to the experts’  evaluations.  

Additionally, the CDE metric, which is a 

design complexity metric, was compared 

to the code complexity WMC metric. 

 

 

 

 

 



Class Names Class 
Numbers 

Expert 
Ratings 

CDE Metric 
Values 

Li & Henry 
WMC 

Values 

AMC Metric 
Values 

wxObject 1 0.95 1.49 2 1 
wxTimer 2 0.94 1.85 6 1.5 
wxbTimer 3 0.99 2.36 4 0.67 
wxEvent 4 0.98 2.59 6 0.75 

GnContracts 5 0.97 2.88 3 1 
wxMenu 6 0.5 2.92 36 2.77 

GnMouseDownCommand 7 0.71 3.05 33 1.57 
GnObject 8 0.96 3.07 10 1.11 
wxbButton 9 0.9 3.16 8 1 
wxButton 10 0.79 3.17 16 1.23 

wxWindow 11 0.43 3.24 31 1.03 
wxbMenu 12 0.86 3.34 26 2 

wxbWindow 13 0.89 3.38 38 0.78 
wxItem 14 0.64 3.4 21 1.24 

GnCommand 15 0.92 3.67 28 1.27 
wxMouseEvent 16 0.93 2.35 48 1.71 

wxbItem 17 1 3.48 19 0.73 
Table 1.   Class Complexity Metric Values 

 

 
Class Names Class 

Numbers 
Expert  
Rank 

CDE  
Rank 

WMC  
Rank 

AMC  
Rank 

WxObject 1 12 17 17 12 
WxTimer 2 11 16 14 5 
WxbTimer 3 16 14 15 17 
WxEvent 4 15 13 13 15 

GnContracts 5 14 12 16 13 
WxMenu 6 2 11 3 1 

GnMouseDownCommand 7 4 10 4 4 
GnObject 8 13 9 11 9 

WxbButton 9 8 8 12 11 
WxButton 10 5 7 10 8 

WxWindow 11 1 6 5 10 
WxbMenu 12 6 5 7 2 

WxbWindow 13 7 4 2 14 
WxItem 14 3 3 8 7 

GnCommand 15 9 1 6 6 
WxMouseEvent 16 10 10 1 3 

WxbItem 17 17 17 9 16 

Table 2. Relative Ranking of the 17 Classes Based on the Metric Values 

 



 

Complexity 
Correlation 

Experts 
with CDE 

Experts 
with WMC 

Experts 
with AMC 

CDE 
with WMC 

Using the first 15 
Classes 

0.56 0.76 0.79 0.63 

Using all 17 Classes 0.34 0.63 0.68 0.44 
Table 3.  Correlations Between Complexity Measures 

 

We wish to test the hypothesis that 

there is a significant correlation between 

the current metric data set (either CDE, 

WMC, or AMC) and the experts' 

evaluations.   

Hypothesis 1 

H0:   � = 0.  There is no significant 

correlation between the current metric 

and the experts’  evaluations. 

H1:     � � 0.  There is a significant 

correlation between the current metric 

and the experts evaluations. 

We also wish to test the hypothesis that 

there is a significant correlation between 

the design complexity metric CDE and 

the code complexity version of WMC. 

Hypothesis 2 

H0:   � = 0.  There is no significant 

correlation between CDE and WMC. 

H1:     � � 0.  There is a significant 

correlation between CDE and WMC. 

The rankings of the data used to 

calculate the Spearman’s rank correlation 

coefficient are shown in Table 2.  The 

Spearman’s rank correlation coefficient 

for each test performed are shown in 

Table 3. 

Complexity Metric Difficulties That 

Can affect Analysis 

All the complexity metrics examined 

had difficulties with certain types of 

classes: 

�  abstract classes consisting 

solely of virtual functions 

�  classes with a number of 

member functions, where one 

particular member function was 



much more complex than the other 

member functions.   

In the case of a class consisting solely 

of virtual functions, the following 

problems were identified for each metric: 

�  The code complexity WMC 

metric, since it calculates the 

McCabe’s cyclomatic complexity 

for each member function, 

calculates an empty virtual 

function as cyclomatic complexity 

= 1.  Thus empty virtual functions 

add to the complexity measure of a 

class.  The AMC metric has a 

similar problem, although due to 

the averaging nature of the metric 

the problem is not as bad as with 

the WMC metric. 

�  The design complexity WMC 

metric can include pure virtual 

functions in the method count, 

which can give an erroneous 

prediction of the implementation 

complexity of a class.  For 

example, a function such as: 

 virtual void func1(void) = 0; 

could be included in the method 

count.  It is possible that a rule 

should be instituted for the 

measurement of the design 

complexity WMC metric, that 

pure virtual functions should not 

be included in the method count.  

(Empty virtual functions could 

eventually have default code 

added during the implementation 

process, and thus probably should 

take part in the WMC complexity 

calculation). 

�� The CDE metric, since it looks 

at string names, would consider 

each virtual function and its 

parameters as separate strings.  

This could give an erroneous 

prediction of the implementation 

complexity of an abstract class. 



� In the case of a class with a number 

of member functions, where one 

particular member function was much 

more complex than the other member 

functions: 

�� The design complexity WMC 

metric has the difficulty discussed 

earlier in this article, that it cannot 

differentiate at design time 

between a member function that 

will be implemented with complex 

code, and a member function 

whose implementation will be 

uncomplex. 

For these reasons, the statistical 

analysis was performed with and without 

classes including the characteristics 

discussed above�thus Table 3 is shown 

with two categories, one with 17 classes, 

and one with 15 classes. 

 

Results of Complexity Metrics Study 

For a sample size of 17 and � = 5% 

(0.05), the Spearman’s cutoff for 

accepting H0 in Hypothesis 1 is 0.48.  

Since the computed rs in the correlations 

for code complexity WMC and AMC is 

well above the cutoff, the null 

hypothesis H0 of no correlation between 

WMC and the experts’  evaluations, and 

of AMC and the experts’  evaluations is 

rejected.  For CDE, no significant 

correlation is shown between CDE and 

the experts evaluations.  This is due to 

the difficulties discussed with the CDE 

metric in measuring abstract classes 

(similar to difficulties that other 

complexity metrics have with the same 

kind of class).  

For the second test we remove the 

problem classes, which indeed can be 

considered to be statistical outliers. For a 

sample size of 15 and � = 5% (0.05), the 

Spearman’s cutoff for accepting H0 in 

Hypothesis 1 is 0.525.  Since the 



computed rs in the correlations for code 

complexity WMC,  AMC, and CDE is 

well above the cutoff, the null 

hypothesis H0 of no correlation between 

WMC and the experts’  evaluations, 

between AMC and the experts’  

evaluations, and between CDE and the 

experts’  evaluations, is rejected.  This 

indicates that there is indeed a 

significant correlation between WMC 

and the expert’s evaluations, between 

AMC and the expert’s evaluations, and 

between CDE and the expert’s 

evaluations.  A similar argument is made 

for Hypothesis 1, which compares CDE 

to WMC.  Thus there is a significant 

correlation between CDE and WMC. 

 

CONCLUSIONS 

There are two different categories of 

OO complexity measures: code 

complexity measures and design 

complexity measures.  Each type of 

complexity measure has advantages and 

disadvantages. 

The Average Method Complexity 

(AMC) metric solves one particular 

problem with the code complexity WMC 

metric, that is, that it does not correctly 

measure the complexity of a class with a 

large number of uncomplex member 

functions.  The AMC metric can be used 

itself as a separate code complexity 

measure, or it can be used in addition to 

the code complexity WMC metric to 

give two different views of the 

complexity of a class.  The AMC metric 

correlates well with experts’  evaluations 

of complexity. 

The Class Design Entropy (CDE) 

metric solves a particular problem with 

the design complexity WMC metric, in 

that it can differentiate somewhat 

between the complexity of different 

member functions which have not yet 

been implemented, whereas the design 



complexity WMC metric would simply 

count each separate member function 

equally.  The CDE metric correlates well 

with experts’  evaluations of complexity, 

and with the code complexity WMC 

metric, when certain types of fringe 

classes are not included. 
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