
1

Article accepted for Publication and to Appear in the

Journal of Object-Oriented Programming 1998.

A Class Cohesion Metric For Object-Oriented Designs

Jagdish Bansiya, Letha Etzkorn, Carl Davis and Wei Li

The University of Alabama in Huntsville

jbansiya@cs.uah.edu

Abstract

Cohesion is a measure of relatedness or consistency in functionality of a software component. It
is a highly desirably design characteristic because it measures separation of responsibilities,
independence of components, and control of complexity. Cohesion has a significant effect on a
design’s understandability, effectiveness and adaptability. An early evaluation of design
components for cohesion can significantly improve the quality of a design, by helping identify and
redesign components that have scattered functionality or inconsistencies and that are complex.
In this article we present a new metric to evaluate cohesion among methods of a class early in the
analysis and design phase. The metric evaluates the consistency (focus) of methods in a class’
interface using the parameter lists of the methods. This metric can be applied on class
declarations that only contain method prototypes (method name and parameter types). The
effectiveness of the metric is validated and demonstrated by correlating its results with existing
measures of cohesion such as the Lack of Cohesion Among Methods Metric (LCOM) proposed by
Chidamber and Kemerer and later interpreted by Li and Henry, which can be applied only after
the implementation of methods of a class. Also, the metric is correlated with the cohesiveness
evaluation of classes done by human experts.

Cohesion has long been recognized as a highly desirable property in software

components such as methods, classes, and modules because it measures separation of

responsibilities, independence of components, and control of complexity. Typically, cohesion

refers to the collaboration among the constituents of a software component. All parts of a

component should directly or indirectly contribute to the services provided by the component.

When a component includes parts that do not relate to the logical function of the component, the

parts represent an unrelated grouping of operations and the component is termed to have low

cohesion. For example, in a procedural language, a function can be a component, the statements

2

in the function can be the parts. In object-oriented paradigm, a class can be a component, the data

attributes and the methods are parts.

This definition of relatedness or consistency with respect to the functionality of a

component is effective and useful in controlling complexity of components and therefore aids in

the development of simple and easy to understand systems. Because cohesion reflects how well

complexity has been controlled in software design and the integrity of functionality in a module,

it has a significant effect on a component’s reusability, understandability, effectiveness, and

adaptability1.

Functions and modules have been the most frequently used components for the study of

cohesion in the procedural paradigm, where a module is typically a collection of related

functions. In an object-oriented paradigm, classes are the most basic static components of a

system. A class describes a template behavior using a set of data attributes and a set of related

methods.

Designing a cohesive class is an important consideration for every object-oriented

developer. Recognizing the cohesiveness or lack of it is important for anyone who maintains

object-oriented systems. While an expert software analyst may not have difficulty recognizing

cohesiveness or the lack of cohesiveness in software components, it is difficult for the general

population of developers and analysts to do so. Software product metrics that evaluate

components for cohesiveness can be of great value to most designers, developers, and managers

in identifying the cohesiveness of the classes in an object-oriented design.

The existing cohesion metrics such as “data slicing”2, which measures cohesiveness of

functions and Lack of Cohesion in Methods (LCOM)3,4,5,6 which measures lack of cohesiveness in

classes, can only be applied after the implementation of the component. While these metrics can

be helpful in identifying low-cohesion components, they do not help in preventing the creation of

a component that is not cohesive during design. An early evaluation of cohesion in component

3

design can help to identify and redesign components that have low cohesion, thereby improving

the quality of the component.

In this article we present a new metric for evaluating the cohesion of a class. The metric,

Cohesion Among Methods of Classes (CAMC), evaluates the relatedness of methods in the

interface of a class using the parameter lists defined for the methods. The metric can be applied

earlier in the development than can traditional cohesiveness metrics because it relies only on

method prototypes declared in a class. The effectiveness of the metric is validated and

demonstrated by correlating with the existing LCOM metrics proposed by Chidamber and

Kemerer and interpreted by Li and Henry, and with a team of highly trained software experts

using a set of 17 classes from a variety of commercial projects.

CLASSES IN OBJECT-ORIENTED DESIGNS

Object-oriented systems are developed around class hierarchies. A class hierarchy is a

generalization-specialization structure in which there is a systematic refinement of ideas,

concepts, attributes, and operations using multiple levels, with each level capturing common

attributes and operations of the idea or concept being refined gradually. These generalization-

specialization structures, and therefore class hierarchies, represent the process of abstraction

(refinement in stages) in a design, which is implemented using the inheritance mechanism. The

use of generalization-specialization structures promotes abstraction, it also spreads information

across multiple classes and thus can make a design difficult to understand. While inheritance

promotes internal reuse and abstraction, it breaks encapsulation of classes, increases class

coupling and decreases cohesion of individual classes in the inheritance branch10. This breach of

encapsulation of classes and the decrease in the cohesiveness of classes can make the classes

difficult to understand, reuse, and adapt.

Significant time and effort in the analysis and design of object-oriented systems is spent

in the identification of the classes, assignment of responsibilities to the classes, and achieving

4

appropriate granularity of the classes11. The object-oriented analysis and design process is

iterative and may require several refinements. A poor design may be created if a class does not

represent one cohesive entity, if it has disparate and non-related functionality, or if too many

responsibilities are assigned to a class. These classes will exhibit low cohesion and should be

identified early in the design process so that they can be corrected.

Poor design can result from the creation of ad-hoc classes, using classes to bundle groups

of methods arbitrarily, or the use of a class as a communal blackboard for a variety of unrelated

information to be passed in and out of the methods of the class. These practices can lead to the

development of highly non-cohesive classes that can severely degrade the quality of components

and the whole system. The identification of these low cohesion classes early in the development

process is important so that they can be corrected. Therefore, a metric which can objectively

evaluate the cohesive property of classes before they are committed to an implementation can be

of significant assistance in the development of a good design.

CLASS COHESION

The study of cohesion among methods involves understanding the behavior of the various

methods of a class. In a cohesive class, all the methods of the class collaborate to provide the

services of the class. The collaboration patterns of methods are reflected by the types of

information on which the methods operate. The different types of information that methods

process and the different data declarations with which the methods interact define the information

access patterns of methods. Cohesion can be studied by looking at the closeness (or relatedness)

of the information access patterns in method implementations. The information that is accessed

in a method can be in the form of (1) data attributes of the class, (2) local variables declared in

the method, and (3) parameters that are passed to the method during the method invocation. The

(LCOM) metric proposed by Chidamber and Kemerer is based on the access patterns of methods

to data attributes in a class. This paper proposes a cohesion metric that is based on the parameter

5

access pattern in methods as an alternative to the LCOM metric. A significant advantage of the

new metric over LCOM is that the new metric is not dependent on the implementation of the

methods of a class and can thus be used during the design phase to measure the cohesiveness of

methods in a class.

LACK OF COHESION IN METHODS (LCOM) METRIC

The LCOM metric was one of the six metrics proposed in a draft suite of measurement

theory based software metrics in 1991 by Chidamber and Kemerer3. The metric was interpreted

by Li and Henry4,7, which was later redefined by Hitz and Montazeri5. Chidamber and Kemerer6

also later proposed a revised definition for LCOM. The multiple interpretations of the LCOM

metric can result in differing values for a particular class5,9. However, in spite of its many

definitions, the LCOM metric is still currently the most widely used metric for measuring

cohesiveness of a class.

The LCOM metric uses class data attribute access patterns to compute the lack of

cohesion. The metric determines the sets of methods that have one or more attribute accesses in

common in the implementation of the methods of a class. The number of sets of non-overlapping

attributes gives the LCOM measure for a class. Using the Chidamber and Kemerer revised

definition, the LCOM value for completely cohesive classes is zero and can be as high as
n

2






 for

a class with ‘n’ methods. With the Li and Henry interpretation3, the LCOM measure is close to

one for cohesive classes and can be as high as the number of methods in the class for completely

non-cohesive classes. The Li and Henry interpretation of LCOM provides a number that

indicates the number of classes with which a non-cohesive class should be replaced with. In an

article9 which compares the various implementations of LCOM, Etzkorn et. al. showed that the

revised definition of LCOM by Chidamber and Kemerer and the extensions made by Li and

6

Henry provide the best interpretation of lack of cohesion in methods of a class. It was also shown

that the better implementations of LCOM did not include inherited variables9.

COHESION AMONG METHODS IN CLASS METRIC (CAMC)

The CAMC metric uses different properties of a class than the LCOM metric. In the

CAMC metric, the cohesion in the methods of a class is determined by the types of objects

(parameter access pattern of methods) that method’s take as input parameters. The metric

determines the overlap in the object types of the methods parameter lists. The amount of overlap

in object types used by the methods of a class can be used to predict the cohesion of the class.

This information is available when all method’s prototypes have been defined, well before a

class’ methods are completely implemented.

The CAMC metric is based on the premise that the parameters of a method reasonably

define the types of interaction that methods may implement. While parameters define the

external information that is available to the methods of a class, the state of the object maintained

by its attributes represents the internal information that is also available to the methods of the

class. Since all methods of a class have access to the state of the object, parameters represent the

information that can make methods significantly different within a class. If all the methods of a

class have access to similar parameter types, then it can be reasonably assumed that the methods

process closely related information and thus must be cohesive in terms of the information

processed.

The CAMC metric measures the extent of intersections of individual method parameter

type lists with the parameter type list of all methods in the class. To compute the CAMC metric

value, an overall union (T) of all object types in the parameters of the methods of a class is

determined. A set Mi of parameter object types for each method is also determined. An

intersection (set Pi) of Mi with the union set T is computed for all methods in the class. A ratio

7

of the size of the intersection (Pi) set to the size of the union set (T) is computed for all

methods. The summation of all intersection sets Pi is divided by product of the number of

methods and the size of the union set T , to give a value for the CAMC metric. For a class with

‘ n ’ methods :

If Mi is the set of parameters of method i , then

T = Union of Mi , ∀ = i to n1

If Pi is the intersection of set Mi with T i.e. P M Ti i =
�

 then

CAMC
P

T n

i
i

n

=
×

=
∑ | |

| |
1

The metric value ranges between 0 and 1.0. A value of 1.0 represents maximum cohesion and 0

represents a completely un-cohesive class.

In C++, all methods implicitly receive “this” (pointer to the object-class) as the first

parameter in a method invocation. Therefore the set T of types will be a non-empty set, that will

at least contain the class pointer “this” as a member. Figure 1 gives the design of three classes

Employee, EmployeeNode and EmployeeList as part of an employee information program. Figure

2 shows the CAMC metric calculations for the three classes. Class EmployeeNode has a CAMC

metric value of 1.0 and is the most cohesive of the three classes because it has only one method.

Class EmployeeNode with four methods and class Employee with five methods have cohesion

values of 0.75 and 0.5 respectively.

8

Figure 1. Three C++ Classes Used to Illustrate the Computation of CAMC

The metric gives a value of 1.0 when set T and all sets Mi are identical, i.e. all methods

have the same parameter types. The metric gives lower values of CAMC when the methods of a

class have different parameter types. The closer the metric value is to zero the greater is the

diversity in types of parameters used by methods and thus more likely the class is to be un-

cohesive. It has been our observation that CAMC values of 0.35 and greater indicate classes that

class Employee {

 public:
 Employee () { name = address = 0; }
 double Pay(int no_hours);
 double Tax(double tax_rate, int no_deductions);
 double SetPayRate (double new_pay_rate);

 void ChangeAddress(char *new_address);
 private:
 char *name;
 char *address;
 double pay_rate;
 int hours_worked;
};

class EmployeeNode {
 public:

 EmployeeNode (Employee * obj,
 EmployeeNode * _next = 0);

 private:
 Employee *pEmp;
 EmployeeNode *next;

};

class EmployeeList {
 public:

 EmployeeList (void);
 void Add(Employee obj);
 void Delete(Employee obj);
 int Length(void);

 private:
 EmployeeNode *start, *end;
 int length;

};

9

are reasonably cohesive. Classes with a CAMC measure of 0.35 and below are the most likely to

be un-cohesive.

Figure 2. Calculations of CAMC for the Three Classes in Figure 1

CAMC Calculations For Class Employee :

T = { this, char, int, double } and | T | = 4

PConstructor = | { this } T | = 1
�

PPay = | { this, int } T | = 2
�

PTax = | { this, double, int } T | = 3
�

PChangePayRate = | { this, double } T | = 2
�

PChangeAddress = | { this, char } T | = 2
�

CAMCEmployee = {1, 2, 3, 2, 2} 4 5 = 10 / 20 = 0.5 ∑ ×

CAMC Calculations For Class EmployeeNode :

T = { this, Employee } and | T | = 2

PConstructor = | { this, Employee } T | = 2
�

CAMCEmpNode = { 2 } 1 2 = 2 / 2 = 1.0∑ ×

CAMC Calculations For Class EmployeeList :

T = { this, Employee } and | T | = 2

PConstructor = | { this } T | = 1
�

PAdd = | { this, Employee } T | = 2
�

PDelete = | { this, Employee } T | = 2
�

PLength = | { this } T | = 1
�

CAMCLinkedList = {1, 2, 2, 1} 2 4 = 6 / 8 = 0.75∑ ×

10

Some alternative implementations of the CAMC metric can exclude the presence of the

“ this” parameter and/or the inclusion of parameterless methods in the metric computation. The

number of methods ‘n’ used in the computation in this implementation of the metric will be the

number of methods that have one or more parameters declared in the class. While the inclusion

of the constructor(s) in the computation of CAMC may have some influence on the metric’ s

cohesion values for classes with small numbers of methods, for classes with a large number of

methods the inclusion or exclusion of the constructor is observed to have no significant impact on

the class’ cohesion measure.

Validation Tests

As part of our validation study, CAMC was statistically correlated with LCOM. The

LCOM metric has been shown to effectively predict cohesiveness of classes in several

studies4,6,8,9. In this study, the CAMC metric was correlated with the revised definition of LCOM

by Chidamber and Kemerer (LCOM1) and with the Li and Henry (LCOM2) interpretation of the

LCOM metric. Since the inclusion or exclusion of constructors of a class can give different

results in LCOM implementations, the correlation was validated with both implementations.

Also, the CAMC metric’ s assessment of class cohesion was compared with a cohesiveness

assessment of the classes provided by a team of highly trained domain experts. The following

hypothesis and test were used in the validation.

Hypothesis 1

H0 : = 0ρ There is no significant correlation between CAMC and LCOM.

H1 : 0ρ ≠ The CAMC metric can predict cohesion among methods as measured by LCOM.

α = 0.5

Hypothesis 2

11

H0 : = 0ρ There is no significant correlation between CAMC and expert evaluation of

cohesion.

H1 : 0ρ ≠ The CAMC metric can predict cohesion among methods as assessed by experts.

α = 0.5

Hypothesis 1 Test

The hypothesis, that CAMC should correlate well with LCOM, is based upon our

observations and empirical understanding that within method implementations, parameter

instances of a method interact with attributes of the class in method statements such as

assignments and expressions. Since LCOM bases its measure of the attributes used in the same

statements in which parameters are also used, the CAMC measure based on the use of parameters

in a method’ s implementation should closely relate with LCOM.

Metric measures for the four LCOM interpretations and CAMC are shown in Table 1 for

17 classes drawn from three well known graphical user interface packages. These classes were

chosen to closely reflect comparable capabilities in the different packages. The experts column

shows the average ranking of the cohesion of each class by an external evaluation team on a scale

from 0 to 1.

Spearman’ s rank correlation (rs) was used to determine the correlation for the non-

parametric data in Table 1. The correlation coefficient, rs , is a measure of the ability of one rank-

variable to predict the value of another rank-variable. If E1 and E2 are two independent

evaluations of ‘n’ items that are to be correlated, then the values of E1 and E2 are ranked (either

increasingly or decreasingly) from 1 to ‘n’ according to their relative size within the evaluations.

For each E E1 2, pair in the relative rankings, the difference in the ranks ‘d’ is computed. The

sum of all the d 2 ’ s, denoted d 2∑ is used to compute rs using the formula :

12

r
d

n n
s = −

−
∑1

6

1

2

2()
− ≤ ≤ +1 00 1 00. .rs

Table 2 shows the relative rankings of the 17 metric values within each column of Table

1. While the CAMC values and expert’ s scores are ranked based on a decreasing value of the

metrics, the LCOM metric values are ranked based on an increasing value of the metrics because

LCOM measures lack of cohesion (lower values indicate better cohesion) rather than presence of

cohesion among methods.

The Spearman’ s rank correlation coefficient, rs is computed between CAMC and the

four LCOM metrics, and CAMC and the evaluation team’ s ranking. Table 3 shows the computed

values of the correlation coefficient rs for the CAMC metric with experts and the four LCOM

implementations for all 17 classes, and the first 15 classes in Table 2. While an rs 0.6≈ is

Class DESIGN
CAMC

Experts LCOM1
with

Constructor

LCOM1
without

Constructor

LCOM2
with

Constructor

LCOM2
without

constructor
1 1 0.86 1 0 2 1
2 0.93 0.89 4 3 3 3
3 0.87 0.92 13 10 5 5
4 0.80 0.75 28 21 8 7
5 0.58 0.79 34 34 8 8
6 0.31 0.70 66 49 10 9
7 0.40 0.71 91 78 14 13
8 0.39 0.61 76 66 10 10
9 0.36 0.75 287 276 18 18

10 0.38 0.82 28 15 8 6
11 0.28 0.65 136 120 17 16
12 0.23 0.54 435 406 30 29
13 0.24 0.57 323 298 25 24
14 0.17 0.68 343 321 24 24
15 0.30 0.54 1142 1118 37 44
16 0.67 0.69 378 351 27 26
17 0.32 0.73 24 16 6 5

Table 1. CAMC, Expert, LOCM1 and LCOM2 Cohesion Measures of 17 Classes

13

computed between CAMC and the four LCOM metrics when all the 17 classes are used, a

stronger correlation of rs 0.82≈ is observed when the two fringe classes 16 and 17, for which

the CAMC and LCOM disagree, are excluded from the correlation.

For a sample size of 17 and α = 5% (0.05) , the Spearman’ s cutoff for accepting H0

is 0.48. Since the computed rs in each of the correlations is well above the cutoff, the null

hypothesis H0 , of no correlation between CAMC and LCOM, is rejected, and the alternate

hypothesis that the CAMC metric is a predictor of cohesion as would be measured by LCOM is

accepted. Figure 1 shows the plot of CAMC rankings of the first 15 classes with the LCOM2

rankings of the classes. The figure indicates a close relation between all CAMC and LCOM

ranks of the classes and thus points to a strong prediction that the CAMC metric can assess lack

of cohesion.

Class DESIGN
CAMC

Experts LCOM1
with

Constructor

LCOM1
without

Constructor

LCOM2
with

Constructor

LCOM2
without

constructor
1 1 3 1 1 1 1
2 2 2 2 2 2 2
3 3 1 3 3 3 3
4 4 6 5 6 5 6
5 6 5 7 7 6 7
6 12 10 8 8 8 8
7 7 9 10 10 10 10
8 8 14 9 9 9 9
9 10 7 12 12 12 12
10 9 4 6 4 7 5
11 14 13 11 11 11 11
12 16 17 16 16 16 16
13 15 15 13 13 14 13
14 17 12 14 14 13 14
15 13 16 17 17 17 17
16 5 11 15 15 15 15
17 11 8 4 5 4 4

Table 2. Relative Ranking of the 17 Classes Based on the Metric Values

14

Hypothesis 2 Test

In Table 3, an rs of 0.70 and 0.73 is computed between CAMC and expert evaluation of

the first 17 and 15 classes of Table 1 respectively. Since the computed value of rs between

CAMC and the experts exceeds the cutoff of 0.48, the null hypothesis is rejected and the alternate

hypothesis that the CAMC metric’ s assessment of cohesion significantly agrees with expert

evaluation of cohesion among methods of a class is accepted.

CAMC
Correlation

Experts LCOM1
with

Constructor

LCOM1
without

Constructor

LCOM2
with

Constructor

LCOM2
without

constructor
Using 17 Classes 0.70 0.59 0.58 0.60 0.58
Using first 15 Classes 0.73 0.84 0.82 0.85 0.82

Table 3. Correlation Values of CAMC Rankings with Experts, LCOM1 and LCOM2

CAMC - LCOM2 (With Constructors)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Classes

R
el

at
iv

e
R

an
ks

DESIGN CAMC w ithout Inheritance
LCOM2 w ithout Inheritance w ith Constructor

Figure 2. Plot of the CAMC and LCOM2 Rankings of the 15 Classes in Table 3

15

Table 4 shows the correlation that was computed between expert evaluation of cohesion

and the four LCOM implementations. An rs ≈ .80 is computed when all 17 classes are

correlated, and rs ≈ .84 is computed when the first 15 classes are correlated. This indicates that

all the four interpretations of LCOM are equally good and any one of these could be used to

compute the LCOM measure of a class. Table 5 summarizes the differences between the CAMC

and LCOM metrics.

CONCLUSION

Expert - LCOM
Correlation

LCOM1
with

Constructor

LCOM1
without

Constructor

LCOM2
with

Constructor

LCOM2
without

Constructor
Using all 17 Classes 0.79 0.81 0.80 0.80
Using first 15 Classes 0.82 0.84 0.84 0.84

Table 4. Correlation Values of Experts Ranking with LCOM1 and LCOM2 Rankings

CAMC LCOM
Measures cohesion among methods of a class. Measures lack of cohesion in methods of a

class.
Relies on class declarations which contain
method prototypes for its computation.

Relies on method implementations for its
computation.

Can be applied in design phase. Can be applied in implementation phase.
Measures cohesion based on parameter types
defined in methods.

Measures cohesion based on attribute instances
of the class used in method implementations.

The metric value is the summation of all
individual method parameter types intersected
with the union of parameter types from all
methods in the class, divided by the number of
methods in the class.

The metric value is the number of pairs of
member functions without shared instance
variables, minus the number of pairs of
member functions with shared instance
variables6.

The metric works well in recognizing wild un-
cohesion caused by parameters.

The metric works well in recognizing wild un-
cohesion caused by attributes.

The metric values are bounded with the range 0
to 1.0. A value 1.0 indicates maximum
cohesion.

The metric values are positive integers
numbers. A value of 1 indicates the least lack
of cohesion4.

The metric measure is not linear between the
range of 0 and 1.0. A class with a CAMC
value of 0.5 doesn’ t indicate that the class is
half cohesive or half un-cohesive.

The metric values are not linear on the integer
range, i.e., two classes with LCOM measures
of 2 and 4 does not mean that the second class
is twice as un-cohesive as the first.

Table 5. Comparison between CAMC and LCOM

16

We have proposed a new metric, Cohesion Among Methods of Classes (CAMC), for

assessment of design cohesion in a class and validated it by comparing the CAMC metric with the

LCOM metric. In addition, independent evaluation of design cohesiveness by a team of software

developers also showed positive correlation to the CAMC metric. The main advantage of the

new CAMC metric over LCOM is that the metric only requires the definition of the method

prototypes in a class for its assessment.

This metric shows considerable promise as an easy and early way to assess the

cohesiveness of classes in a design. It needs to be further validated on a wide set of projects from

various domains, but initial results show it can be a significant help in improving object-oriented

design quality.

References

1. Dormey, G.R. Cornering the Chimera, IEEE SOFTWARE, 13(1) , pp. 33-43, 1996.

2. Bieman, J.M. and L.M. Ott. Measuring functional cohesion, IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, 20(8), August 1994, pp. 644-657.

3. Chidamber, S. R. and C.F. Kemerer. Towards a metrics suite for object-oriented design,

PROCEEDINGS: OOPSLA ’ 91, July 1991, pp. 197-211.

4. Li, W. and S. Henry. Maintenance metrics for the object-oriented paradigm,

PROCEEDINGS OF THE FIRST INTERNATIONAL SOFTWARE METRICS

SYMPOSIUM, May 21-22, 1993, pp. 52-60.

5. Hitz, M. and B. Montazeri. Chidamber and Kemerer’ s Metrics Suite: a measurement

theory perspective, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 22(4),

April 1996, pp. 267-271.

6. Chidamber, S. R. and C.F. Kemerer. A metrics suite for object-oriented design, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, 20(6), June 1994, pp. 476-493.

17

7. Li, W., S. Henry, D. Kafury, and R. Schulman. Measuring object-oriented design,

JOURNAL OF OBJECT-ORIENTED PROGRAMMING, July/August 1995, pp. 48-55.

8. Basili, B., L. Briand, and W.L. Melo. A validation of object-oriented metrics as quality

indicators, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 22(10), October

1996, pp. 751-761.

9. Etzkorn, L., C. Davis, and W. Li. A Practical Look at the Lack of Cohesion in Methods

Metrics, JOURNAL OF OBJECT-ORIENTED PROGRAMMING (to appear in 1998).

10. Gamma, E., R. Helm, R. Johnson and J. Vlissides, DESIGN PATTERNS, Eddison-

Wesley, 1994.

11. Booch, G. OBJECT-ORIENTED ANALYSIS AND DESIGN WITH APPLICATIONS,
2nd Edition, Benjamin/Cummings Publishing Company, Inc., 1994.

