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Software metrics for the procedural 

software development paradigm have been 

extensively studied. Metrics such as McCabe’s 

cyclomatic complexity metric1 and Halstead’s 

Software Science metrics2 are well known and 

frequently used to measure software 

complexity in the procedural paradigm. More 

recently, software metrics that are tailored to 

the measurement of  design complexity in the 

object-oriented paradigm have been 

developed. Chidamber and Kemerer proposed 

a draft suite of software metrics for 

object-oriented software in 19913 that 

included six object-oriented design metrics 

based on measurement theory. This suite of 

metrics included depth of the inheritance tree 

(DIT), number of children (NOC), coupling 

between objects (CBO), response for a class 

(RFC), weighted methods per class (WMC), 

and lack of cohesion of methods (LCOM).

The LCOM metric has been subject to 

multiple interpretations which can greatly 

influence the LCOM value derived for a 

particular class. This article compares and 

analyzes the definition and implementation 

variations of the LCOM metric, and provides 

an assessment of this metric.

DEFINITION OF THE LCOM METRIC

The multiple definitions of the LCOM 

metric currently in use include: 1) the original 

definition of the LCOM metric by Chidamber 

and Kemerer3 2) the definition of the LCOM 

metric provided by Li and Henry4,5, 3) the 

redefinition of the Li and Henry version of the 

LCOM metric by Hitz and Montazeri6, and 4) 

the redefinition of their original LCOM metric 

by Chidamber and Kemerer.7,8

Chidamber and Kemerer original 

OOPSLA definition

Chidamber and Kemerer originally defined 

the Lack of Cohesion in Methods metric 

(LCOM) as follows3: Consider a Class C1 

with methods M1, M2,..., Mn. Let { Ii }= set 

of instance variables used by method Mi. 



There are n such sets {I1}, ... {In}. LCOM = 

the number of disjoint sets formed by the 

intersection of the n sets.

 The viewpoints listed for this metric are: 

1) Cohesiveness of methods within a class is 

desirable, since it promotes encapsulation of 

objects.

2) Lack of cohesion implies classes should 

probably be split into two or more 

sub-classes.

3) Any measure of disparateness of methods 

helps identify flaws in the design of classes.

4) Low cohesion increases complexity, 

thereby increasing the likelihood of errors 

during the development process.

Li and Henry definition

The definition of disjointness of sets given 

in the Chidamber and Kemerer OOPSLA ’91 

paper was somewhat ambiguous, and was 

further defined by Li and Henry:4

LCOM = number of disjoint sets of local 

methods; no two sets intersect; any two 

methods in the same set share at least one 

local instance variable; ranging from 0 to N; 

where N is a positive integer. Li et al. 

demonstrated a calculation of their definition 

of the LCOM metric using the example 

shown again here in Figure 15. This  example 

is used here to compare different 

implementations of the LCOM metric (see 

Figure 3).

Chidamber and Kemerer redefinition 

Chidamber and Kemerer, in their 1994 

paper,6,7,8 redefined the LCOM metric. Their 

new definition of the LCOM metric is as 

follows:

Consider a Class C1 with n methods M1, M2, 

..., Mn. Let { I j } = set of instance variables 

used by method Mi.

There are n such sets { I 1 } ...  { I n}. Let P = { 

(Ii, Ij) | Ii  intersecting Ij is equal to the null set 

} and Q = { (Ii, Ij) | Ii intersecting Ij is not equal 

the null set}. If all n sets { I 1 }...{ In} are the 

null set then let P = the null set.

LCOM = |P| - |Q|, if |P| > |Q|

             = 0 otherwise

In this definition, Q = the number of pairs of 

methods which both access the same (one or 

more) instance variables. P = the number of 

pairs of methods which do not have any 

instance variable accesses in common. As 

described by Basili et al.6, this definition of 



Figure 1. A C++ Example Used to Illustrate Different LCOM Interpretations

class Location {protected:
    int X,Y;
public:
   Location (int InitX, int InitY) { X=InitX; Y=InitY; }
   int GetX() { return X;}
   int GetY() { return Y;}
};

class Point: public Location {
protected:
   Boolean Visible;
public:
   Point(int InitX, int InitY);
   virtual void Show();
   virtual void Hide();
   virtual void Drag(int DragBy);
   Boolean IsVisible() {return Visible;}
   void MoveTo( int NewX, int NewY);
};

class Circle: public Point {protected:
   int Radius;
public:
   Circle(int InitX,int InitY,int InitRadius); 
   void Show();
   void Hide();
   void Expand(int ExpandBy);
   void Contract(int ContractBy);
};

// The following definition may be stored in another file

Point::Point(int InitX, int InitY): Location (InitX, InitY){
  Visible = false;
} 

void Point::Show() { 
  Visible = true;  
  putpixel(X,Y, getcolor());
}

void Point::Hide() { 
  Visible = false; 
  putpixel(X,Y,getbkcolor());
}

void Point::MoveTo(int NewX, int NewY)  { 
   Hide();
   X=NewX;

   Y=NewY;
   Show(); 
}

void Point::Drag(int DragBy) {
  int DeltaX, DeltaY;
  int FigureX, FigureY;

  Show(); 
  FigureX = GetX();
  FigureY = GetY();

  while (getdelta(DeltaX, DeltaY)) {
     FigureX = FigureX + (DeltaX * DragBy);
     FigureY = FigureY + (DeltaY * DragBy);
     MoveTo( FigureX, FigureY );  }
}

Circle::Circle(int InitX, int InitY, int InitRadius) : Point( 
InitX, InitY) {
  Radius = InitRadius; }

void Circle::Show() {
  Visible = true;
  circle(X,Y,Radius); // this is an external function call, 
not a constructor call
}

void Circle::Hide() {
  unsigned int TempColor;

  TempColor = getcolor();
  setcolor(getbkcolor()); 
  Visible=false;
  circle(X,Y,Radius);
  setcolor(TempColor);
}

void Circle::Expand(int ExpandBy) {

  Hide();
  Radius = Radius + ExpandBy;
   if (Radius < 0) 
      Radius = 0;
 
  Show();
}
void Circle::Contract(int ContractBy) {
  Expand(-ContractBy);
}



LCOM is the number of pairs of member 

functions without shared instance variables, 

minus the number of pairs of member 

functions with shared instance variables. 

However, the metric is set to zero whenever 

the above subtraction is negative. 

This definition of LCOM has some 

drawbacks in that classes with widely 

different cohesions will result in the same 

LCOM value. Chidamber and Kemerer 

themselves note that "the LCOM metric for a 

class where |P| = |Q| will be zero. This does 

not imply maximal cohesiveness, since within 

the set of classes with LCOM = 0, some may 

be more cohesive than others". Basili et al.6 

performed a statistical study where LCOM, 

calculated in this manner, was insignificant in 

their analysis of fault detection. The definition 

of LCOM was not appropriate in their case 

since it set cohesion to zero for classes with 

very different cohesions and kept them from 

analyzing the actual impact of cohesion on 

their data sample. Hitz and Montazeri7  

discussed several cases where LCOM, 

calculated in this manner, would result in 

various anomalies when attempting to predict 

cohesion.

Hitz and Montazeri definition

 Hitz and Montazeri proposed a different, 

graph-theoretic formulation of Li and Henry’s 

version of the LCOM metric: 

Let X denote a class, IX the set of instance 

variables of X, and MX the set of its methods. 

Consider a simple, unidirected graph GX(V,E) 

with V = MX, and E = {<m,n> is an element 

of V  X  V| for every i that is an element of IX : 

(m accesses i) intersects (n accesses i) }, i.e., 

exactly those vertices are connected which 

represent methods with at least one common 

instance variable. LCOM(X) is then defined 

as the number of connected components of G, 

that is, the number of method "clusters" 

operating on disjoint sets of instance 

variables. They claim that this new 

formulation is equivalent to Li and Henry’s 

definition of LCOM.

LCOM calculation examples/comparisons

     During the rest of this paper, the notations 

defined in the following table will be used for 

the various LCOM definitions:



 Table 1.

LCOM1 Chidamber and Kemerer
             revised definition

LCOM2 Li and Henry 
             definition

To clarify the difference between some of 

the various definitions of LCOM, the 

following examples are  provided:

Example 1:

Given:

member variables:  I,J,K,L

member functions: A,B,C,D

Member function A accesses variables 

{I,L}.

Member function B accesses no variables.

Member function C accesses variables 

{J,L}.

Member function D accesses variable {K}.

Using LCOM2, the disjoint sets of 

methods, where any two methods in the same 

set share at least one local instance variable, 

would be:

 {A,C}, {B}, {D}

The LCOM2 value would then be 3, which 

would be derived from counting the number 

of sets.

Using LCOM1:

A intersecting B = null set

A intersecting C = { L }

A intersecting D = null set

B intersecting C = null set

B intersecting D = null set

C intersecting D = null set

P = count of the intersections whose result is 

the null set = 5.

Q = count of the intersections whose result is 

not null = 1

LCOM1 = |P| - |Q| = 5 - 1 = 4 

(since |P| > |Q|)

Another difference between the two 

metrics is shown in the following example:

Example 2:

Given:

Member variables: I,J,K,L.

Member functions: A,B,C,D.

Member function A accesses variable {I}.

Member function B accesses variable {I}.

Member function C accesses variable {I}.

Member function D accesses variables 



{I,J,K,L}.

Using LCOM2:

The set for LCOM2 is:

 {A, B, C, D}

and therefore LCOM2 = 1.

Using LCOM1:

A intersecting B = {I}

A intersecting C = {I}

A intersecting D = {I}

B intersecting C = {I}

B intersecting D = {I}

C intersecting D = {I}

Thus P = count of the intersections whose 

result is the null set = 0.

Q = count of the intersections whose result is 

not null = 6.

Therefore LCOM1 =  0  (since |P| < |Q|).

Thus a class that is perfectly cohesive, 

measured by LCOM2, would have a value of 

1, whereas the same class would have a value 

of 0 when measured by LCOM1.

Consider the case of a perfectly uncohesive 

class. The value of LCOM2 would equal the 

number of member functions in the class. 

Thus completely uncohesive classes 

consisting of larger number of member 

functions would have a larger LCOM2 value 

than completely uncohesive classes consisting 

of a smaller number of member functions. 

This is reasonable, since the cohesion is 

indeed worse -- a class providing more 

unrelated functionalities can be considered 

less cohesive than a class providing fewer 

unrelated functionalities. 

In the case of a completely uncohesive 

class, LCOM1 would have a value equal to n 

taken two at a time, where n = the number of 

member functions in the class. Thus this 

metric also results in larger values for 

LCOM1 for uncohesive classes with larger 

number of member functions. One special 

case is the treatment of a class whose member 

functions do not access any of the class’ 

member variables. The LCOM1 definition 

(revised Chidamber and Kemerer definition of 

LCOM)  says that if all n sets { I 1 }...{ In} are 

the null set then let P = the null set. Thus |P| = 

0, and thus LCOM1 = 0. This could tend to 

cause confusing results. Consider, for 

example, a class that contains one member 

variable and 5 member functions that do not 

access that variable (the variable is unused). 



Thus, the LCOM1 for that class = 0. If one of 

the functions accesses that variable, the 

LCOM1 for the class becomes 5 taken two at 

a time (5 choose 2), which is 10. Yet both 

classes are still completely uncohesive in that 

they have no member functions that share any 

member variables. With the LCOM2 

definition (Li and Henry definition), both 

classes would have the same LCOM value.

LCOM IMPLEMENTATION

There are some variations on the LCOM 

metric that are independent of which 

definition is used. Some of these variations 

include the determination of exactly which 

member variables and member functions take 

part in the calculations.

Inclusion of inherited variables

 One question of LCOM implementation is 

whether or not inherited member variables 

should be used as part of the cohesiveness 

determination. Neither of the Chidamber and 

Kemerer definitions specifies whether or not 

inherited variables should be used. The Li and 

Henry definition specifies local variables 

only. Consider the case of the C++ example 

given in Figure 1. The Point::Hide( ) member 

function and the Point::Show( ) member 

function would be considered as having no 

member variables in common by the 

definition of the Li and Henry LCOM metric 

(LCOM2). However, both of these functions 

use the X, Y coordinates inherited from the 

class Location. The Hide member function 

hides a pixel (rewrites the pixel in background 

color) whose location is given by X,Y 

coordinates. The Show member function 

shows a pixel (rewrites the pixel in the current 

color) whose location is given by X,Y 

coordinates. Obviously these are related 

graphics routines, and should form part of the 

same class. Thus there is an argument in favor 

of the use of inherited variables in the 

LCOM2 metrics calculation. 

Inclusion of constructor or destructor 

functions

Another possible problem with the current 

implementations of the LCOM metric is the 

inclusion of the constructor member function 

and/or the destructor member function in the 

LCOM metrics calculation. Constructor 

member functions, for example, tend to 



Class example  {
        int Visible;
        int X,Y;
        float salary;
        int val_from_port;

        example( );  // Constructor
        void Hide( );
        void calculate_salary(int num_months, float 

                             amt_per_month);
        void read_val_from_input_port( );
}

void example::example( ) {
          Visible = false;
          salary = 0.0;
          val_from_port = 0;}

void example::Hide( ) {
           Visible = false;
            putpixel(X,Y, getbkcolor() );
}

void calculate_salary(int num_months, float               
               amt_per_month) {

           salary = num_months * amt_per_month;
}

void read_val_from_input_port( ) {
           val_from_port = inportb(PORTA);
}

}

Using LCOM1,
 P = 3, Q = 3, so LCOM1 = |P| - |Q| = 0, which supposedly means the class is completely cohesive

Using LCOM1, but leaving out the constructor,
P = 3, Q = 0, so LCOM1 = |P| - |Q| = 3, which is a more reasonable cohesiveness value, since the class is 
actually not cohesive

Using LCOM2,
the LCOM2 sets are { example( ) (constructor), Hide( ), calculate_salary( ), read_val_from_input_port( ) }
so LCOM2 = number of disjoint sets = 1, which supposedly means the class is completely cohesive

Using LCOM2, but leaving out the constructor,
the LCOM2 sets are:  {Hide( ) }
                                    {calculate_salary( ) }
                                    {read_val_from_input_port ( ) }
so LCOM2 = number of disjoint sets = 3, which is a more reasonable cohesiveness value, since the class is 
actually not cohesive

Figure 2. A C++ Constructor Example

include all or most of the member variables. 

This is reasonable, since a primary purpose of 

a constructor function is to initialize the 

member variables of a class.  Consider the 

class Location, shown in Figure 1. The 

Location class initializes both the X and Y 

member variables, which is reasonable. 

However, this results in LCOM2 = 1  for the 



       LCOM2 (Li and Henry Definition of LCOM)
LCOM2                                                                LCOM2

           considering inherited variables                     not considering inherited variables
            with                             without                                   with                        without

    Class             constructor               constructor                           constructor           constructor
  
     Location              1                                 2                                              1                              2
     Point                    2                                 2                                              3                              3
     Circle                  2                                 2                                              2                              2

LCOM1 (Revised Chidamber and Kemerer Definition  of LCOM)
LCOM1                                                                 LCOM1

           considering inherited variables                     not considering inherited variables
            with                             without                                   with                      without

    Class             constructor               constructor                           constructor         constructor
  
     Location             0                                  1                                              0                             1
     Point                   0                                  0                                              3                             4
     Circle                 0                                  0                                              0                             0

Figure 3. LCOM Metrics for code in Figure 1

class (see Figure 3).  The LCOM2 set of 

functions that access the same set of member 

variables  would be:

{Location, GetX, GetY}

If the constructor function were not included 

in the metrics calculation, then LCOM2 

would = 2, and the LCOM2 sets of  functions 

that access the same set of member variables 

would be:

{GetX }, {GetY}

Consider the same example using LCOM1. 

In the first case, where the constructor 

function is included, we have:

Location( ) intersects GetX( )

Location( ) intersects GetY( )

GetX( ) intersects GetY( )

Thus P = 0, Q = 3, so LCOM1 = 0 since |P| < 

|Q|.

In the second case, where the constructor 

function is not included, we have:

GetX( ) intersects GetY( )

thus P = 0, Q = 1, so LCOM1 = 0 since |P| < 

|Q|.

In this particular case, LCOM1 did not vary 



based on whether the constructor or destructor 

was included or not. However, if this example 

is extended, then any class which possesses a 

constructor that initializes all variables will be 

considered as perfectly cohesive, even if the 

other methods have no variables at all in 

common. See Figure 2 for an example of such 

a class.

Often the destructor function operates in a 

similar manner to the constructor function in 

that it accesses most or all of the variables of 

a class. This occurs less often, however, since 

a destructor function is more commonly used 

to return pointer values to the heap. Integer 

variables are seldom accessed using a 

destructor function. Also, it is very common 

for a class to have a constructor function, but 

not to have an explicit destructor function. In 

a package where constructor functions are 

common, but destructor functions are rare, the 

destructor function may tend to acquire a 

greater importance to the code. Thus there is a 

good argument for not including the 

constructor function in the LCOM calculation, 

but still continuing to include the destructor 

function in the calculation.

Comparison of LCOM implementations 

for Li example in Figure 1

Since the example in Figure 1 was used by 

Li et al. to demonstrate the calculation of the 

LCOM2 metric, a comparison of the different 

possible implementations of the LCOM 

metric for the code shown in Figure 1 is 

instructive. Figure 3 contains the values 

calculated for the different implementations 

of the LCOM metric for this example.

The differences between the various LCOM 

metrics for the class Location is obviously not 

due to the use of inherited variables in the 

metrics calculation, since Location is a base 

class. However, LCOM does vary depending 

on whether or not the constructor function is 

used in the metrics calculation. The 

constructor function here performs a function 

similar to that shown in Figure 2; that is, it 

initializes all variables in the class.

The class Point shows no difference 

between calculations of the LCOM2 metric 

with or without the constructor function. 

However, both the Point and Circle classes 

represent simple cases where the constructor 

initialization problem would probably not be 



obvious -- in both classes there is only a 

single member variable. The Circle class 

shows no difference between the LCOM 

metrics calculated considering inherited 

variables, and the LCOM metrics calculated 

not considering inherited variables. As it 

happens, the only inherited variables accessed 

by Circle member functions occur in member 

functions that access the same local variable 

(Show and Hide). The Point class shows a 

definite difference between the LCOM 

metrics calculated with and without 

considering inherited variables. The 

difference is due to the MoveTo member 

function. MoveTo does not access the local 

member variable "Visible". However, it does 

access the inherited variables X and Y. Notice 

that in this case, the differently calculated 

cohesion values should probably be fairly 

similar, since the difference in the 

calculations is based on a single member 

function out of six member functions total (5 

member functions total if not including the 

constructor function). This leads to a pair of 

interesting observations, discussed below:

The LCOM2 implementations result in the 

following disjoint sets:

LCOM2 with inheritance, with constructor:

 {constructor Point( ), Show( ), Hide( ),         

   IsVisible( ), MoveTo( ) }

 {Drag}

LCOM2 with inheritance, no  constructor:

{Show( ), Hide( ), IsVisible( ), MoveTo( )}

 {Drag}

LCOM2, no inheritance, with constructor:

 {constructor Point( ), Show( ), Hide( ),         

   IsVisible( ) }

 {Drag}

{MoveTo}

LCOM2, no inheritance, no constructor:

{Show( ), Hide( ), IsVisible( ) }

{Drag( )}

{MoveTo( )}

Thus the MoveTo member function results 

in the addition of only one extra disjoint set in 

any case, and the LCOM2 metric is only one 

value greater.

 LCOM1 varies more between the two 

implementations (with or without inherited 

variables) than does LCOM2. 

LCOM1 with inheritance, with constructor:

P = 7, Q = 8



LCOM1 with inheritance, no  constructor:

P = 5, Q = 5

LCOM1, no inheritance, with constructor:

P = 9, Q = 6

LCOM1, no inheritance, no constructor:

P = 7, Q = 3

The P and Q values have a wide variation, 

as does the metric itself. Thus a change of 

only a single member function can result in 

greatly different cohesiveness values of 

LCOM1.

Which LCOM Metric Best Measures 

Cohesion?

Since the different definitions and 

implementations of the LCOM metric can 

result in different values for LCOM, the  

question is which definition and which 

implementation of LCOM best measures 

cohesion?

Various C++ classes and hierarchies of 

classes were chosen from three independent 

C++ GUI packages. Alternative versions of 

the LCOM metric for these classes were 

calculated using the PATRicia system9,10,11 

(Program Analysis Tool for Reuse). Seven 

highly experienced domain experts 

subjectively rated each class for cohesiveness 

by categorizing it as acceptably cohesive, or 

not cohesive. An acceptably cohesive class 

was classed as 100%, a non-cohesive class as 

0%. An attempt had been made earlier to rate 

classes on a tighter scale; however, it was 

found that classes that the experts agreed had 

the same cohesion (should be broken into an 

agreed upon number of sub-classes) was rated 

as "fair" by some experts, or "poor" by others 

-- that there was no true agreement on scale. 

Thus it was found that the rougher measure 

was more appropriate in this case. 

The various LCOM values produced by the 

PATRicia system for each class were 

compared to the averaged cohesiveness 

ratings of the experts. LCOM was measured 

in 8 different ways: 1) revised Chidamber and 

Kemerer definition (LCOM1), including 

inherited variables, including constructor 

function,  2) revised Chidamber and Kemerer 

definition (LCOM1), including inherited 

variables, not including constructor function  

3) revised Chidamber and Kemerer definition 

(LCOM1), not including inherited variables, 

including constructor function 4) revised 



                                       Chidamber and Kemerer                                     Li and Henry
                                              revised definition                                             definition
                                                       LCOM1                                                     LCOM2
            with             with             without        without       with             with             without        without
             Inheritance  Inheritance  Inheritance  Inheritance  Inheritance  Inheritance  Inheritance  Inheritance
             with             without         with           without       with             without         with           without
 Class   Const.          Const.          Const.         Const.         Const.          Const.          Const.         Const.

    1          34                34                34                34             8                  8                  8                  8 

    2          24                16                24                16             6                  5                  6                  5

    3         343              321             343               321           24                24                24                 24

    4         287              276             287               276           18                18                18                 18

    5         247              247             247               247           21                21                21                 21

    6             1                  0                 1                  0             2                  1                 2                   1

    7       1142             1118           1142             1118           37                44                37                 44

    8         195               166             435               406          15                14                30                 29

    9         321               298             323               298          24                24                25                 24

  10           64                 48             136               120            9                  8                17                 16

  11           22                 15               28                 15            6                  6                  8                   6

  12           48                 31               66                 49            7                  6                10                   9

  13           76                 66               76                 66          10                 10               10                  10

  14           25                 32               91                 78           4                   5              14                  13

  15           28                 21               28                 21            8                   7                 8                    7

  16         378               351             378               351          27                 26               27                   26

  17           13                 10               13                 10            5                   5                 5                    5

  18             2                   1                 4                   3            2                   2                3                     3
   

Figure 4.  Difference in Values of Different LCOM Implementations



Chidamber and Kemerer definition (LCOM1), 

not including inherited variables, not 

including constructor function 5) Li and 

Henry definition (LCOM2), including 

inherited variables, including constructor 

function 6) Li and Henry definition 

(LCOM2), including inherited variables, not 

including constructor function 7) Li and 

Henry definition (LCOM2), not including 

inherited variables, including constructor 

function 8) Li and Henry definition 

(LCOM2), not including inherited variables, 

not including constructor function.

Analysis of LCOM Numeric Values

Each version of LCOM, collected for each 

class, is shown in Figure 4. There are certain 

interesting aspects to these results. First, 

consider class number 7. This class results in 

large values for both LCOM1 and LCOM2, so 

presumably the class possesses a large 

number of non-cohesive member functions. 

However, consider the values for LCOM1. 

The largest number occurs in the 

implementation of LCOM1 that does not use 

inheritance, and that does include the 

constructor function. In this case the value is 

1142. This value is well over twice as large as 

the next largest value for that implementation, 

which is 435. This occurs because LCOM1 is 

bounded by the number of combinations of 

two functions possible in the number of 

member functions, which is:

    n! / [( 2!) * (n-2)!]

This can result in large values of LCOM1 for 

very non-cohesive functions with large 

numbers of member variables, whereas most 

other classes will have very much smaller 

values of LCOM1.

Now consider classes 8 and 9. When 

inheritance is included in the calculation, 

class 8 is considered to be more cohesive than 

class 9 by both LCOM1 and LCOM2, 

irregardless of whether or not the constructor 

function is included in the calculation. 

However, when inheritance is not considered 

in the calculation, class 8 shows as less 

cohesive than class 9. Similarly for classes 13 

and 14.

 For LCOM2, no changes in rank of 

cohesiveness of classes were found when 

comparing implementations that did not 

consider the constructor function versus those 



Figure 5. LCOM2 (Li and Henry LCOM), without inheritance, with 

that did consider the constructor function, 

although in several cases the relative distance 

between values in a comparison of one class 

versus another did vary. One such variation 

can be found when comparing class 1 to class 

2. When considering the implementations that 

included the constructor function versus those 

that did not include the constructor function, 

the relative values of LCOM2 of the two 

classes varied. 

For LCOM1, a change in rank of 

cohesiveness was found when comparing 

implementations that did not consider the 

constructor function versus those that did 

consider the constructor function. This change 

in rank is in classes 14 and 15. With the 

constructor function, class 14 shows as more 

cohesive than class 15. Without the 

constructor function, class 14 shows as less 

cohesive than class 15.

Linear Regression Analysis

A linear regression  study was performed 



Figure 6. LCOM1 (Chidamber and Kemerer revised LCOM), without inheritance, with  
constructor

comparing the experts’ ratings of cohesiveness 

to the various implementations of the LCOM 

metric. This was a simple study with LCOM 

as the independent variable, and cohesiveness 

(as measured by the experts) as the dependent 

variable. For LCOM2 the best results were 

obtained using the LCOM2 implementation 

that did not include inheritance, and that did 

include the constructor function. In this case 

the regression was highly significant (p < 

0.0001), and the R2 value was 66%.  R2 for 

LCOM2, without inheritance and without the 

constructor was 62%. R2 for LCOM2, with 

inheritance, was 49% with the constructor, 

and 46% without the constructor. A scatter 

plot of LCOM2 without inheritance, and with 

constructor, is shown in Figure 5.

 Considering only LCOM2, these results 

were somewhat surprising in view of the 

anomalies discussed earlier relating changes 

in rank between classes measured with 

inheritance considered, and without 



inheritance considered. A possible reason for 

this might be that inherited variables are used 

as general purpose variables such as global 

display flags. The use of such variables would 

not be considered by the experts as showing a 

relationship between member functions. The 

difference between the LCOM2 

implementations with the constructor, and 

without the constructor was very small.

For LCOM1, the best results were obtained 

using the LCOM1 implementation that did not 

include inheritance, and that did include the 

constructor, although the difference from 

LCOM1 measured without inheritance but 

also without the constructor was minimal. 

However, LCOM1 had an R2 only of 41% in 

the best case (p <0.0043). R2 was 30% in the 

worst case (with inheritance, without 

constructor). A scatter plot of the best case 

(without inheritance, with constructor) is 

shown in Figure 6. 

SUMMARY

Several different definitions of LCOM 

exist. Different implementations of each of 

these definitions, either employing inheritance 

or not employing inheritance, employing the 

constructor function, or not employing the 

constructor function, are possible.

The Li and Henry definition of LCOM 

(LCOM2), which did not include inherited 

variables, and that did include the constructor 

function in the calculations correlated well 

with the expert’s determination of 

cohesiveness.

The revised Chidamber and Kemerer 

metric (LCOM1) has several problems. First, 

classes of widely different cohesions are 

counted as having LCOM1 = 0. This 

corresponds to findings by Basili et al.6, where 

this definition of LCOM set cohesion to zero 

for classes with very different cohesions. 

Second, some classes with the same cohesion 

(totally uncohesive) can receive different 

LCOM1 values.  This is similar to a finding 

by Hitz and Montazeri7 that in some cases 

classes with the same cohesion can have 

different LCOM1 values. Hitz and Montazeri 

found several cases in which classes with a 

cohesion of two (classes that should be 

subdivided into two other classes) had 

different LCOM1 values. Third, the range of 

the LCOM1 metric is limited by (n choose 2), 



where n is the number of member functions in 

the class. This can result in certain uncohesive 

classes having extremely large values for 

LCOM1, that are very much larger than the 

usual range for LCOM1. This study was not 

able to show a large amount of correlation 

between this LCOM metric (LCOM1) and 

cohesiveness.

The Li and Henry LCOM definition 

(LCOM2) gives classes with different 

cohesions a different LCOM2 value. The 

range of the LCOM2 metric is limited by the 

number of member functions in the class, 

which is usually quite a small number. A good 

correlation between the Li and Henry LCOM 

metric (LCOM2) and cohesion has been 

demonstrated.
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