
A Practical Look at the Lack of Cohesion in Methods Metric

Letha Etzkorn, Carl Davis, and Wei Li

The University of Alabama in Huntsville

letzkorn@cs.uah.edu

Software metrics for the procedural

software development paradigm have been

extensively studied. Metrics such as McCabe’s

cyclomatic complexity metric1 and Halstead’s

Software Science metrics2 are well known and

frequently used to measure software

complexity in the procedural paradigm. More

recently, software metrics that are tailored to

the measurement of design complexity in the

object-oriented paradigm have been

developed. Chidamber and Kemerer proposed

a draft suite of software metrics for

object-oriented software in 19913 that

included six object-oriented design metrics

based on measurement theory. This suite of

metrics included depth of the inheritance tree

(DIT), number of children (NOC), coupling

between objects (CBO), response for a class

(RFC), weighted methods per class (WMC),

and lack of cohesion of methods (LCOM).

The LCOM metric has been subject to

multiple interpretations which can greatly

influence the LCOM value derived for a

particular class. This article compares and

analyzes the definition and implementation

variations of the LCOM metric, and provides

an assessment of this metric.

DEFINITION OF THE LCOM METRIC

The multiple definitions of the LCOM

metric currently in use include: 1) the original

definition of the LCOM metric by Chidamber

and Kemerer3 2) the definition of the LCOM

metric provided by Li and Henry4,5, 3) the

redefinition of the Li and Henry version of the

LCOM metric by Hitz and Montazeri6, and 4)

the redefinition of their original LCOM metric

by Chidamber and Kemerer.7,8

Chidamber and Kemerer original

OOPSLA definition

Chidamber and Kemerer originally defined

the Lack of Cohesion in Methods metric

(LCOM) as follows3: Consider a Class C1

with methods M1, M2,..., Mn. Let { Ii }= set

of instance variables used by method Mi.

There are n such sets {I1}, ... {In}. LCOM =

the number of disjoint sets formed by the

intersection of the n sets.

 The viewpoints listed for this metric are:

1) Cohesiveness of methods within a class is

desirable, since it promotes encapsulation of

objects.

2) Lack of cohesion implies classes should

probably be split into two or more

sub-classes.

3) Any measure of disparateness of methods

helps identify flaws in the design of classes.

4) Low cohesion increases complexity,

thereby increasing the likelihood of errors

during the development process.

Li and Henry definition

The definition of disjointness of sets given

in the Chidamber and Kemerer OOPSLA ’91

paper was somewhat ambiguous, and was

further defined by Li and Henry:4

LCOM = number of disjoint sets of local

methods; no two sets intersect; any two

methods in the same set share at least one

local instance variable; ranging from 0 to N;

where N is a positive integer. Li et al.

demonstrated a calculation of their definition

of the LCOM metric using the example

shown again here in Figure 15. This example

is used here to compare different

implementations of the LCOM metric (see

Figure 3).

Chidamber and Kemerer redefinition

Chidamber and Kemerer, in their 1994

paper,6,7,8 redefined the LCOM metric. Their

new definition of the LCOM metric is as

follows:

Consider a Class C1 with n methods M1, M2,

..., Mn. Let { I j } = set of instance variables

used by method Mi.

There are n such sets { I 1 } ... { I n}. Let P = {

(Ii, Ij) | Ii intersecting Ij is equal to the null set

} and Q = { (Ii, Ij) | Ii intersecting Ij is not equal

the null set}. If all n sets { I 1 }...{ In} are the

null set then let P = the null set.

LCOM = |P| - |Q|, if |P| > |Q|

 = 0 otherwise

In this definition, Q = the number of pairs of

methods which both access the same (one or

more) instance variables. P = the number of

pairs of methods which do not have any

instance variable accesses in common. As

described by Basili et al.6, this definition of

Figure 1. A C++ Example Used to Illustrate Different LCOM Interpretations

class Location {protected:
 int X,Y;
public:
 Location (int InitX, int InitY) { X=InitX; Y=InitY; }
 int GetX() { return X;}
 int GetY() { return Y;}
};

class Point: public Location {
protected:
 Boolean Visible;
public:
 Point(int InitX, int InitY);
 virtual void Show();
 virtual void Hide();
 virtual void Drag(int DragBy);
 Boolean IsVisible() {return Visible;}
 void MoveTo(int NewX, int NewY);
};

class Circle: public Point {protected:
 int Radius;
public:
 Circle(int InitX,int InitY,int InitRadius);
 void Show();
 void Hide();
 void Expand(int ExpandBy);
 void Contract(int ContractBy);
};

// The following definition may be stored in another file

Point::Point(int InitX, int InitY): Location (InitX, InitY){
 Visible = false;
}

void Point::Show() {
 Visible = true;
 putpixel(X,Y, getcolor());
}

void Point::Hide() {
 Visible = false;
 putpixel(X,Y,getbkcolor());
}

void Point::MoveTo(int NewX, int NewY) {
 Hide();
 X=NewX;

 Y=NewY;
 Show();
}

void Point::Drag(int DragBy) {
 int DeltaX, DeltaY;
 int FigureX, FigureY;

 Show();
 FigureX = GetX();
 FigureY = GetY();

 while (getdelta(DeltaX, DeltaY)) {
 FigureX = FigureX + (DeltaX * DragBy);
 FigureY = FigureY + (DeltaY * DragBy);
 MoveTo(FigureX, FigureY); }
}

Circle::Circle(int InitX, int InitY, int InitRadius) : Point(
InitX, InitY) {
 Radius = InitRadius; }

void Circle::Show() {
 Visible = true;
 circle(X,Y,Radius); // this is an external function call,
not a constructor call
}

void Circle::Hide() {
 unsigned int TempColor;

 TempColor = getcolor();
 setcolor(getbkcolor());
 Visible=false;
 circle(X,Y,Radius);
 setcolor(TempColor);
}

void Circle::Expand(int ExpandBy) {

 Hide();
 Radius = Radius + ExpandBy;
 if (Radius < 0)
 Radius = 0;

 Show();
}
void Circle::Contract(int ContractBy) {
 Expand(-ContractBy);
}

LCOM is the number of pairs of member

functions without shared instance variables,

minus the number of pairs of member

functions with shared instance variables.

However, the metric is set to zero whenever

the above subtraction is negative.

This definition of LCOM has some

drawbacks in that classes with widely

different cohesions will result in the same

LCOM value. Chidamber and Kemerer

themselves note that "the LCOM metric for a

class where |P| = |Q| will be zero. This does

not imply maximal cohesiveness, since within

the set of classes with LCOM = 0, some may

be more cohesive than others". Basili et al.6

performed a statistical study where LCOM,

calculated in this manner, was insignificant in

their analysis of fault detection. The definition

of LCOM was not appropriate in their case

since it set cohesion to zero for classes with

very different cohesions and kept them from

analyzing the actual impact of cohesion on

their data sample. Hitz and Montazeri7

discussed several cases where LCOM,

calculated in this manner, would result in

various anomalies when attempting to predict

cohesion.

Hitz and Montazeri definition

 Hitz and Montazeri proposed a different,

graph-theoretic formulation of Li and Henry’s

version of the LCOM metric:

Let X denote a class, IX the set of instance

variables of X, and MX the set of its methods.

Consider a simple, unidirected graph GX(V,E)

with V = MX, and E = {<m,n> is an element

of V X V| for every i that is an element of IX :

(m accesses i) intersects (n accesses i) }, i.e.,

exactly those vertices are connected which

represent methods with at least one common

instance variable. LCOM(X) is then defined

as the number of connected components of G,

that is, the number of method "clusters"

operating on disjoint sets of instance

variables. They claim that this new

formulation is equivalent to Li and Henry’s

definition of LCOM.

LCOM calculation examples/comparisons

 During the rest of this paper, the notations

defined in the following table will be used for

the various LCOM definitions:

 Table 1.

LCOM1 Chidamber and Kemerer
 revised definition

LCOM2 Li and Henry
 definition

To clarify the difference between some of

the various definitions of LCOM, the

following examples are provided:

Example 1:

Given:

member variables: I,J,K,L

member functions: A,B,C,D

Member function A accesses variables

{I,L}.

Member function B accesses no variables.

Member function C accesses variables

{J,L}.

Member function D accesses variable {K}.

Using LCOM2, the disjoint sets of

methods, where any two methods in the same

set share at least one local instance variable,

would be:

 {A,C}, {B}, {D}

The LCOM2 value would then be 3, which

would be derived from counting the number

of sets.

Using LCOM1:

A intersecting B = null set

A intersecting C = { L }

A intersecting D = null set

B intersecting C = null set

B intersecting D = null set

C intersecting D = null set

P = count of the intersections whose result is

the null set = 5.

Q = count of the intersections whose result is

not null = 1

LCOM1 = |P| - |Q| = 5 - 1 = 4

(since |P| > |Q|)

Another difference between the two

metrics is shown in the following example:

Example 2:

Given:

Member variables: I,J,K,L.

Member functions: A,B,C,D.

Member function A accesses variable {I}.

Member function B accesses variable {I}.

Member function C accesses variable {I}.

Member function D accesses variables

{I,J,K,L}.

Using LCOM2:

The set for LCOM2 is:

 {A, B, C, D}

and therefore LCOM2 = 1.

Using LCOM1:

A intersecting B = {I}

A intersecting C = {I}

A intersecting D = {I}

B intersecting C = {I}

B intersecting D = {I}

C intersecting D = {I}

Thus P = count of the intersections whose

result is the null set = 0.

Q = count of the intersections whose result is

not null = 6.

Therefore LCOM1 = 0 (since |P| < |Q|).

Thus a class that is perfectly cohesive,

measured by LCOM2, would have a value of

1, whereas the same class would have a value

of 0 when measured by LCOM1.

Consider the case of a perfectly uncohesive

class. The value of LCOM2 would equal the

number of member functions in the class.

Thus completely uncohesive classes

consisting of larger number of member

functions would have a larger LCOM2 value

than completely uncohesive classes consisting

of a smaller number of member functions.

This is reasonable, since the cohesion is

indeed worse -- a class providing more

unrelated functionalities can be considered

less cohesive than a class providing fewer

unrelated functionalities.

In the case of a completely uncohesive

class, LCOM1 would have a value equal to n

taken two at a time, where n = the number of

member functions in the class. Thus this

metric also results in larger values for

LCOM1 for uncohesive classes with larger

number of member functions. One special

case is the treatment of a class whose member

functions do not access any of the class’

member variables. The LCOM1 definition

(revised Chidamber and Kemerer definition of

LCOM) says that if all n sets { I 1 }...{ In} are

the null set then let P = the null set. Thus |P| =

0, and thus LCOM1 = 0. This could tend to

cause confusing results. Consider, for

example, a class that contains one member

variable and 5 member functions that do not

access that variable (the variable is unused).

Thus, the LCOM1 for that class = 0. If one of

the functions accesses that variable, the

LCOM1 for the class becomes 5 taken two at

a time (5 choose 2), which is 10. Yet both

classes are still completely uncohesive in that

they have no member functions that share any

member variables. With the LCOM2

definition (Li and Henry definition), both

classes would have the same LCOM value.

LCOM IMPLEMENTATION

There are some variations on the LCOM

metric that are independent of which

definition is used. Some of these variations

include the determination of exactly which

member variables and member functions take

part in the calculations.

Inclusion of inherited variables

 One question of LCOM implementation is

whether or not inherited member variables

should be used as part of the cohesiveness

determination. Neither of the Chidamber and

Kemerer definitions specifies whether or not

inherited variables should be used. The Li and

Henry definition specifies local variables

only. Consider the case of the C++ example

given in Figure 1. The Point::Hide() member

function and the Point::Show() member

function would be considered as having no

member variables in common by the

definition of the Li and Henry LCOM metric

(LCOM2). However, both of these functions

use the X, Y coordinates inherited from the

class Location. The Hide member function

hides a pixel (rewrites the pixel in background

color) whose location is given by X,Y

coordinates. The Show member function

shows a pixel (rewrites the pixel in the current

color) whose location is given by X,Y

coordinates. Obviously these are related

graphics routines, and should form part of the

same class. Thus there is an argument in favor

of the use of inherited variables in the

LCOM2 metrics calculation.

Inclusion of constructor or destructor

functions

Another possible problem with the current

implementations of the LCOM metric is the

inclusion of the constructor member function

and/or the destructor member function in the

LCOM metrics calculation. Constructor

member functions, for example, tend to

Class example {
 int Visible;
 int X,Y;
 float salary;
 int val_from_port;

 example(); // Constructor
 void Hide();
 void calculate_salary(int num_months, float

 amt_per_month);
 void read_val_from_input_port();
}

void example::example() {
 Visible = false;
 salary = 0.0;
 val_from_port = 0;}

void example::Hide() {
 Visible = false;
 putpixel(X,Y, getbkcolor());
}

void calculate_salary(int num_months, float
 amt_per_month) {

 salary = num_months * amt_per_month;
}

void read_val_from_input_port() {
 val_from_port = inportb(PORTA);
}

}

Using LCOM1,
 P = 3, Q = 3, so LCOM1 = |P| - |Q| = 0, which supposedly means the class is completely cohesive

Using LCOM1, but leaving out the constructor,
P = 3, Q = 0, so LCOM1 = |P| - |Q| = 3, which is a more reasonable cohesiveness value, since the class is
actually not cohesive

Using LCOM2,
the LCOM2 sets are { example() (constructor), Hide(), calculate_salary(), read_val_from_input_port() }
so LCOM2 = number of disjoint sets = 1, which supposedly means the class is completely cohesive

Using LCOM2, but leaving out the constructor,
the LCOM2 sets are: {Hide() }
 {calculate_salary() }
 {read_val_from_input_port () }
so LCOM2 = number of disjoint sets = 3, which is a more reasonable cohesiveness value, since the class is
actually not cohesive

Figure 2. A C++ Constructor Example

include all or most of the member variables.

This is reasonable, since a primary purpose of

a constructor function is to initialize the

member variables of a class. Consider the

class Location, shown in Figure 1. The

Location class initializes both the X and Y

member variables, which is reasonable.

However, this results in LCOM2 = 1 for the

 LCOM2 (Li and Henry Definition of LCOM)
LCOM2 LCOM2

 considering inherited variables not considering inherited variables
 with without with without

 Class constructor constructor constructor constructor

 Location 1 2 1 2
 Point 2 2 3 3
 Circle 2 2 2 2

LCOM1 (Revised Chidamber and Kemerer Definition of LCOM)
LCOM1 LCOM1

 considering inherited variables not considering inherited variables
 with without with without

 Class constructor constructor constructor constructor

 Location 0 1 0 1
 Point 0 0 3 4
 Circle 0 0 0 0

Figure 3. LCOM Metrics for code in Figure 1

class (see Figure 3). The LCOM2 set of

functions that access the same set of member

variables would be:

{Location, GetX, GetY}

If the constructor function were not included

in the metrics calculation, then LCOM2

would = 2, and the LCOM2 sets of functions

that access the same set of member variables

would be:

{GetX }, {GetY}

Consider the same example using LCOM1.

In the first case, where the constructor

function is included, we have:

Location() intersects GetX()

Location() intersects GetY()

GetX() intersects GetY()

Thus P = 0, Q = 3, so LCOM1 = 0 since |P| <

|Q|.

In the second case, where the constructor

function is not included, we have:

GetX() intersects GetY()

thus P = 0, Q = 1, so LCOM1 = 0 since |P| <

|Q|.

In this particular case, LCOM1 did not vary

based on whether the constructor or destructor

was included or not. However, if this example

is extended, then any class which possesses a

constructor that initializes all variables will be

considered as perfectly cohesive, even if the

other methods have no variables at all in

common. See Figure 2 for an example of such

a class.

Often the destructor function operates in a

similar manner to the constructor function in

that it accesses most or all of the variables of

a class. This occurs less often, however, since

a destructor function is more commonly used

to return pointer values to the heap. Integer

variables are seldom accessed using a

destructor function. Also, it is very common

for a class to have a constructor function, but

not to have an explicit destructor function. In

a package where constructor functions are

common, but destructor functions are rare, the

destructor function may tend to acquire a

greater importance to the code. Thus there is a

good argument for not including the

constructor function in the LCOM calculation,

but still continuing to include the destructor

function in the calculation.

Comparison of LCOM implementations

for Li example in Figure 1

Since the example in Figure 1 was used by

Li et al. to demonstrate the calculation of the

LCOM2 metric, a comparison of the different

possible implementations of the LCOM

metric for the code shown in Figure 1 is

instructive. Figure 3 contains the values

calculated for the different implementations

of the LCOM metric for this example.

The differences between the various LCOM

metrics for the class Location is obviously not

due to the use of inherited variables in the

metrics calculation, since Location is a base

class. However, LCOM does vary depending

on whether or not the constructor function is

used in the metrics calculation. The

constructor function here performs a function

similar to that shown in Figure 2; that is, it

initializes all variables in the class.

The class Point shows no difference

between calculations of the LCOM2 metric

with or without the constructor function.

However, both the Point and Circle classes

represent simple cases where the constructor

initialization problem would probably not be

obvious -- in both classes there is only a

single member variable. The Circle class

shows no difference between the LCOM

metrics calculated considering inherited

variables, and the LCOM metrics calculated

not considering inherited variables. As it

happens, the only inherited variables accessed

by Circle member functions occur in member

functions that access the same local variable

(Show and Hide). The Point class shows a

definite difference between the LCOM

metrics calculated with and without

considering inherited variables. The

difference is due to the MoveTo member

function. MoveTo does not access the local

member variable "Visible". However, it does

access the inherited variables X and Y. Notice

that in this case, the differently calculated

cohesion values should probably be fairly

similar, since the difference in the

calculations is based on a single member

function out of six member functions total (5

member functions total if not including the

constructor function). This leads to a pair of

interesting observations, discussed below:

The LCOM2 implementations result in the

following disjoint sets:

LCOM2 with inheritance, with constructor:

 {constructor Point(), Show(), Hide(),

 IsVisible(), MoveTo() }

 {Drag}

LCOM2 with inheritance, no constructor:

{Show(), Hide(), IsVisible(), MoveTo()}

 {Drag}

LCOM2, no inheritance, with constructor:

 {constructor Point(), Show(), Hide(),

 IsVisible() }

 {Drag}

{MoveTo}

LCOM2, no inheritance, no constructor:

{Show(), Hide(), IsVisible() }

{Drag()}

{MoveTo()}

Thus the MoveTo member function results

in the addition of only one extra disjoint set in

any case, and the LCOM2 metric is only one

value greater.

 LCOM1 varies more between the two

implementations (with or without inherited

variables) than does LCOM2.

LCOM1 with inheritance, with constructor:

P = 7, Q = 8

LCOM1 with inheritance, no constructor:

P = 5, Q = 5

LCOM1, no inheritance, with constructor:

P = 9, Q = 6

LCOM1, no inheritance, no constructor:

P = 7, Q = 3

The P and Q values have a wide variation,

as does the metric itself. Thus a change of

only a single member function can result in

greatly different cohesiveness values of

LCOM1.

Which LCOM Metric Best Measures

Cohesion?

Since the different definitions and

implementations of the LCOM metric can

result in different values for LCOM, the

question is which definition and which

implementation of LCOM best measures

cohesion?

Various C++ classes and hierarchies of

classes were chosen from three independent

C++ GUI packages. Alternative versions of

the LCOM metric for these classes were

calculated using the PATRicia system9,10,11

(Program Analysis Tool for Reuse). Seven

highly experienced domain experts

subjectively rated each class for cohesiveness

by categorizing it as acceptably cohesive, or

not cohesive. An acceptably cohesive class

was classed as 100%, a non-cohesive class as

0%. An attempt had been made earlier to rate

classes on a tighter scale; however, it was

found that classes that the experts agreed had

the same cohesion (should be broken into an

agreed upon number of sub-classes) was rated

as "fair" by some experts, or "poor" by others

-- that there was no true agreement on scale.

Thus it was found that the rougher measure

was more appropriate in this case.

The various LCOM values produced by the

PATRicia system for each class were

compared to the averaged cohesiveness

ratings of the experts. LCOM was measured

in 8 different ways: 1) revised Chidamber and

Kemerer definition (LCOM1), including

inherited variables, including constructor

function, 2) revised Chidamber and Kemerer

definition (LCOM1), including inherited

variables, not including constructor function

3) revised Chidamber and Kemerer definition

(LCOM1), not including inherited variables,

including constructor function 4) revised

 Chidamber and Kemerer Li and Henry
 revised definition definition
 LCOM1 LCOM2
 with with without without with with without without
 Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance
 with without with without with without with without
 Class Const. Const. Const. Const. Const. Const. Const. Const.

 1 34 34 34 34 8 8 8 8

 2 24 16 24 16 6 5 6 5

 3 343 321 343 321 24 24 24 24

 4 287 276 287 276 18 18 18 18

 5 247 247 247 247 21 21 21 21

 6 1 0 1 0 2 1 2 1

 7 1142 1118 1142 1118 37 44 37 44

 8 195 166 435 406 15 14 30 29

 9 321 298 323 298 24 24 25 24

 10 64 48 136 120 9 8 17 16

 11 22 15 28 15 6 6 8 6

 12 48 31 66 49 7 6 10 9

 13 76 66 76 66 10 10 10 10

 14 25 32 91 78 4 5 14 13

 15 28 21 28 21 8 7 8 7

 16 378 351 378 351 27 26 27 26

 17 13 10 13 10 5 5 5 5

 18 2 1 4 3 2 2 3 3

Figure 4. Difference in Values of Different LCOM Implementations

Chidamber and Kemerer definition (LCOM1),

not including inherited variables, not

including constructor function 5) Li and

Henry definition (LCOM2), including

inherited variables, including constructor

function 6) Li and Henry definition

(LCOM2), including inherited variables, not

including constructor function 7) Li and

Henry definition (LCOM2), not including

inherited variables, including constructor

function 8) Li and Henry definition

(LCOM2), not including inherited variables,

not including constructor function.

Analysis of LCOM Numeric Values

Each version of LCOM, collected for each

class, is shown in Figure 4. There are certain

interesting aspects to these results. First,

consider class number 7. This class results in

large values for both LCOM1 and LCOM2, so

presumably the class possesses a large

number of non-cohesive member functions.

However, consider the values for LCOM1.

The largest number occurs in the

implementation of LCOM1 that does not use

inheritance, and that does include the

constructor function. In this case the value is

1142. This value is well over twice as large as

the next largest value for that implementation,

which is 435. This occurs because LCOM1 is

bounded by the number of combinations of

two functions possible in the number of

member functions, which is:

 n! / [(2!) * (n-2)!]

This can result in large values of LCOM1 for

very non-cohesive functions with large

numbers of member variables, whereas most

other classes will have very much smaller

values of LCOM1.

Now consider classes 8 and 9. When

inheritance is included in the calculation,

class 8 is considered to be more cohesive than

class 9 by both LCOM1 and LCOM2,

irregardless of whether or not the constructor

function is included in the calculation.

However, when inheritance is not considered

in the calculation, class 8 shows as less

cohesive than class 9. Similarly for classes 13

and 14.

 For LCOM2, no changes in rank of

cohesiveness of classes were found when

comparing implementations that did not

consider the constructor function versus those

Figure 5. LCOM2 (Li and Henry LCOM), without inheritance, with

that did consider the constructor function,

although in several cases the relative distance

between values in a comparison of one class

versus another did vary. One such variation

can be found when comparing class 1 to class

2. When considering the implementations that

included the constructor function versus those

that did not include the constructor function,

the relative values of LCOM2 of the two

classes varied.

For LCOM1, a change in rank of

cohesiveness was found when comparing

implementations that did not consider the

constructor function versus those that did

consider the constructor function. This change

in rank is in classes 14 and 15. With the

constructor function, class 14 shows as more

cohesive than class 15. Without the

constructor function, class 14 shows as less

cohesive than class 15.

Linear Regression Analysis

A linear regression study was performed

Figure 6. LCOM1 (Chidamber and Kemerer revised LCOM), without inheritance, with
constructor

comparing the experts’ ratings of cohesiveness

to the various implementations of the LCOM

metric. This was a simple study with LCOM

as the independent variable, and cohesiveness

(as measured by the experts) as the dependent

variable. For LCOM2 the best results were

obtained using the LCOM2 implementation

that did not include inheritance, and that did

include the constructor function. In this case

the regression was highly significant (p <

0.0001), and the R2 value was 66%. R2 for

LCOM2, without inheritance and without the

constructor was 62%. R2 for LCOM2, with

inheritance, was 49% with the constructor,

and 46% without the constructor. A scatter

plot of LCOM2 without inheritance, and with

constructor, is shown in Figure 5.

 Considering only LCOM2, these results

were somewhat surprising in view of the

anomalies discussed earlier relating changes

in rank between classes measured with

inheritance considered, and without

inheritance considered. A possible reason for

this might be that inherited variables are used

as general purpose variables such as global

display flags. The use of such variables would

not be considered by the experts as showing a

relationship between member functions. The

difference between the LCOM2

implementations with the constructor, and

without the constructor was very small.

For LCOM1, the best results were obtained

using the LCOM1 implementation that did not

include inheritance, and that did include the

constructor, although the difference from

LCOM1 measured without inheritance but

also without the constructor was minimal.

However, LCOM1 had an R2 only of 41% in

the best case (p <0.0043). R2 was 30% in the

worst case (with inheritance, without

constructor). A scatter plot of the best case

(without inheritance, with constructor) is

shown in Figure 6.

SUMMARY

Several different definitions of LCOM

exist. Different implementations of each of

these definitions, either employing inheritance

or not employing inheritance, employing the

constructor function, or not employing the

constructor function, are possible.

The Li and Henry definition of LCOM

(LCOM2), which did not include inherited

variables, and that did include the constructor

function in the calculations correlated well

with the expert’s determination of

cohesiveness.

The revised Chidamber and Kemerer

metric (LCOM1) has several problems. First,

classes of widely different cohesions are

counted as having LCOM1 = 0. This

corresponds to findings by Basili et al.6, where

this definition of LCOM set cohesion to zero

for classes with very different cohesions.

Second, some classes with the same cohesion

(totally uncohesive) can receive different

LCOM1 values. This is similar to a finding

by Hitz and Montazeri7 that in some cases

classes with the same cohesion can have

different LCOM1 values. Hitz and Montazeri

found several cases in which classes with a

cohesion of two (classes that should be

subdivided into two other classes) had

different LCOM1 values. Third, the range of

the LCOM1 metric is limited by (n choose 2),

where n is the number of member functions in

the class. This can result in certain uncohesive

classes having extremely large values for

LCOM1, that are very much larger than the

usual range for LCOM1. This study was not

able to show a large amount of correlation

between this LCOM metric (LCOM1) and

cohesiveness.

The Li and Henry LCOM definition

(LCOM2) gives classes with different

cohesions a different LCOM2 value. The

range of the LCOM2 metric is limited by the

number of member functions in the class,

which is usually quite a small number. A good

correlation between the Li and Henry LCOM

metric (LCOM2) and cohesion has been

demonstrated.

References

1. McCabe, T.J. A complexity measure, IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING 2(4): 308-320, 1976.

2. Halstead, M.H. ELEMENTS OF

SOFTWARE SCIENCE, Elsevier

North-Holland, New York, 1977.

3. Chidamber, S.R., and C.F. Kemerer.

Towards a metrics suite for object-oriented

design, PROCEEDINGS: OOPSLA ’91, July

1991, pp. 197-211.

4. Li, W. and S. Henry. Maintenance metrics

for the object-oriented paradigm,

PROCEEDINGS OF THE FIRST

INTERNATIONAL SOFTWARE METRICS

SYMPOSIUM, May 21-22, 1993, pp. 52-60.

5. Li, W., S. Henry, D. Kafury, and R.

Schulman. Measuring object-oriented design,

JOURNAL OF OBJECT-ORIENTED

PROGRAMMING, JULY/AUGUST 1995,

pp. 48-55.

6. Hitz, M. and B. Montazeri. Chidamber and

Kemerer’s Metrics Suite: a measurement

theory perspective, IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, 22(4),

April 1996, pp. 267-271.

7. Basili, V., L. Briand, and W.L. Melo, A

validation of object-oriented metrics as

quality indicators, IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, 22(10),

October 1996, pp.751-761.

8. Chidamber, S.R., and C.F. Kemerer. A

metrics suite for object-oriented design, IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING, 20 (6) June 1994, pp.

476-493.

9. Etzkorn, L.H., and C.G. Davis. Automated

object-oriented reusable component

identification, KNOWLEDGE-BASED

SYSTEMS, Elsevier Science, Ltd., Oxford,

England (accepted).

10. Etzkorn, L.H., C.G. Davis, L.L. Bowen,

D.B. Etzkorn, L.W. Lewis, B.L. Vinz, and

J.C. Wolf, A Knowledge-based approach to

object-oriented legacy code reuse,

PROCEEDINGS OF THE SECOND IEEE

INTERNATIONAL CONFERENCE ON

ENGINEERING OF COMPLEX

COMPUTER SYSTEMS, Montreal, Canada,

Oct. 21-25, 1996, pp. 493-496.

11. Etzkorn, L.H., A metrics-based approach

to the automated identification of

object-oriented reusable components: a short

overview. OOPSLA ’95 Doctoral Symposium,

Austin, TX, October 16-19, 1995.

