
A METRICS-BASED APPROACH

TO THE

AUTOMATED IDENTIFICATION

OF

OBJECT-ORIENTED

REUSABLE SOFTWARE COMPONENTS

by

LETHA HUGHES ETZKORN

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

The Department of Computer Science

of

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

1997

ii

Copyright by

Letha Hughes Etzkorn

All Rights Reserved

1997

iii

DISSERTATION APPROVAL FORM

Submitted by Letha Hughes Etzkorn in partial fulfillment of the requirements for the degree of

Doctor of Philosophy with a major in Computer Science.

Accepted on behalf of the Faculty of the School of Graduate Studies by the dissertation committee:

 Committee Chair
(Date)

 .

 .

 .

 .

 .

 Department Chair

 College Dean

 Graduate Dean

iv

ABSTRACT

School of Graduate Studies

The University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Science/Computer Science.

Name of Candidate Letha Hughes Etzkorn .

Title A Metrics-Based Approach to the Automated Identification of Object-Oriented .

Reusable Software Components .

Software reuse has been a long term goal of software developers. This goal has been rather

elusive, but the widespread use of the object-oriented paradigm and other innovations in software

development paradigms have led to renewed interest in this topic.

This dissertation describes a new approach for the identification of reusable object-oriented

legacy software components. The approach is concept-driven, knowledge-based and tool-assisted

and uses heuristics to aid in the natural language understanding of comments and identifiers in

object-oriented code. The approach uses a reusability quality factors hierarchy, where low-level

object-oriented metrics are used to predict reusability quality factors.

The automation of this approach is provided by the Program Analysis Tool for Reuse (the

PATRicia system), which is a software tool that aids in program understanding and metrics

analysis. It consists of the Conceptual Hierarchy for Reuse including Semantics (CHRiS) tool,

which uses a knowledge-base in the form of a conceptual-graph based semantic net in the natural

language understanding of comments and identifiers, and the Metrics Analyzer tool which

calculates object-oriented metrics that are then used to predict reusability metrics.

These tool-aided methods are shown to work well by identifying and qualifying reusable

components in several real world graphical user interface packages. This approach demonstrates

v

that the identification of object-oriented legacy software components can be made significantly

easier and more quantifiable than is possible using earlier techniques, which will aid greatly in

promoting effective software reuse.

Abstract Approval: Committee Chair .

(Date)

Department Chair .

Graduate Dean .

vi

ACKNOWLEDGEMENTS

First, I want to express my gratitude to my advisor, Dr. Carl G. Davis, for his support

throughout the course of this dissertation. I especially want to thank him for all the time he took

to read and re-read this dissertation so as to make it as good as possible.

I also wish to thank the other members of my committee, Dr. Sajjan Shiva, Dr. Harry

Delugach, Dr. Ashok Amin, Dr. James Hooper, and Dr. Maryam Asdjodi-Mohadjer for their

advice and suggestions.

I want to thank the people who served as knowledgeable software evaluators, or experts, in

the evaluation phases of my dissertation: Lisa Bowen, Brad Vinz, Dr. Minyoung Yun, LeeAnne

Lewis, Janet Wolf, Tony Orme, and Randy Wolf. These people placed their considerable expertise

at my disposal, and spent much time evaluating the PATRicia system. I also want to thank Bill

Hughes and Karen Mallory for reading my dissertation and providing comments and suggestions

to improve it.

I want to thank my husband, Dave, for his support throughout this dissertation. In addition to

helping cook, clean, and run kids to dance class and ball practice, he also maintained three Linux

systems for me and served as an extra software evaluator. I also want to thank my children,

Patricia and Chris, for whom the PATRicia system and CHRiS tool are named, for letting Mama

work on her dissertation when she needed to do so.

Finally, I want to thank my parents, William Evans Hughes and Margaret Watson Hughes,

for their support in my educational endeavors throughout my life. My father passed away during

the course of my Ph.D. work, so he did not live to see the end of it. I wish to dedicate this

dissertation to him.

vii

TABLE OF CONTENTS

page

LIST OF FIGURES xi

I. INTRODUCTION 1

II. BACKGROUND 4

2.1. The Software Reuse Problem 4
2.1.1. Software Libraries 8
2.1.2. Preparation of Legacy Code for Reuse 10

2.2. Object-oriented Software 12
2.3. Program Understanding 15

2.3.1. A Survey of Semantic Program Understanding Approaches
 and Systems 17

2.3.1.1. The CARE System/Caldiera and Basili 19
2.3.1.2. The Cognitive Program Understander (CPU)/Letovsky 19
2.3.1.3. The Programmer's Apprentice/Rich, Waters, and Wills 20
2.3.1.4. The Program Analysis Tool (PAT)/Harandi and Ning 21
2.3.1.5. Kozaczynski, Ning, and Engberts 21
2.3.1.6. The LANTeRN System/Abd-El-Hafiz and Basili 22
2.3.1.7. The DESIRE System/Biggerstaff 23

2.4. Natural Language Processing 24
2.4.1. Syntax 27

2.4.1.1. A Survey of Natural Language Parsers 29
2.4.1.1.1. Winograd's Augmented Transition Network 29
2.4.1.1.2. Sleator and Temperley Natural Language Parser 30
2.4.1.1.3. Bickerton and Bralich Parser 31

2.4.2. Semantics 32
2.4.3. Sublanguages 33
2.4.4. Information Extraction Systems 35

2.5. Semantic Networks 37
2.5.1. Conceptual Graphs 39

2.5.1.1. Natural Language Generation using Conceptual Graphs 41
2.6. Reusability Metrics 42

2.6.1. A Survey of Software Reusability Metrics Literature 43

viii

2.6.1.1. Global Protection Against Limited
 Strikes (GPALS) Software Reuse Strategy 43
2.6.1.2. Asdjodi-Mohadjer 45

2.7. Software Metrics for Object-oriented Software 47
2.7.1. Traditional Complexity Metrics Applied to Object-Oriented Code 47
2.7.2. Object-oriented Design Metrics 48
2.7.3. A Survey of Object-oriented Design Metrics 49

2.7.3.1. Chidamber and Kemerer 49
2.7.3.2. Li and Henry 50
2.7.3.3. Rajaraman and Lyu 52
2.7.3.4. Lorenz and Kidd 53
2.7.3.5. Bansiya and Davis 54

III. APPROACH TO THE AUTOMATED IDENTIFICATION

 OF REUSABLE COMPONENTS IN OBJECT-ORIENTED CODE 56
3.1. Reuse Concept and Research Goals 56
3.2. Choices Made for the Program Understanding Approach 58
3.3. Choices Made for the Reusability Analysis Approach 61
3.4. Choices Made for Automation 67

3.4.1. Tool Selection for the PATRicia System 68
3.5. Validating the Approaches 69

IV. PROGRAM UNDERSTANDING APPROACH 70

4.1. Introduction 70
4.2. Description of Comment/Identifier Approach 70
 4.2.1. The Use of a Sublanguage 70

4.2.2. The Syntactic Phase 71
4.2.3. The Semantic Phase 73
4.2.4. The Knowledge-Base 73
4.2.5. Natural Language Generation 75

4.3. Feasibility Studies 76
4.3.1. Comments as a Sublanguage 76
4.3.2. Syntactic Tagging of Identifiers 83

V. REUSABILITY ANALYSIS APPROACH 88

5.1. Introduction 88
5.2. Reusability Software Quality Metrics Hierarchies 88

5.2.1. Reusability-in-the-Class 88
5.2.2. Reusability-in-the-Original-System 90
5.2.3. Reusability-in-the-Hierarchy 91
5.2.4. Reusability-in-the-Subsystem 92

5.3. Object-oriented Metrics to Predict the Reusability Quality Factors 93
5.3.1. Reusability-in-the-Class 93

5.3.1.1. Modularity 93

ix

5.3.1.1.1. Coupling 93
5.3.1.1.2. Cohesion 95

5.3.1.2. Interface Complexity 102
5.3.1.3. Documentation 103
5.3.1.4. Simplicity 103

5.3.1.4.1. Size 104
5.3.1.4.2. Complexity 104

5.3.2. Reusability-in-the-Original System 105
5.3.3. Reusability-in-the-Hierarchy 105
5.3.4. Reusability-in-the-Subsystem 105

VI. PROOF OF CONCEPT--THE PROGRAM ANALYSIS TOOL FOR

 REUSE (THE PATRICIA SYSTEM) 106
6.1. The Conceptual Hierarchy for Reuse including Semantics (CHRiS) Tool 110

6.1.1. Introduction 110
6.1.1.1 Traverse Graph 110
6.1.1.2 Parse C++ 110
6.1.1.3 Parse Current Parsed File 111
6.1.1.4 Extract Comments 111
6.1.1.5 Parse natural language 111
6.1.1.6 Build facts 112
6.1.1.7 Infer Concepts 112
6.1.1.8 Produce Output Reports 112

6.1.2. Sleator and Temperley Natural Language Parser 113
6.1.2.1. Description of Operation 113
6.1.2.2. Study of the Application of the Sleator and Temperley
 Parser to Comments 115

6.1.3. Syntactic Phase--Description of Operation 116
6.1.3.1. Order of Understanding 116
6.1.3.2. Comment Heuristics 117
6.1.3.3. Identifier Heuristics 119
6.1.3.4. CLIPS Facts 119

6.1.4. Semantic Processing--Knowledge-base 120
6.1.4.1. Interface Layer 120
6.1.4.2. Domain Shrinking 123
6.1.4.3. Semantic Net Implementation 126
6.1.4.4. Semantic Net Design for Selected Domains 128

6.1.5. Reports Produced by CHRiS 130
6.1.5.1. Concept Report 131
6.1.5.2. Natural Language Generation 132
6.1.5.3. Other CHRiS Reports 135

6.1.6. Limitations 135

x

6.2. The Metrics Analyzer Tool 137
6.2.1. Introduction 137

6.2.1.1 Parse C++ 137
6.2.1.2 Collect OO Metrics 138
6.2.1.3 Analyze Reusability 139

6.2.2. The Brown University C++ Parser 139
6.2.3. Description of Operation 141
6.2.4. Reports Produced by the Metrics Analyzer Tool 145

VII. RESULTS 146

7.1. Description of Domain 146
7.2. Program Understanding Experiment 147
 7.2.1. Description of Experiment 147

7.2.2. Phase I--Determination of Concepts Handled by a Class 147
7.2.3. Phase II--Mapping of Concepts Identified by the PATRicia System 148
7.2.4. Metrics for Validation 149
7.2.5. Analysis of Results 152

7.3. Reusability Analysis Experiment 155
7.3.1. Description of Experiment 155
7.3.2. Analysis of Results 156

VIII. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 170

APPENDIX A. STUDY OF COMMENTS AS A SUBLANGUAGE 173

APPENDIX B. STUDY OF SYNTACTIC TAGGING OF IDENTIFIERS 180

APPENDIX C. STUDY OF THE APPLICATION OF THE SLEATOR

 AND TEMPERLEY PARSER TO COMMENTS 199

APPENDIX D. BACKGROUND OF THE EXPERTS 210

APPENDIX E. PROGRAM UNDERSTANDING EXPERIMENT PHASE I --

DIRECTIONS AND QUESTIONNAIRES 214

APPENDIX F. PROGRAM UNDERSTANDING EXPERIMENT PHASE II --

DIRECTIONS AND QUESTIONNAIRES 220

APPENDIX G. REUSABILITY ANALYSIS EXPERIMENT --

DIRECTIONS AND QUESTIONNAIRES 236

REFERENCES 269

xi

LIST OF FIGURES

Figure 1. The Process of Identifying, Qualifying, and Classifying Reusable Components in

 Object-Oriented Legacy Code 57

Figure 2. The Necessity for Informal Tokens in Program Understanding 60

Figure 3. Reusability-in-the-Class 63

Figure 4. Reusability-in-the-Original-System 64

Figure 5. PATRicia System Structure Chart 66

Figure 6. CHRiS Structure Chart 66

Figure 7. Metrics Analyzer Structure Chart 67

Figure 8. Natural Language Processing Phases in the Program Understanding Approach 72

Figure 9. The Semantic Network Employed in the Program Understanding Approach 74

Figure 10. Common Formats of Sentence-Style Comments 78

Figure 11. Common Formats of Non-Sentence-style Comments 78

Figure 12. Common Content of Comments 79

Figure 13. Sentence-Style Comments versus Non-Sentence-style Comments 80

Figure 14. Analysis of Tense in Sentence-style Comments 81

Figure 15. Mood and Voice of Present Tense Sentence-style Comments 81

Figure 16. Non-sentence-style Comments 82

Figure 17. Content of Comments 82

Figure 18. Results of Identifier Study, Variables 84

Figure 19. Results of Identifier Study, Functions 84

Figure 20. Algorithm for Syntactic Tagging of Member Function Identifiers 86

Figure 21. Algorithm for Syntactic Tagging of Attributes (Variables) 87

Figure 22. Reusability-in-the-Class 89

xii

Figure 23. Reusability-in-the-Original-System 90

Figure 24. Reusability-in-the-Hierarchy and Reusability-in-the-Subsystem

 Quality Factors Hierarchy 91

Figure 25. LCOM Implemented With and Without Constructor 98

Figure 26. Different Calculations of LCOM Over 18 Different Classes 100

Figure 27. Li and Henry LCOM, Without Inheritance, With Constructor 101

Figure 28. Chidamber and Kemerer LCOM, Without Inheritance, With Constructor 102

Figure 29. PATRicia System Context Diagram 107

Figure 30. PATRicia System Level 1 Data Flow Diagram 108

Figure 31. PATRicia System Level 2 Data Flow Diagram -- the CHRiS Tool 109

Figure 32. Parse of an Example Comment Sentence using the

 Sleator and Temperley Parser 114

Figure 33. Results of the Sleator and Temperley Parser on Parsable Comments 115

Figure 34. CLIPS Class Definition for a Keyword Interface Node in the Interface

 Layer of the CHRiS Semantic Net 121

Figure 35. CLIPS Class Definition for an Interior Concept Node in the

 CHRiS Semantic Net 122

Figure 36. CLIPS Class Definition for a Conceptual Relation in the CHRiS Semantic Net 126

Figure 37. Portions of a CHRiS Concept Report 129

Figure 38. CHRiS Description of Functionality Report -- Natural Language Generation 131

Figure 39. PATRicia System Level 2 Data Flow Diagram -- the Metrics Analyzer Tool 138

Figure 40. Abstract Syntax Tree -- Output of the Brown University C++ Parser 140

Figure 41. Object-Oriented Metrics Report -- the Metrics Analyzer Tool 142

Figure 42. Reuse-in-the-Original-System Object-Oriented Metrics Report 143

Figure 43. Reusability-in-the-Class Reusability Quality Metrics Report 143

Figure 44. Reusability-in-the-Hierarchy Reusability Quality Metrics Report 144

Figure 45. Recall and Precision Overall 150

xiii

Figure 46. Overgeneration Overall 150

Figure 47. Recall and Precision for a wxWindows Hierarchy 151

Figure 48. Overgeneration for a wxWindows Hierarchy 151

Figure 49. Recall and Precision for Watson XWindows 152

Figure 50. Overgeneration for Watson XWindows 152

Figure 51. Recall and Precision for a GINA Hierarchy 153

Figure 52. Overgeneration for a GINA Hierarchy 153

Figure 53. GnContracts 158

Figure 54. GnObject 158

Figure 55. GnCommand 159

Figure 56. GnMouseDownCommand 159

Figure 57. TAppWindow 160

Figure 58. wxObject 160

Figure 59. wxbWindow 161

Figure 60. wxWindow 161

Figure 61. wxbItem 162

Figure 62. wxItem 162

Figure 63. wxbButton 163

Figure 64. wxButton 163

Figure 65. wxbMenu 164

Figure 66. wxMenu 164

Figure 67. wxbTimer 165

Figure 68. wxTimer 165

Figure 69. wxEvent 166

Figure 70. wxMouseEvent 166

Figure 71. GINA Hierarchy 167

Figure 72. Watson Hierarchy 167

xiv

Figure 73. wxWindows Hierarchy Number 1 168

Figure 74. wxWindows Hierarchy Number 2 168

Figure 75. wxWindows Hierarchy Number 3 169

Figure 76. wxWindows Hierarchy Number 4 169

1

Chapter I

INTRODUCTION

Software development in the United States alone was estimated to be a $74 billion business as

of 1994, and has been increasing at a 9.6% annual rate over the past 10 years [105]. With the

advent of new and innovative software controlled devices, software is gradually encroaching in

almost every aspect of our lives. This creates pressure to develop more, better, and cheaper

software. One obvious solution is to adapt and reuse software which has already been developed,

rather than to develop new software. The ability of a later software project to benefit from the

effort involved in producing software products on a previous project has been a long term goal of

software developers. The goal has been to reuse some of the software products on a subsequent

software project, and hence avoid the costs of unnecessary redevelopment. While this goal is easy

to state, there have been several barriers to software reuse. One of the more difficult barriers has

been the lack of uniformity of products when software is developed using different paradigms.

Combined with this is the lack of uniform standards which the products must meet, as well as the

complexities of the software products being developed. All of these factors make it extremely

difficult to effectively reuse large segments of previously developed products on new projects.

Software reuse itself is a research area whose goal is to reduce or eliminate the barriers that

prevent easy reuse of software products.

Software reuse is obviously a very worthwhile goal since it has been demonstrated to increase

productivity, reduce costs, and improve software quality [59]. Much software reuse research in

recent times has focused in several areas: supporting software reuse via improved managerial

techniques, determining programming language mechanisms that would enhance software

2

reusability, establishing software reuse libraries, and their use during the software development

process, and classification and retrieval techniques required for the use of software reuse libraries.

Also, there has been some limited amount of research into developing automated tools to assist in

identifying reusable subroutines or code fragments in legacy software systems. These tools have

had varying degrees of success, but their development has helped identify the major hurdles to be

overcome before software reuse becomes more commonplace.

Software reuse must also be considered in light of the major software development paradigm

shift that has occurred over the last fifteen years. There has been a shift away from the traditional

functional-decomposition paradigm in which a software system's capabilities were expressed in

terms of functions and sub-functions. The shift has been to object-oriented development where

what a system does is expressed in terms of interacting "objects" and classes of objects each of

which provides a service. The collection of services that a software system provides defines the

overall system capabilities. This shift has required many of the existing software reuse approaches

that were useful in the functional-decomposition paradigm to be redesigned for the object-oriented

paradigm.

One of the benefits claimed for software produced by an object-oriented paradigm is that it is

inherently more reusable than functionally-oriented software. This is due in part to the fact that

object interfaces are typically defined by "messages" and the internals of objects can be changed

as long as the message form is preserved. The use of inheritance also provides a better means for

identifying which parts of a software system depend upon each other. By using the

object-oriented approach the ability to extract objects and classes and reuse them is enhanced,

since their interfaces are well defined. Even with this inherent improvement many of the existing

object-oriented legacy systems were not designed with reuse in mind, and their organization is

such that reuse is still difficult, since documentation and interfaces were not designed to facilitate

reuse.

Object-oriented software, however, due to the very aspects that make it desirable, tends to

suffer from a wide scattering of the software that is required in order to perform even a fairly

simple task. This scattering occurs since it is considered to be good object-oriented programming

3

style to write small message handlers [77], which results in an object-oriented system consisting of

a large number of small modules. By the use of inheritance, a class may inherit one or more

classes, with associated message handlers. Often these inherited classes are not defined locally.

All of these aspects of object-oriented software tend to underline the need for good,

semantically-based tools to aid in the understanding, and thus in the reuse of object-oriented

software. Semantically-based tools provide a deeper understanding of the software than is

provided by syntactically-based tools alone. The research described in this dissertation

concentrates upon the development of an automated tool that uses semantic analysis to identify

reusable components in object-oriented software.

In Chapter II a detailed description of software reuse issues, object-oriented software

characteristics, program understanding theories, natural language understanding techniques,

semantic networks, reusability metrics, and object-oriented metrics is provided. The overall

research approach is described in Chapter III, the program understanding approach is described

in chapter IV, and the reusability analysis approach is described in Chapter V. Chapter VI

describes the Program Analysis Tool for Reuse (the PATRicia system), with its strengths and

limitations. Chapter VII describes the results of the application of the PATRicia system to real

C++ software. Together, Chapter VI and Chapter VII provide a proof of concept for the

approaches described in Chapters IV and V. The conclusions of this research effort and future

research directions are stated in Chapter VIII.

Appendix A provides details of the study of comments as a sublanguage. Appendix B

provides supporting material for the study of the syntactic tagging of identifiers. Appendix C

describes the results of the study of the application of the Sleator and Temperley natural language

parser to comments. Appendix D provides the background of experts who were employed in the

experiments that provided a validation of the operation of the PATRicia system. Appendices E

and F contain the directions and questionnaires given to evaluators during the program

understanding experiments that provided a validation of the program understanding approach

followed in the PATRicia system. Appendix G contains the directions and questionnaires used in

validating the reusability approach followed in the PATRicia system.

4

Chapter II

 BACKGROUND

The development of a semantically-based approach for identifying software for reuse involves

an understanding of a broad set of subdomains. These include reuse and preparing software for

reuse, an analysis of the characteristics of object-oriented software, program understanding

theories, natural language understanding, semantic networks and the use of conceptual graphs in

natural language generation, reusability metrics and software metrics. Each of these subdomains

will be described since they form the basis for the research described in the subsequent chapters.

2.1. The Software Reuse Problem

The term "software reuse" has been defined in several ways. Hooper and Chester [59]

summarized nicely the following definitions of reuse:

1) "Reuse is an act of synthesizing a solution to a problem based on predefined solutions to
subproblems." (Kang, 1987)

2) "Reuse is the process of implementing new software systems from pre-existing
software." (AdaIC, 1990, quoting Cohen)

3) "Reuse is the reapplication of a variety of kinds of knowledge about one system to
another similar system in order to reduce the effort of development and maintenance of
that other system." (Biggerstaff and Perlis, 1989)

5

4) "Reuse is the process by which existing software work products (which may include not
only source code, but also products such as documentation, designs, test data, tools, and
specifications) are carried over and used in a new development effort, preferably with
minimal modification." (Bollinger and Pfleeger, 1990)

The Global Protection Against Limited Strikes (GPALS) Software Reuse Strategy [54] states:

"Software reuse is defined in many ways, but the simplest might be to say that reuse is the
exploitation of commonality. It can also be defined as the process of implementing new
software systems from pre-existing software."

As can be readily seen, the term is subject to a variety of interpretations. However, this has

not prevented the development of software reuse strategies in recent years. Cavaliere [25][17][59]

describes a successful reuse strategy involving COBOL programs at the Hartford Insurance

Group. This reuse strategy had three goals: 1) to develop and implement a procedure for

collecting and communicating reusable software, 2) to promote acceptance of reusable software as

an effective productivity tool, and 3) to determine long-term support requirements for reusable

software. Biggerstaff and Perlis [17][59] say that the ad-hoc approach used by Hartford

Insurance provided good results, primarily due to management support and funding of reuse. This

strategy was primarily management and process related, rather than product related. Specific

information about designing reusable software, and how to choose reusable software from other

less reusable software was only peripherally addressed.

Oskarsson [85][17] describes a successful reuse strategy for reusing public telephone

exchange software. This software was formed of relatively large modules (more than 1000

executable statements each), in which no data is shared between modules, and there is no

hierarchy of modules. Oskarsson identified several aspects of modules that aid in reusability.

First, when a new module is added to a system, the identity of the module can be passed as a

parameter to other modules, and there is no need to modify calling modules. Second, the

abstraction of the module allows it to be used in very different environments. Strict locality of

data and devices to a module encourages reusability by minimizing coupling between modules.

6

Oskarsson mentioned that the module concept of not sharing data resulted in a proliferation of

interface modules for different devices. A study performed of the reuse process employed resulted

in the development of a new system that consisted of 183 modules total with 80 modules being

reused unchanged from a previous system. Additional modules were reused with modifications.

Biggerstaff and Perlis [17] comment that the importance of this experience lies in the fact that the

target environment makes development difficult and costly, since the real time software required

must obey unusually strict memory and performance constraints, and yet reuse was still possible

in this environment. This study was very specific to the module concept employed in the public

telephone exchange software, although some of the insights gained are also applicable to

object-oriented software.

 Jette and Smith [61][17][59] describe a successful reuse strategy as well as the beneficial

effect of object-oriented programming on reuse in their system HyperClass, a tool used at

Schlumberger to develop oil well analysis tools. HyperClass is a user interface toolkit that

encapsulates knowledge about user interfaces in terms of editors and editor parts [59]. This

knowledge is used to implement application-specific extensions to user interfaces. Jette and Smith

successfully focused on application domain reuse. They also investigated aspects of reuse using

object-oriented programming, and emphasized that object-oriented programming reuses

abstractions, and not just the code or the leaf nodes in a hierarchy [59]. They discuss the

importance of designing a system with reuse in mind. This results in a commonality of interfaces,

which improves reusability. They also mention that a weakness to their approach was the

inability to determine the level of reusability of a class or set of classes. Jette and Smith mention

that using HyperClass, interfaces built for applications require only a few days or weeks to build,

which is an improvement over earlier interface design techniques. Biggerstaff and Perlis [17][59]

consider HyperClass to be a baseline for others in the field of object-oriented reuse.

Selby [100][17] discussed a project that analyzed twenty-five software systems from a NASA

production environment, ranging from 3000 to 112,000 lines of code. The amount of software

either reused or modified from previous systems averaged 32 percent per project in this

environment. Selby discussed total development effort per source line for modules that were

7

newly developed, extensively or slightly revised reused modules, and completely reused modules.

New modules required most development effort per source line (1.089 tenths of hours/number of

source lines), followed by extensively revised reused modules (0.758 tenths of hours/number of

source lines), then slightly revised reused modules (0.601 tenths of hours/number of source lines).

Completely reused modules required much less development effort than other modules (0.047

tenths of hours/number of source lines).

From these and many other case studies, software reuse has been demonstrated to increase

productivity, reduce costs, and improve software quality [59]. However, preparing software for

reuse can be costly. Hooper and Chester say [59]:

"It costs more to prepare software for reuse than for a single use because of the extra
effort required to generalize and to test the components, to document them well, and to
classify and retain them for reuse."

Thus there are several financial considerations involved with software reuse. These include

providing funding for training, additional personnel, and the generation of reusable components.

Additionally, a mechanism for library storage and retrieval of reusable components must be

provided, and time must be allocated in the product development schedule for retrieval, selection,

and modification of reusable components.

Software reuse can be divided by application type into horizontal reuse and vertical reuse

[59]. Horizontal reuse refers to the reuse of routines such as data structures and sorting

algorithms, across a broad range of application areas, whereas vertical reuse refers to

domain-specific components that can be reused again within a particular, narrow, and

well-defined application domain. Vertical reuse requires a detailed domain analysis, which

describes the common functions, data and relationships of systems within the domain. A single

domain analysis can be used in multiple software development processes. Horizontal reuse is

more common since it is easier to employ. However, greater leverage is possible through vertical

reuse, but it is harder to accomplish because of the need for additional tools and techniques to

support the reuse process. Development of these tools and techniques for object-oriented analysis

and design approaches is central to the theme of this research.

8

2.1.1. Software Reuse Libraries

In order for a component to be easily reusable, it must be classified by the function or

functions it performs and it should be stored for later retrieval in an on-line library. According to

Ostertag and Hendler [86], the ability to reuse existing software requires four steps: definition,

retrieval, adaptation, and incorporation. The definition step describes the component which needs

to be constructed in terms of its functionality and relation to the rest of the environment. The

retrieval step takes this description and retrieves from the software library a list of components

with similar characteristics. One of these components is then selected. During the adaptation

step the needed component is generated, usually by modifying the component that was selected

from the library. The needed component is then incorporated in a new software package during

development. Finally, new reusable software components are derived from the current software

development project, and inserted into the software reuse library. The classification of a software

component for easy later retrieval from a software library is an important part of the reuse

procedure.

Approaches to software classification and retrieval have similarities with traditional library

systems. Kim and Stohr [63] divide these approaches into the following categories: full text

retrieval, keyword retrieval, the faceted approach, and enumerative retrieval. Novak [59] has a

similar classification scheme.

The full text retrieval approach simply searches for all components within the software

library that contain certain words specified by the user. The text searched can either be source

code, or a short text description of a component stored in the on-line library. An example of this

approach is that used by the CATALOG system from AT&T [59][53]. The full-text retrieval

approach avoids the need for manual indexing, which is costly and can be inconsistent. However,

as the library becomes larger, it becomes difficult to search and retrieve all the relevant resources,

and to differentiate those from non-relevant resources [63]. Special Information Retrieval (IR)

hardware can make this technique feasible for large libraries.

9

With the keyword approach, a set of keywords typically chosen from a standard list is

attached to each component stored in the on-line software library. An example of this approach is

that used by the NASA/Ames Research Center [63] [62]. A query for a keyword system consists

of a list of keywords. This technique has the advantage of simplicity. However, the keyword list

of all components in the library must be searched and then each component must be classified by a

keyword list prior to insertion in a reuse library.

The faceted approach defines facets as the categories, or viewpoints appropriate to a

particular domain [63]. A standard list of terms for each facet is stored by the system. Each item

stored in a reuse library is described by the list of values it has in each facet. A system using the

faceted approach is described by Jones and Prieto-Diaz [62], and by Prieto-Diaz and Freeman

[93]. Advantages of the faceted method are that it allows multiple dimensions to be defined for

relevant concepts, and standardizes the vocabulary for the concepts [63]. Each component must

be classified by lists of values for each facet prior to insertion in the library.

The enumerative retrieval approach is similar to the traditional Dewey Decimal system. In

this approach, a subject area is divided into hierarchically-arranged categories [63]. A category is

attached to each component stored in the on-line software library. An example of this approach is

that used by the International Mathematics and Scientific Library [60]. A query for a keyword

system specifies a particular category. An inherent problem with enumerative classification

schemes is the time required to search the hierarchical tree for the appropriate class [63].

One category of library retrieval mechanism that is mentioned by Novak [59] is

knowledge-based library retrieval systems. An example of a knowledge-based system is that of

Tarumi, Agusa, and Ohno [106][59]. Their system has a rule-based retrieval mechanism based

on user inputs of object names, attributes, relations, and operations. Their approach is a mixture

of formal and informal methods. Ostertag and Hendler [86][59] employ a frame system with

multiple inheritance to represent the software library, and procedures used to find reuse candidates

are based on artificial intelligence search techniques such as the A* search algorithm. These

knowledge-based systems are powerful, but can be slow, and the knowledge-based search must be

performed any time a library search is required.

10

The work described in this dissertation will form a solid basis for the classification of reusable

components. These knowledge-based techniques provide concepts embodied in the software, and

quality metrics, which can be used as the basis of a keyword classification scheme, or that could

be extended to other classification schemes.

2.1.2. Preparation of Legacy Code for Reuse

The generation of reusable components can be costly in terms of personnel and development

time, and the classification of such components for reuse can also be expensive. The preparation

of code components for reuse can be much harder if reusability was not considered when the code

components were originally designed and implemented. Poulin and Caruso [90] say:

"Failing to plan for reuse is the norm in traditional software development. In general, a
software product is an original work except for the informal consideration of existing
software for use in the new application."

This lack of planning for reuse has left immense bodies of existing software that has not been

categorized or documented for later reuse. Dunn and Knight [39] say:

"One often hears the comment that reusable components have to be designed rather that
discovered, but to a software development manager with access to a large inventory of
existing software, such a statement is both intellectually and economically dissatisfying.
Intuitively, it is reasonable to assume that of the several billion lines of source code that
have been developed over the years, some significant subset ought to be reusable with little
or no modification. Location of reusable parts within existing software systems would be
of considerable benefit, however, only if the parts were truly useful and the cost of finding
them was less than the cost of rebuilding them."

This situation leads to the notion that the automated identification of reusable components in

software would be cost effective. Only recently has any research focused on automated reuse

identification. Two examples of automated reuse identification are those provided by Dunn and

Knight [39] and by Caldiera and Basili [24].

11

Dunn and Knight have developed the tool called CodeMiner [39]. CodeMiner assists the

programmer in identifying parts of legacy C software systems that might be potential candidates

for a reuse library. CodeMiner identifies potentially reusable software in three ways: 1) It

identifies functions that are invoked multiple times from multiple sections of code, 2) It identifies

functions that are loosely coupled. Four types of coupling are checked for in CodeMiner:

 a) data coupling--the functions share data through their interfaces,

 b) common coupling--the functions share global data,

 c) external coupling--the functions share data with the outside world, and

 d) control coupling--the functions share data items upon which control decisions (such as

branching) are made.

3) it identifies functions and global data elements that can be grouped together to form abstract

data types. This is done by grouping together functions that use the same global data elements.

Caldiera and Basili developed the CARE (Computer Aided Reuse Engineering) system for the

identification and qualification of reusable components in Ada and ANSI C legacy software [24].

The CARE system splits the analysis of existing programs into two phases. The first phase

identifies some candidate components, and packages them for possible independent reuse. An

engineer with knowledge of the application domain in which the component was developed then

analyzes each component to determine the service that component can provide. Finally,

components are stored in a repository along with all the information that has been obtained about

them.

The component identifier (the first phase) selects some tentative candidate components and

applies a reusability attributes model to the components to determine reusability of the component.

The tentative candidate components are at the level of a C function or an Ada subprogram.

Components whose measurements are within the reusability model's range of acceptable values

become candidate reusable components to be analyzed by the domain expert in the qualification

phase. This phase is fully automated.

The reusability attributes model measures reusability by the use of three quality attributes:

Usefulness, Quality, and Costs. A value for Usefulness is determined by the use of McCabe's

12

cyclomatic complexity[81], by a regularity measure, and by reuse frequency. The regularity

measure compares the actual length of a component to the estimated length, as determined by

Halstead's Software Science [56]. The reuse frequency is measured by comparing the number of

calls to a function to the number of calls addressed to a class of components that are assumed to

be reusable (since the components have in the past been reused). The attribute Quality consists

of several quality sub-factors. However, only sub-factors whose calculation can be automated are

implemented in the reusability attributes model. The implemented sub-factors are correctness and

testability, which are predicted using volume and cyclomatic complexity measures. The attribute

Costs also consists of several quality sub-factors. Those chosen for use in the reusability

attributes model are Qualification, Packaging, and Modification, whose calculation can be

automated. Qualification is predicted using Halstead's volume. Packaging and Modification are

predicted by the use of volume and cyclomatic complexity measures.

The Component Qualifier (the second phase) is an interactive assistance tool for a software

engineer. It provides a "specifier" that supports the construction of a formal specification to be

associated with the component. It provides a "tester" that uses the formal specification to generate

or to support user generation of a set of test cases for the component. Finally, the classifier

assists the software engineer in the selection of an appropriate classification for the reusable

component.

These tools accepted as input legacy software written in C, ANSI C, and Ada. Neither of

these systems, however, has addressed automated identification of reusable components in

object-oriented software, which will be a focus of this research.

2.2. Object-Oriented Software

Software developed using an object-oriented approach generally includes components with

four main aspects: identity, classification, polymorphism, and inheritance [99][22][91].

 Identity means that each object has its own individual name. Two objects with different

names are different objects even if all their attribute values and the services they provide are the

13

same. Within a programming language, each object has a separate "handle" by which it can be

referenced.

 Classification means that objects with the same attributes (data structures) and behavior

(methods, member functions, or operations) are instances of a "class." A "class" is an abstraction

that describes properties important to an application. A "class" can serve as the type definition of

an object.

Polymorphism means that operations (methods, or member functions) with the same name

may behave differently on different classes. The burden of deciding which implementation of a

particular method to use is shifted from the calling code to the class hierarchy. For example, in a

program to handle the display and manipulation of geometric figures, calling the "draw" method

on a circle object results in a different output than calling the "draw" method on a rectangle

object, and yet the name of the method is the same. In non-object-oriented software, the code

calling the draw procedure would have had to select between two or more differently named draw

procedures.

A different form of polymorphism is parametric polymorphism. Using parametric

polymorphism, an object can respond to similar commands in different ways. Which method of

an object responds to a command is selected through the use of types as method parameters.

Inheritance is a one-way hierarchical relationship in which attributes and methods are shared

between classes, from a parent class (or parents, in the case of multiple inheritance) to one or

more child classes.

Dynamic binding is a characteristic of object-oriented software that is associated with

polymorphism and inheritance. A procedure call associated with a polymorphic reference may

depend on the dynamic type of that reference. It may not be certain ahead of time which

particular inherited property of an object's ancestors will apply to it at runtime. Dynamic binding

means that the code associated with a given procedure call is not known until runtime [2].

Encapsulation, or information hiding, is another important characteristic of object-oriented

software. With encapsulation, implementation details of an object are hidden from all code

external to that object. Only a well-defined public interface, that reflects the application of the

14

object, is available externally. Thus the implementation of an object can be changed without

affecting the applications that use it.

One of the primary characteristics of object-oriented systems is that objects represent an

"abstraction," or a useful model, of part of the application domain. In an accounting package, for

example, an object could represent a particular savings account, and the class of which the object

was an instance would represent savings accounts in general. The concept of abstraction allows

focusing on the essential aspects of an entity. Thus, ideally, design and implementation decisions

are not made before the problem is understood.

The unit of primary reuse in object-oriented software is the class. A class is a construct for

the implementation of an abstract data type (ADT). Due to the information hiding guidelines that

are generally followed when designing object-oriented software, the interface of a class is an

abstraction of a particular part of an application domain.

Verbatim reuse in object-oriented software is achieved by simply defining objects with the

type of a reused class. Every time an instance of a class is created, reuse occurs. Leveraged

reuse is achieved by the inheritance property of object-oriented software. If a class is almost, but

not exactly what is needed, then defining a child class with some modifications allows the tailoring

of the reused class in a way that does not introduce unwanted side-effects into the rest of the class

[2]. Inheritance supports reuse across systems, and also supports extensibility within a single

system. Korson and McGregor [66] give the following example: When a class Y inherits from a

class X, Y usually has two parts, a derived part that was inherited from X, and an incremental

part written for Y itself. In Y, a feature of X may be reimplemented, renamed, duplicated, voided,

or have its visibility changed. Any new modifications to X, such as bug fixes, are automatically

incorporated into Y. Abi-Akar [2] says that this allows a class to serve as the basis for many new

definitions without propagating the errors of the original definitions throughout the system.

Another aspect of object-oriented software that aids in reusability is parametric

polymorphism. Parametric polymorphism allows an object to refer to similar commands in

different ways, by using types as method parameters. The most important advantage of

parametric polymorphism is code sharing, which is a form of reuse.

15

Although the characteristics of object-oriented software result in code created in that

paradigm being inherently more reusable than code created in the functional decomposition

paradigm, still in the past ten years many object-oriented systems were designed and implemented

without eventual reuse of the code being considered [83][84]. Thus the re-engineering of

object-oriented legacy software for reuse is an important task.

2.3. Program Understanding

The identification of potentially reusable software components requires an understanding of

the functionality of each software component. Program understanding or analysis in general

includes any activity that uses dynamic or static methods to reveal the properties of existing

programs. It most commonly refers to an examination of source code, without the use of any

specification or execution information.

Several major hypotheses have been discussed in the literature in order to describe the

program understanding process that is performed by a software engineer. These theories fall into

two major categories: 1) bottom up program understanding, and 2) top down program

understanding [38].

In bottom up program understanding, understanding begins at the syntactic level of source

code. Statements of code are translated into a low-level semantic structure. Then familiar

sequences of statements are recognized and grouped into understanding "chunks." Larger and

larger "chunks" are pieced together until an understanding of the overall program has been

achieved.

In the top down approach to program understanding, code is first scanned broadly. Multiple

hypotheses are formed immediately about the program based on the high-level information. Each

hypothesis is verified or rejected by the inspection of source code or documentation. When

necessary, new hypotheses are examined. As hypotheses are verified, they are considered to

belong to the overall understanding of the program. Complete understanding has been achieved

when all of the hypotheses have either been verified or rejected. The total of the verified

16

hypotheses comprise the understanding of the program. If no hypothesis is verified, then the

program considered to be not understandable.

Each of these approaches requires a program to be viewed from different levels of detail.

Ning [82] provides a good classification of levels-of-detail program views: 1) implementation

level, 2) structure level, 3) function (or functionality) level, and 4) domain level. Understanding at

the implementation level requires knowledge about the syntax and semantics of the coding

language. Understanding at the structure level requires the ability to derive information such as

data/control flow graphs, interprocedural calling relations, or structure charts, and includes how

these structures interrelate. Understanding at the function level consists of relating the pieces of a

program to the functions that they perform. Understanding at the domain level requires

abstracting away the algorithmic nature of the function (or functionality) view level, and relating

the program to the requirements of the domain. Ning discussed the following example: in the

context of "student record keeping," a program understood at the functional level as "computing

average by summing up its inputs divided by the number of inputs" can be interpreted at the

domain level as a "grade point average computation routine." Program understanding can be

considered to be the process of moving from one program view to another, and this can occur in

either a top down or bottom up manner.

The levels of detail required by different program views require different information.

According to Brooks [23][38], the ability of a programmer to comprehend a program depends

upon that programmer's programming knowledge, domain knowledge, and comprehension

strategies. Brooks mentions that domain knowledge is crucial to the formation of the top level

hypothesis. Thus, programming knowledge is related to implementation level, structure level, and

function level understanding, while domain knowledge is only related to domain level

understanding. Comprehension strategies comprise the process of moving from one level of detail

program view to another.

Certain documentation aspects which improve program comprehension are described by

Brooks [23][38]. Documentation which is internal to the program text includes: prologue

comments; variable, structure, procedure, and label names, or identifiers; declarations or data

17

divisions; interline comments; and indentation, among others. Documentation which is external to

the program text includes user manuals, flow charts, cross reference listings, or published

descriptions of algorithms. Certain aspects of documentation are programming language specific,

whereas others are domain specific. Belady and Lehman [12][38] contend that attempts to

alleviate the problem of maintaining correct and complete documentation through the use of

"self-documenting" high level programming languages have not been successful. Good

documentation, including comments, is necessary not only to understand what the program is

currently doing, but more importantly to serve as a source of information for reuse.

2.3.1. A Survey of Semantic Program Understanding Approaches and Systems

Using automated tools to aid in program understanding is a rich, ongoing area of research.

Most of the earlier tools have been implementation and structure level understanding tools. Some

of the more recent tools have used knowledge bases to provide functional (or functionality) level

support. Very few tools provide domain level support, because it requires that application domain

knowledge must be incorporated into the tool.

There are three large categories of program understanding tools, although some tools have

aspects that cross categories. The algorithmic approaches annotate programs with formal

specifications. These approaches rely on the user to annotate loops, and provide assistance only

in proving the correctness of the annotations. The knowledge-based approaches rely on creation

of a knowledge-base which can be matched to domain level as well as programming level

concepts. These approaches typically annotate programs with English text descriptions. The

transformational approaches are similar to the transformational paradigm of automatic program

synthesis, but with the application direction of the transformation rules reversed.

One of the goals of this research is to produce a tool that automates the reuse process as much

as possible. Thus the algorithmic approaches, which typically require user interaction, are not

appealing in the context of this research. A source of difficulty with the transformational

approaches is that the associated transformation knowledge-base tends to be very large. Most

18

importantly, neither of these approaches allow the identification of domain-level concepts. Thus a

knowledge-based approach was chosen for use in this research.

The knowledge-based program understanding approaches can be divided into three major

areas. The first approach, called the graph-parsing approach [95][96] translates a program into a

flow graph, which shows both data and control flow. The domain base contains a library of

graphical grammar-rule plans. The program's graphs are compared to the plans in the library,

and recognition of program sub-parts becomes a graph-parsing problem. The second approach,

called the heuristic concept-recognition approach [57][82], contains a knowledge-base of events,

such as statement, control, inc-counter, dec-counter, bubble-sort, etc. An attempt is made to

match the lowest level events to code statements. Then the low level events are combined to form

high level events. The third approach, called the informal tokens approach [15][16][17][18][19],

matches keywords taken from comments and identifiers to a knowledge-base. Recognized

low-level concepts in the knowledge-base are combined to form higher level concepts. Some of

the knowledge-based approaches use additional, structural information such as abstract syntax

trees or call graphs to aid in identifying concepts.

Various program understanding tools are described below. The Computer Aided Reuse

(CARE) system, which is the first system discussed, describes an algorithmic approach to

program understanding, and the Cognitive Program Understander (CPU), the second system

discussed, describes a transformational approach to program understanding. The other tools

described employ various knowledge-based approaches. Most of these tools were primarily

designed for use in program maintenance rather than in identification of reusable components

(although they do have some application in that area as well). Thus, all of these tools are

basically interactive tools that were intended to be a maintenance programmer's assistant;

however, they do represent state-of-the-art in program understanding systems.

19

2.3.1.1. The CARE System/Caldiera and Basili

The previously mentioned CARE (Computer Aided Reuse Engineering) system also has a

program understanding component. The Component Qualifier is an interactive assistance tool for

a software engineer, that takes a formal, algorithmic approach to program understanding. It

provides a specifier that supports the construction of a formal specification to be associated with a

program component.

The formal specification program understanding approach used by the CARE tool does not

address domain knowledge. Also, in some situations, a formal specification of a reusable

component is not as desirable as a textual description of that component. An example of such a

situation would be the case when some users of the library are not trained to understand formal

specifications.

2.3.1.2. The Cognitive Program Understander (CPU)/ Letovsky

The Cognitive Program Understander [73][82] employs the reverse program transformation

method. The reverse program transformation method is similar to automatic program synthesis,

but with the direction of the transformation rules reversed. The Cognitive Program Understander

uses lambda calculus as its program representation language. Lamba calculus is a language of

functional expressions over a set of symbols. The lambda operator can create functions. Source

programs must be translated into lambda calculus prior to the program transformation phase.

Transformation rules are stored in a knowledge base. The lambda calculus representation of a

source program is repeatedly transformed by matching the left hand side of a rule with part of the

lambda calculus representation of the source program, then replacing it by the right hand side of

the rule. A structure of program abstractions is then created. This is a bottom up program

understanding approach.

This procedure suffers from various problems. First, each rule in the knowledge base can be

matched only to a strict syntactic form. It has no method for providing a rule that can handle a

20

class of similar syntactic forms. Thus the knowledge base tends to be very large. Second, it is

possible to have a "transformation cycle," where part of a program is transformed back into its

original form. Finally, a transformation rule cannot match to non-adjacent program components,

since the input conditions of the rule will not be satisfied. Thus program fragments that happen to

be non-adjacent, although conceptually related, cannot be matched by a transformation rule.

2.3.1.3. The Programmer's Apprentice/ Rich, Waters, and Wills

The Programmer's Apprentice [95][96][110] is an intelligent programming assistant, rather

than a fully automated tool, which was intended to provide interactive help to programmers in the

program development and program maintenance domains. The approach is a bottom up program

understanding approach.

A program in common LISP is first translated into a formal representation, or plan. The

system for deriving formal representations is called the Plan Calculus. The Plan Calculus

includes representations for control flow, data flow, and abstract data types. A plan is a directed,

acyclic, graph in which nodes represent operations, and edges show the controls and data flows

between the operations. A cliche library, in a knowledge base, contains a taxonomy of standard

computational fragments and data structures which are also represented as plans. Cliche

recognition identifies subgraphs in the program's graph and replaces them with more abstract

operations to form an abstraction of the program. Cliche recognition is a graph parsing problem.

The Recognizer tool [96] finds all occurrences of a given set of cliches in a program, and

builds a hierarchical description of the program in terms of the cliches it finds. The Recognizer

forms a report by combining textual templates (in English) associated with recognized cliches, and

filling in slots with identifiers taken from the program.

This approach requires a fairly large knowledge base for the understanding of even small

programs, and thus can be difficult to apply to large systems. It is currently restricted to the

analysis of small programs in common LISP. Also, domain level knowledge is not addressed

[15][19].

21

2.3.1.4. The Program Analysis Tool (PAT)/ Harandi and Ning

The Program Analysis Tool (PAT) [57][82] is an interactive tool that takes a heuristic,

concept-recognition approach to program understanding. It contains a knowledge-base of low

level events, such as statement, control, increment-counter, decrement-counter, bubble sort, etc.

The lower level events, called implementation level events, are combined to form the higher level

events, called structure level events. Then structure level events are combined to form function

(or functionality) level events.

At the lowest level, an attempt is made to match software statements versus the most

primitive, implementation level events. The tool uses a technique, called Interval Calculus, that

identifies control areas specified by line numbers surrounding a programming event, to perform

the matching process. When all events have been identified, and the combination of events ceases,

then the resulting high level events are considered to provide an understanding of the program

under analysis. This is a bottom up program understanding approach.

Events, especially higher level events, have associated with them a structured English text

description of the event, which are reported along with the event.

Programs input to PAT are small Pascal programs, with each program modified so that each

statement is on a separate line with a unique line number. It has not been tested on large systems.

Also, domain level understanding was not addressed by PAT.

2.3.1.5. Kozaczynski, Ning, and Engberts

Kozaczynski, Ning, and Engberts [67][68][69][70] use an approach that is primarily a

heuristic, concept-recognition approach, but that also employs control flow and data dependency

knowledge in the recognition of the most primitive level events. Some aspects of this tool are

similar to those of PAT, the previously mentioned tool. In this approach, the program (in

COBOL) is first parsed into abstract syntax trees. Each abstract syntax tree is augmented with

control flow and data dependency knowledge. Then each abstract syntax tree is matched to a low

22

level concept. Higher level concepts are formed by combining low level concepts and meeting

constraints due to control flow and data dependency. Plans in the domain base are stored in the

following format:

Plan xx (higher level event)

consists of (lower level) event1, event2, event3

 such that data dependency(event1, event2), control dependency(event 1, event3);

Understanding is complete when new concepts cease to be formed. This approach is basically a

bottom up program understanding approach.

Kozaczynski, Ning, and Engbert's concept recognition tool is an interactive tool, with two

windows: a program window, and a plan window. Text objects in the windows are directly

connected with abstract syntax tree nodes in the knowledge base. The user can use all of the plans

in the knowledge base to attempt to understand the program, or can select a subset of plans. After

the concept recognition is complete, a dialog window appears that lists all the concept instances

recognized, by name. When a concept in the dialog box is selected, the plan that contributes to its

recognition is underlined in the plan window.

Kozaczynski, Ning, and Engbert's tool has been applied to large COBOL systems. However,

domain knowledge is not currently addressed by the tool, although they do have plans for the

addition of some domain knowledge. The tool is currently restricted to COBOL systems.

2.3.1.6. The LANTeRN System/Abd-El-Hafiz and Basili

Abd-El-Hafiz and Basili [1] developed a knowledge-based approach to the analysis of loops,

as an important subset of program understanding. Their approach partook of ideas garnered from

the areas of practical program decomposition, axiomatic program notation, and knowledge-based

program understanding. Their approach mechanically documents programs by generating first

order predicate logic annotations of loops.

23

Their process for loop analysis proceeds as follows: first, a loop is decomposed into

fragments, called "events." Each event encapsulates the loop parts that are closely related with

respect to data flow, and separates them from the rest of the loop. The resulting events are then

analyzed using plans stored in a knowledge-base, to deduce their individual predicate logic

annotations. Finally, the annotation of the whole loop is synthesized from the annotations of its

events. This is a bottom up approach to program understanding.

The output of the LANTeRN (Loop ANalysis Tool for Recognizing Natural concepts) is the

loop classification and loop events, along with the names of the plans that they match.

The LANTeRN tool currently operates only on a subset of Pascal, but should be extendable

to larger systems. It is somewhat limited in scope, in that it is concerned only with loop analysis.

Athough loops typically are one of the most difficult parts of a program to understand, loop

analysis alone does not normally provide sufficient information upon which to base overall

understanding of a program.

2.3.1.7. The DESIRE System/Biggerstaff

Biggerstaff [15][16][17][18][19] argues that a parsing oriented approach based on structural

patterns of programming language features, which is the approach of all tools examined in this

survey so far, is necessary but not sufficient for solving the general concept assignment problem.

Parsing approaches return programming-oriented concepts such as searches, sorts, numerical

integration, etc. However, human-oriented concepts such as acquire target and reserve airplane

seat are not allied directly with algorithms. Thus, in order to extract these concepts it is necessary

to extract informal information from the source code in terms of natural language tokens from

comments and identifiers, as well as some heuristics related to occurrences of closely related

concepts, and the overall pattern of relationships.

Biggerstaff's concept recognition prototype, the DM-TAO (Domain Model - The Adaptive

Observer) from the DESIRE system (DEsign Information Recovery Environment), stores domain

knowledge in the form of concepts within a semantic net. Natural language tokens, such as

24

identifiers and keywords from comments, are compared to low level domain concepts. Syntactic,

lexical, and clustering clues are employed in initial low level concept recognition. The low level

concepts are then used to form higher level concepts. Weights on the links of the semantic net are

used to predict the accuracy of the concept recognition. If the weight is over a certain level, called

the recognition threshold, then the concept is predicted to be present. The network weights must

be empirically adjusted during performance in order to make the concept recognition accurate.

This approach is basically a top down approach that is primarily concerned with domain

knowledge; however, there are some bottom up aspects related to the operation of the semantic

net.

The DM-TAO tool is a highly interactive tool with user selectable "slices" (interest sets), or

highlighted areas, within the source code being the focus for program understanding. The output

of the DM-TAO tool is a list of candidate concepts for the selected code. The user then can use

structural information provided by various DESIRE tools to determine the accuracy of the

assignment of the code in the slice to certain concepts. Based on this information, the user can

change the weights of concept prediction. Thus, over time, knowledge is acquired that allows the

system to improve its search and predictive power.

This approach has the advantage that it is easily extendable to large systems. However, the

DM-TAO is still a research prototype, and has been applied only to small experiments.

2.4. Natural Language Processing

The understanding of various aspects of software documentation, such as comments is a

natural language processing problem. This is integral to the approach described in Chapter III.

The processing of natural language can be divided into two primary subproblems. The first

subproblem is the processing of written text, which requires lexical, syntactic, and semantic

knowledge of the language, as well as real-world knowledge to provide a context for

understanding the text. The second subproblem is the processing of spoken language, which

requires all that is needed to process written text, plus additional knowledge about phonology and

25

enough added information to handle ambiguities that tend to arise in speech [97][3]. The natural

language approach used in this dissertation will concentrate only on various aspects of the

processing of written text.

The natural language understanding process can be roughly divided into the following

subcategories [3][97]:

1) morphological analysis--individual words are analyzed into their components (such as roots

and prefixes or subfixes).

2) syntactic analysis--linear sequences of words are transformed into structures that show

how the words relate to each other.

3) semantic analysis--a mapping is made between syntactic structures and the problem

domain. It concerns what words mean, and how these meanings combine in sentences to form

sentence meanings.

4) discourse analysis--the meaning of an individual sentence may depend on the sentences that

precede it, and may influence the meanings of the sentences that follow it. An example is

pronoun interpretation.

5) pragmatic analysis--the interpretation of sentences based on current situation and usage.

Allen [3] gives an example to assist in distinguishing between syntax, semantics, and

pragmatics. Consider the following sentences:

1) Language is one of the fundamental aspects of human behavior and is a crucial component

of our lives.

2) Green frogs have large noses.

3) Green ideas have large noses.

4) Large have green ideas nose.

When considering each sentence as the first sentence in a textbook on natural language

processing, sentence number one is syntactically, semantically, and pragmatically well-formed.

Sentence number two is well-formed syntactically and semantically, but not pragmatically since

26

the subject matter has little to do with a textbook on natural language processing. Sentence

number three is well-formed syntactically, but not semantically or pragmatically. Semantically, it

is not possible for ideas to be green or to have noses. Finally, sentence four is not well-formed in

any way, neither syntactically, semantically, nor pragmatically, since it does not obey the rules of

English grammar.

The purpose of syntactic analysis is to build a structural description of a sentence. The goal

of this process, which is called "parsing," is to define each of the words in the sentence by the type

of word, and its usage in the sentence. Certain sentences may have several valid structural

descriptions, or "parses." These sentences are termed "ambiguous" sentences.

Semantic analysis has two important tasks. First, it must map individual words into

appropriate objects in the knowledge base. Second, it must create the correct structures to

correspond to the manner in which individual words combine with each other. For example, in the

case of ambiguous sentences (sentences with multiple syntactic "parses"), semantic analysis is

responsible for the removal of ambiguity.

A sublanguage is a subset of natural language. The term "sublanguage" is often used to

represent the language of texts in various fields, such as medicine or car repair manuals. In many

ways, the processing of sublanguages has been more successful than the processing of natural

language as a whole. For example, it is only within the domain of sublanguages that automatic

translation has been made practical.

Information extraction systems transform information from a collection of relevant texts into

a form that is more readily digested and analyzed [33]. The goal of information extraction

systems is to build systems that find and link relevant information while ignoring extraneous and

irrelevant information. Information extraction normally employs natural language processing

techniques.

27

2.4.1. Syntax

To determine the syntactic structure of a sentence requires two things: the grammar, which is

a formal specification of all structures of the language, and the parsing process, which is the

method of analyzing a sentence to determine its structure [3][97]. A parsing algorithm can be

described as a procedure that searches through various ways of combining grammatical rules to

find a combination that generates a tree that could be the structure of an input sentence [3].

The two basic grammatical formalisms used in natural language parsing are context-free

grammars and recursive transition networks. A variety of parsing algorithms can be used for

each.

Context-free grammars are a very important class of grammars for natural language

processing. The formalism of context-free grammars is powerful enough to describe most of the

structure of natural language, but it is restricted enough so that efficient parsers can be built to

analyze sentences [3].

To parse a sentence using a context-free grammar, it is necessary to find a way in which that

sentence could have been generated from the start symbol. There are two ways this could occur.

The first is "top down" parsing, which consists of beginning with the start symbols and applying

the grammar rules forward until the sentence is completely parsed. The second is "bottom up"

parsing, which consists of beginning with the symbol to be parsed, and applying the grammar

rules backward until a parse tree with the start node as the root node has been completed. Parsing

can be thought of as a special case of a search problem, with possible parses of various portions

of a sentence serving as states to be searched. A parsing algorithm that seeks to provide all

possible parses of an ambiguous sentence, instead of a single parse, must employ backtracking.

It is possible to design a parser that is a pure search algorithm. However, this method is very

inefficient, with an algorithm that is exponential: Cn, where n is the length of the sentence, and C

(C>1) is a constant that depends on the particular algorithm chosen [3].

A more efficient algorithm is a chart parser, which has a worst case complexity of K*n 3

(O(n3)), where n is the length of the sentence, and K is a constant dependent on the parsing

28

algorithm [3]. A chart parser avoids extensive backup during backtracking by storing

intermediate constituents so that they can be reused along alternative parsing paths (instead of

having to be regenerated).

A formalism that can be used in natural language parsing instead of a context-free grammar is

a recursive transition network. A recursive transition network is like a simple transition network

(or finite state machine) except that it allows arc labels to refer to sub-networks as well as word

categories. A recursive transition network is equivalent in power to a context-free grammar [113]

[3].

 With recursive transition network parsing algorithms, the pursuance of a parse corresponds

to transitions over network arcs. Both top down and bottom up parsing methods can be used, as

can a chart-based parsing method (the chart is called a well-formed substring table, or WFST).

These are modified from how they were presented during the discussion on context-free grammar

parsing to a method appropriate for recursive transition network parsing. A recursive transition

network parser using a WFST has the same complexity as the context-free grammar chart parser:

K*n 3, where n is the length of the sentence, and K is a constant dependent on the parsing

algorithm.

One of the primary difficulties involving understanding of sentences in natural language is

that of ambiguity. As already discussed, the same sentence can have multiple parses. Usually,

this is due to word sense ambiguity. Word sense ambiguity arises since the same word can have

different meanings. Consider the case of the word "fly." The word "fly" can be a verb, relating to

how birds transport themselves using wings ("The birds fly away."), or it can be a noun referring

to a small insect ("A fly has eyes with many facets."). Traditionally, the semantic phase of a

natural language understanding system has primarily been relied on to remove ambiguity by

placing the sentence in context. If one is discussing birds, then the first usage of "fly" is probably

appropriate. If one is discussing the characteristics of insects, then the second usage of "fly" is

appropriate.

29

Some removal of ambiguity occurs by the use of selectional restrictions. Selectional

restrictions are specifications of the legal combinations of word senses that can occur. Selectional

restrictions are employed to eliminate unlikely parses.

Another method used for ambiguity resolution is the method of statistical semantic

preferences. In this method of ambiguity resolution, statistics are collected from the corpora in

question on the frequency of semantic roles occurring between senses, so that the most common

semantic combinations can be preferred when interpreting a sentence.

It is possible for both methods of ambiguity resolution to be employed in the same system. It

should be noted that some ambiguity resolution in the form of selectional restrictions or various

heuristics used to rate the parses is included in some natural language parsers. Other

disambiguation will occur in the semantic phase of a natural language understanding system.

2.4.1.1. A Survey of Natural Language Parsers

The choice of a natural language parser is integral to a natural language understanding

approach. The speed of a parser greatly affects the overall speed of natural language processing;

also, if the parser provides good selectional restrictions, then in some cases the semantic phase

need not be as complex. Three natural language parsers which typify research in this area are

described below.

2.4.1.1.1. Winograd's Augmented Transition Network

Winograd [113] provided a definition of an augmented transition network to be used to

implement a parser. The grammar covered many of the major structures of English, but was not

complete. Many constructs such as conjunction, ellipsis, noun modifier, and prepositional phrase

attachment were not included. However, the grammar did provide a good basis for the

implementation of an augmented transition network parser.

30

2.4.1.1.2. Sleator and Temperley Natural Language Parser

The Sleator and Temperley parser is based on a formal grammatical system called a link

grammar [101]. The expressive power of link grammars is equivalent to that of context-free

grammars. A sequence of words is in the language of the link grammar if there is a way to draw

links between words in such a way that: 1) The local requirements of each word is satisfied, 2)

The links do not cross, and 3) The words form a connected graph. The linking requirements of

each word is stored in a dictionary. A word such as "cat," for example, can have a backward

connector allowing it to link to a determiner (such as "the" or "a"), or a backward connector that

allows it to serve as an object, or a forward connector that allows it to serve as a subject.

Plugging a pair of connectors together corresponds to drawing a link between that pair of words

and corresponds to a partial parse of a sentence.

Coordinating conjunctions such as "and" pose a problem for link grammar parsers, since they

result in links that cross. Sleator and Temperley give the following example: "Danny and Davy

wrote and debugged a program." In this sentence there should be links from "Danny" to "wrote"

and "debugged," and links from "Davy" to "wrote" and "debugged." The link from "Danny" to

"wrote" would cross the link from "Davy" to "debugged." Sleator and Temperley have a

proprietary scheme that allows the use of most conjunctions of this type.

The Sleator and Temperley parser handles: noun-verb agreement, questions, imperatives,

complex and irregular verbs, different types of nouns, past-participles, present-participles,

commas, various adjective types, prepositions, adverbs, relative clauses, and possessives, among

others. The Sleator and Temperley parsing algorithm is O(n3), where n is the number of words in

the sentence. It can parse typical newspaper sentences in a few seconds.

The Sleator and Temperley parser uses various heuristics to weight and sort parses in the case

of ambiguous sentences. The linkage (parse) considered most likely by the weighting scheme is

presented as the first parse. The following heuristics, which are called linkage parse factors, are

employed:

31

1) the sum of the lengths of the links. This is computed as the distance between the right and left

connecting words.

 2) the sum of the costs of the chosen disjuncts. A disjunct corresponds to one particular way of

satisfying the requirements of a word. A disjunct consists of two ordered lists of connector

names: the left list and the right list. The left list contains connectors that connect to the left of

the current word. The right list contains connectors that connect to the right of the current word.

To satisfy a disjunct, all of its connectors must be satisfied by appropriate links.

3) the imbalance, or unevenness, of the and lists. The cost is calculated using the number of and

elements, and the and element size. It is calculated as the difference between the biggest and the

smallest and element size in the and elements.

In a test run using the 1991 version of their parser on two ten-line columns from the Op-Ed

page of the New York Times, the preferred linkage (the first linkage) was correct 5 out of 10

times for one column, and the preferred linkage was correct 6 out of 10 times for the other

column. Their 1995 version handles 80% of Wall Street journal sentences [6].

2.4.1.1.3. Bickerton and Bralich Parser

Bickerton and Bralich [6][13] produced a natural language parser that they claimed was the

fastest and most advanced parser available through 1996 [13]. They made their parser available

over the World Wide Web, and issued a challenge to other parsing researchers and developers to

compare their parsing tools to the Bickerton and Bralich parser.

Evaluators included Paul Deane, and Sleator and Temperley [6]. They found several

problems with the Bickerton and Bralich parser. Sleator and Temperley concluded that their

parser was superior to the Bickerton and Bralich parser.

32

2.4.2. Semantics

Producing the syntactic parse of a sentence is only the first step toward the understanding of

the sentence [97]. The meaning of the sentence must still be determined. The determination of

meaning is a mapping process: the sentence (and its constituent words) are mapped into some

knowledge-representation form, such as a semantic net.

The first step in semantic processing is word sense disambiguation, also called lexical

disambiguation. This is the process of determining the correct meaning of an individual word.

Word sense ambiguity arises since the same word can have different meanings. Consider the case

of the word "fly." The word "fly" can be a verb, relating to how birds transport themselves using

wings ("The birds fly away."), or it can be a noun referring to a small insect ("A fly has eyes with

many facets."). The semantic phase of a natural language understanding system removes word

sense ambiguity by placing a sentence in context.

There are several approaches to the semantic processing of a sentence [97]:

1) semantic grammars, which combine syntactic, semantic, and pragmatic knowledge into a

single set of rules in the form of a grammar. There is usually a semantic action associated

with each grammar rule.

2) case grammars, in which the structure built by the parser contains some semantic

information. Case grammar rules provide both syntactic and semantic structure.

3) conceptual parsing, in which syntactic and semantic knowledge are combined into a single

interpretation system that is driven by the semantic knowledge. Semantic knowledge sets up

expectations for particular parses of a sentence.

4) compositional semantic interpretation, in which semantic processing is applied to the parse

of a sentence. In this case, syntactic parsing and semantic understanding are treated as

separate steps.

One approach to disambiguation is to use spreading activation methods in semantic networks.

In this case word senses that are related activate each other [3].

33

In addition to sentence level semantic processing, the understanding of larger linguistic units,

such as paragraphs and larger texts, requires discourse analysis. There can be many semantic

relationships between sentences. Pronoun resolution is a element of discourse analysis. For

example, "Joan saddled the horse. John rode it." The pronoun "it" in the second sentence refers to

"horse" in the first. Other types of semantic relationships between pairs of sentences include parts

of entities, in which the second sentence is understood to refer to a noun in the first sentence;

elements of sets, in which the second sentence is understood to refer to one or more items of a set

listed in the first sentence; causal chains, in which the first sentence is understood to be the reason

why the action in the second sentence took place; and several others. Similar semantic

relationships appear as well in sequences of sentences greater than a pair.

Rich and Knight [97] say that there are two important parts in the process of using knowledge

to provide natural language understanding (semantic analysis): first, focus on the relevant parts

of the knowledge base (this focusing is important if the knowledge-base is large) and second, use

that knowledge to resolve ambiguities and assist in discourse analysis.

2.4.3. Sublanguages

In Chapter IV, it is shown that comments in computer software can considered to be a

sublanguage of the larger natural language. This helps significantly in reducing the complexities

of the understanding process.

A sublanguage is a subset of a natural language. It is not known how many sublanguages

exist in a given language [55][65]. Sublanguages emerge gradually through the use of a language

in various fields by specialists in those fields. Some such sublanguages are the "language of

biophysics," the "language of car repair manuals," and the "language of naval telegraphic

transmissions." In many ways, the processing of sublanguages has been more successful than the

processing of natural language as a whole. For example, it is within the domain of sublanguages

that automatic translation has been made practical. Lehrberger states that the practicality of

34

automated translation of certain sublanguage texts depends on the simplified structure of the

sublanguage compared with the structure of the language as a whole [72].

Sublanguage analyses most often have dealt with texts limited to specific fields, such as

technical or scientific fields. However, the term sublanguage has also been used to refer to "the

sentences of a language closed under some or all of the operations in the language" [71]. This

definition restricts the format of the language but does not restrict the semantic domain of the

language. Lehrberger [71] refers to an information sublanguage as a sublanguage whose semantic

domain is no more restricted than that of natural language itself. He refers to a sublanguage with

a restricted semantic domain as a subject-matter sublanguage.

Lehrberger [71] says that "grammaticality in a subject-matter sublanguage is determined by

whatever officially prescribed or implicit norms of usage exist among the specialists in the

subject-matter field." Some grammatical restrictions in sublanguages may involve the use of the

imperative, the common sentence length, uniformity of tense, modality, the use of the

interrogative, the deletion of articles (telegraphic), the deletion of the object noun phrase, the use

of proper nouns, and many others [64][71].

In some cases the norms of usage may conflict with those of standard language. Sublanguage

structures that do not conform to standard language are referred to as "deviant." However,

normally deviant sublanguage structures can be paraphrased in the standard language, and could

often be replaced by standard language structures. One fairly common example of deviant

sublanguage structures is the telegraphic style that is used in weather bulletins, or Navy

telegraphic messages [71][52][65].

Sublanguage texts usually contain some material that does not belong to the sublanguage

proper. This may occur as whole sentences interspersed among those of the sublanguage proper,

or as matrix expressions. Lehrberger [71] gives the following example drawn from a geometry

text:

"Pythagoras proved the theorem that now bears his name in the sixth century B.C. He was
able to show that the area of the square on the hypotenuse of a right triangle equals the
sum of the areas of the squares on the other two sides."

35

The first sentence is a sentence that is not properly a sentence about geometry, but of history.

Also, the phrase "He was able to show that," which is called a matrix expression, is not part of the

sublanguage of geometry. Lehrberger concludes that this is a general phenomenon in real texts

from restricted sublanguages, and that a text typically consists of a mixture of discourse from

within a particular domain, and metadiscourse about it.

In summary, the factors which can help to categorize a sublanguage are [71]: 1) limited

subject matter, 2) lexical, syntactic, and semantic restrictions, 3) "deviant" rules of grammar, 4)

high frequency of certain constructions and low frequency of certain constructions, 5) text

structures, and 6) the use of special symbols. It will be shown that comments in computer

software meet all of these criteria.

The fact that a sublanguage consists of limited subject matter means that a semantic network

employed in the analysis of the sublanguage can be simpler than one employed to analyze general

natural language. It also means that a word-based natural language parser used in the

sublanguage analysis would have a smaller dictionary, and thus suffer much less from parse

ambiguity (multiple parses). The lexical and syntactic restrictions of a sublanguage means that a

parser used in the sublanguage analysis need not handle all the possible constructs of the natural

language as a whole, but can support a simpler subset of the natural language. Since

sublanguages sometimes employ deviant rules of grammar and certain special symbols, the

natural language parser must be modified to handle these additional rules and symbols.

2.4.4. Information Extraction Systems

The purpose of information extraction (IE) systems is to transform information into a form

that is more readily digested and analyzed. Cowie and Lehnert [33] say, "the goal of IE research

is to build systems that find and link relevant information while ignoring extraneous and irrelevant

information." Information extraction systems normally employ natural language processing

techniques on text data in electronic form. This has several similarities to the problem of program

understanding, particularly when the processing of comments and identifiers from computer

36

software is considered as the primary source of information. The measurement techniques used in

the area of information extraction can be adapted to measure comment and identifier

understanding, and provide a framework from which evaluation criteria can be derived.

 There are several important aspects of information extraction systems from the point of view

of natural language researchers [33]. First, the information extraction tasks are well-defined.

Second, information extraction tasks use real-world texts. Finally, information extraction

performance can be compared to human performance on the same task.

Early information extraction systems included those of DeJong [36][33] and Zarri [115][33].

DeJong's FRUMP system analyzed news stories using simple scripts. FRUMP attempted to

match each new story with a relevant script on the basis of keywords and conceptual sentence

analysis. Zarri's system used texts that described the activities of various French historical

figures. The system sought to extract information about the relationships and meetings between

these people.

Some commercial systems included ATRANS [79][33], which was designed to handle money

transfer telexes in international banking. It used sentence analysis techniques similar to those in

FRUMP. ATRANS demonstrated that relatively simple language processing techniques are

adequate for IE applications which are narrow in scope and utility. Another commercial system

was JASPER [4][33]. JASPER was designed to extract information from reports on corporate

earnings. It achieved its natural language parsing capabilities through template-driven techniques

for language analysis operating on small sentence fragments.

 Several Information Extraction systems were evaluated in the Message Understanding

(MUC) conferences [34][5]. The outputs of the Information Extraction systems which were

evaluated were a set of filled-in templates. The evaluation employed four primary measures of

performance [34]: recall, precision, overgeneration, and fallout. Recall is a measure of the

completeness of the template fill. Precision is a measure of the accuracy of the template fill.

Overgeneration is a measure of spurious generation. Fallout is a measure of the false alarm rate

for slots that could be filled only from a finite set of slot fillers. In MUC3 these were defined as

follows [34]:

37

The number of possible slot fills was the number of slot fills in the key plus the number

of optional slot fills in the key that were matched by the response.

The number of actual slot fills was the number of slot fillers in the response.

recall = (Correct + Partial * 0.5) / possible

 precision = (Correct + Partial * 0.5) / actual

overgeneration = Spurious / actual

fallout = (Incorrect + Partial) / possible incorrect

where possible incorrect is the number of possible incorrect numbers that could

be given in the response. Fallout is a measure of the false alarm rate, and the

number of false alarms could only be measured for slots where there were a finite

number of possible responses (the number of possible incorrect responses was

known).

The measures for recall, precision, and overgeneration can be applied to the approach

described in Chapter III. However, the measures must be modified to operate on a non-template

based system. The fallout measure is applicable only to a template-based system, where the

maximum number of responses is known, so it is not employed in the approach described in this

dissertation.

2.5. Semantic Networks

A semantic network is a structure for representing knowledge as a pattern of interconnected

nodes and arcs [103][104]. Semantic networks are commonly used for the knowledge-base in

natural language understanding systems, and are used in the approach discussed in Chapter III.

 Semantic networks were originally developed for representing semantic information, either

static information about concepts, or information about the meaning of natural language sentences

[10]. Dozens of different versions of semantic networks have been designed and implemented.

Semantic networks share two general features [10]: 1) The nodes represent physical or

non-physical entities in the world, classes or kinds of entities, relationships, or concepts. 2) The

38

links, usually directed links, represent explicit relationships between nodes, where the type of

relationship is specified by the type of link.

Conceptual graphs form a knowledge representation language based on linguistics,

psychology, and philosophy [104]. Within a conceptual graph, the roles that a concept plays with

respect to other concepts are specified. A conceptual graph only has meaning within the context

of a semantic network.

Barnden [10] characterizes semantic networks into two rough categories: restricted or

general. In the restricted type network, action relationships between nodes such as love or eat are

represented by links. However, the most commonly used types of links in a restricted type

network are IS-A links and INST links. The IS-A type link says that one node is a sub-kind of the

other node, whereas INST says that one node is an example of a kind that is represented by the

other node. The purpose of a restricted semantic network is to organize concepts, kinds, or

classes into a hierarchical taxonomy. In a hierarchical taxonomy, information represented at a

node (by links to other nodes) can be inherited by that node's subnodes. Also, information

represented at a node (by links to other nodes) can contradict information inherited from that

node's ancestors.

In a general semantic network, links have a close relationship to deep-case relationships in

natural language semantic theories. Examples of such link labels are AGENT link and OBJECT

link labels. The AGENT link connects the agent of an action to the action performed. The

OBJECT link connects the action to the entity which is acted upon. Action relationships between

nodes such as love or eat are represented by nodes rather than by links. This makes the semantic

network structure more general, since defining a new relationship does not require defining a new

type of link. The more elaborate general semantic networks provide inferencing schemes that are

equivalent to first order logic.

Spreading activation is one common method of inferencing within a semantic net. With

spreading activation, when a node becomes active, the nodes adjacent to that node, and directly

connected to that node, can also become active. Activation is usually a yes-no matter as opposed

39

to the graded activation that is typically used in neural networks. However, graded activation is

also used in semantic networks [10].

The main motivation for spreading activation is intersection search. In a semantic network

intended for natural language processing, an intersection, or path between word senses aids in the

disambiguation of words.

A semantic network differs from a neural network in several ways [10]. In neural networks,

spreading activation is the only mechanism for short term computation. This is not normally the

case in general semantic networks. The type of activation spread is normally more complex in a

general semantic network than in a neural network. The topology of a semantic network can be

changed by processing mechanisms in arbitrarily extensive and complex ways in the short term.

This is not true of a neural network [10]. Neural networks do not have type labels on links, so

that neural networks normally do not treat different input links differently. Neural networks do

not directly support conceptually asymmetric relationships. For these reasons, semantic networks

are normally more appropriate for natural language understanding than are neural networks.

2.5.1. Conceptual Graphs

Conceptual graphs are often used to form semantic networks, and are also employed in

semantic networks that provide natural language generation capability. Thus, the use of

conceptual graphs provides a somewhat standardized form for a semantic network, which is

easily employed in natural language generation. The approach described in Chapter III employs

conceptual graphs in a semantic network which is also used in natural language generation.

Conceptual graphs form a knowledge representation language based on linguistics,

psychology, and philosophy [104]. A conceptual graph only has meaning within the context of a

semantic network. A conceptual graph is a finite, connected, bipartite graph [104]. They are

connected since two unconnected parts would simply be two conceptual graphs. They are

bipartite because they consist of two different kinds of nodes, concepts and conceptual relations,

and every arc links a node of one kind to a node of another kind.

40

A definition of concept [109] from the research area of Formal Concept Analysis defines a

concept as a "unit of thought" consisting of two parts: 1) its extension, which consists of all

objects belonging to the concept, and 2) its intension, which consists of all attributes belonging to

the concept. Within the area of conceptual structures, a concept is an internal interpretation of a

perception of an entity. For example, a cat is a concrete entity. The cat could be perceived

through some form of sensory perception (such as eyesight). The perception of the cat is

translated into an internal concept (in the case of a person seeing the cat, the concept would be a

mental concept).

A conceptual relation specifies the role that a concept plays with respect to another concept.

An example of a concept might be [104]:

[CAT]-->(STAT)-->[SIT]-->(LOC)-->[MAT]

In this example, the words in square brackets represent concepts, whereas the arrows together

with the words in parentheses represent conceptual relations (they might also be represented with

boxes and circles, respectively). This conceptual graph states literally that a cat is in the state of

sitting, and the sitting takes place at a location mat. In other words, a cat is sitting on a mat. A

specific cat or mat is not specified in this particular conceptual graph.

Conceptual graphs as defined by Sowa [104] obeyed four canonical formation rules for

deriving a conceptual graph w from conceptual graphs u and v: 1) copy--w is an exact copy of u,

2) restrict--for any concept c in u, type(c) may be replaced by a subtype, 3) join--if a concept c in

u is identical to a concept d in v, then w is the graph obtained by deleting d and linking to c all

arcs of conceptual relations that had been linked to d, and 4) simplify--if conceptual relations r

and s in the graph u are duplicates, then one of them may be deleted from u along with all of its

arcs.

41

2.5.1.1. Natural Language Generation using Conceptual Graphs

The approach described in Chapter III employs natural language generation using conceptual

graphs to provide a reusability report for code components. The current state of research in this

area can be gleaned from looking at the following system.

Velardi, Pazienza, and De' Giovanetti developed a system at IBM for analyzing and

generating Italian text [108]. In their system, they used detailed semantic knowledge on

word-sense patterns to relate the linguistic structure of a sentence to a conceptual graph

representation. They used a conceptual lexicon of word-sense descriptions, where a description

included the surface semantic pattern of the word-sense. Surface semantic patterns expressed

both semantic constraints and word-usage information.

To generate a sentence out of a purely semantic conceptual graph representation, their system

made several decisions: 1) It chose active or passive form, 2) It chose synthetic or direct

replacement ("A meeting between the delegates" versus "The delegates participate in a meeting"),

3) It chose an emphasis ("the items of a statute" versus "a statute with items"), 4) It selected an

ordering (choice of whether an adjective comes before or after a noun, which is appropriate for

Italian, but not for English), and 5) It made a choice of synonyms. Their system generated a

coordinate sentence construction ("John and Joe") whenever a concept was related by the same

conceptual relation to different concepts.

In order to restore morphological information and attach determiners to nouns, they applied

the following rules: 1) The number of a noun was determined from that noun's concept referent,

2) The number of a verb was determined from that verb's subject concept and the tense from the

time/mode conceptual relations, 3) The gender (appropriate for Italian) and number of the

adjective was determined from the noun modified by the adjective, and 4) A definite article was

used if the referent of the concept associated with the noun being modified referred to a specific

item, an indefinite article was used if the referent of the concept associated with the noun being

modified was unspecific. The stem and the morphological data derived by these rules were the

 .

42

input condition for morphological synthesis. Words were decomposed into prefix, stem, and

suffix, and the appropriate word ending was derived from a table of word ending models.

The approach described in Chapter III uses some techniques similar to those described above,

such as article determination and choice of active or passive form, in the natural language

generation of a particular report, although it provides a simplified version of natural language

generation.

2.6. Reusability Metrics

One critical aspect of the software reuse process is that of determining the extent to which a

software component is reusable through the use of metrics which predict reusability. Reusability

is typically predicted by the use of a software quality metrics hierarchy [80][92][98]. The quality

factors in the software quality metrics hierarchy are normally predicted by lower level software

metrics.

As an example, the Boeing/RADC Software Interoperability and Reusability Guidebook for

Software Quality Measurement [92] lists reusability as a software quality factor, and application

independence, document accessibility, functional scope, generality, independence, modularity,

self-descriptiveness, simplicity, and system clarity as quality sub-factors. Several of the

sub-factors could be considered as contributing to the software component's understandability and

modifiability. However, the Boeing/RADC software quality hierarchy is typical of a general

software quality metrics hierarchy that was not primarily concerned with reusability. Reusability

was one quality factor among many. More recently, some software quality factors hierarchies

have been designed that are intended to measure reusability alone, and these will be described

below.

43

2.6.1. A Survey of Software Reusability Metrics Literature

The following software quality factors hierarchies describe design goals, factors, and

strategies that are concerned solely with the measurement of reusability. Traits that should be

present in reusable software and how they should be measured are discussed.

2.6.1.1. Global Protection Against Limited Strikes (GPALS) Software Reuse Strategy

The philosophy behind the GPALS software reuse strategy [54] is embodied in the following

quote:

"reusability metrics are the necessary properties of reusable software only, i. e. , general
quality and correctness are assumed as a minimum and as a given. Potential reusability of
the software may be considered as an aspect of quality, but quality is not a specific aspect
of reusability; it is necessary, but not sufficient."

The GPALS software reuse strategy [54] listed the following specific design goals that

constitute the overall goal of "reusability":

1) Abstraction--the paradigm of the component's function presented to the external

interface.

2) Adaptability/Flexibility--the ease with which software can be modified to meet new

requirements.

3) Cohesiveness--the degree to which a component's structure is unified in support of its

function.

4) Completeness--the degree to which the component implements all required capabilities.

5) Coupling/Interconnectivity--the degree of connectivity between different components

(should be minimized).

6) Expandability/Augmentability--the ability to support expansion of data and storage

requirements.

7) Generality--the breadth of applicability of the component.

44

8) Information Hiding--the extent to which internal data objects are concealed from the

external interface.

9) Modularity--the way the component is decomposed into sub-components.

10) Performance/Efficiency--empirical execution data, including history of performance.

11) Portability--operating environment independence.

12) Robustness/Fault Tolerance--ability to produce correct results despite input errors.

13) Size--as measured by source statements, lines of code, function points, or other

methods.

14) Understandability/Clarity/Self-Descriptiveness--ease of comprehending the meaning

of the software.

Expandability and Adaptability are related traits. Both are concerned with modifying

software for use in a new environment. Completeness is also related to Expandability and

Adaptability--it measures the mapping of software from an old environment to a new

environment--a software component that is fully complete would exactly match the requirements

of a new system. An incomplete software component would thus have to be Expandable and/or

Adaptable. Generality is related to completeness in that a generalized component would have a

high measure for completeness in many other systems. Understandability is related to Generality

and Completeness in that it is difficult to determine the breadth of application of a software

component if it cannot be understood. Information hiding, Coupling, Cohesiveness, Modularity,

and Portability are related to how hard the component is to extract from its original system.

Robustness and Size are related to the reliability of the component. Good reliability is always

desirable for reusable code.

The GPALS software reuse strategy did not specifically address how these quality factors

were to be measured, which was the focus of the next study.

45

2.6.1.2. Asdjodi-Mohadjer

Asdjodi-Mohadjer suggested a process and an approach for evaluating the reusability of

software components[7]. The reuse measurement process included the following steps: 1)

Establish reuse requirements/factors, 2) Define reuse metrics, 3) Implement the reuse quality

metrics, 4) Analyze the results, and 5) Validate the results.

Asdjodi-Mohadjer noted that the reusability of software can be measured from different points

of view. Most commonly, software reusability has been measured on the basis of good

programming practices, or from a history of error-occurrence. However, from a user's point of

view the quality is defined as customer satisfaction.

When considering the reusability of a particular software component, Asdjodi-Mohadjer says

that, in general, "the reusability of a software system or component depends on its modification

level when the original requirements change." The magnitude of a reusable component can range

from a simple function (reuse-in-the-small) to a large system (reuse-in-the-large).

Asdjodi-Mohadjer lists the following reuse factors for software components or systems:

1) Modularization/Layering/Modeling

2) Encapsulation (separation and completeness of related functionalities and entities)

3) Abstraction (representation of ideas against specific instances, implementation

independent features, flexibility toward change of requirements)

4) Parameterization (overlaying of names, inheritance of generic high level classes,

object-based interfaces)

5) Environment independence/installability (e. g. operating system, hardware)

6) Tool independence/clean interface

7) Use of reusable/generic tools and software

8) Clear module interface/standardization of interfaces

9) Reusable/generic functionalities

10) Independence of execution/parallel execution

11) Virtual Machine and Networking (loosely coupled)

46

12) Quality of the design and development (good programming practices)

13) Availability of the parts and documentation

14) Popularity/usage of the component

15) Reliability of the design, code, and data

16) Reliability/Maturity of the development process

17) Document generation approach

18) System composition approach

Asdjodi-Mohadjer looks at high level reusability criteria, and low level reusability criteria.

She provides several criteria for determining the reusability of domain engineering, and the

reusability of a system design in the Command and Control (C2) domain. She provides several

other criteria for evaluating the reusability of software. Her software reusability criteria include a

criterion that asks if the software is commented properly, and another criterion that asks if the

complexity of the software is acceptable. Yet other criteria ask if the encapsulation is appropriate

and if the programming style is acceptable.

The reuse quality factors defined by Asdjodi-Mohadjer are very similar to those employed in

the GPALS reuse strategy. Modularization maps to GPALS Modularity. Encapsulation is

similar to GPALS Cohesiveness, Completeness, and Information hiding. Reliability is similar to

GPALS Robustness. There are several other similarities, although Asdjodi-Mohadjer in her list of

reuse quality factors is taking a software system-wide view of reusability. Thus her list of reuse

quality factors also includes such items as Document generation approach and System

composition approach. However, she also provided an example of a reusability quality

determination in a particular domain (the C2 domain), where the criteria were targeted at the

software component level, and where the criteria were derived from the higher level reusability

quality factors. She suggests various low level metrics that can be used to measure these

reusability criteria.

47

2.7. Software Metrics for Object-Oriented Software

Since reusability assessment requires low level metrics to predict higher level software quality

factors, it is important to have not only the correct metrics but the proper relationships among

metrics. Earlier defined low level metrics have traditionally been metrics intended for use for

software developed in the functional decomposition paradigm, such as McCabe's cyclomatic

complexity metric [81]. However, software developed using the object-oriented paradigm deals

with significantly different concepts. Two approaches have been taken for measuring

object-oriented software. The first approach has concentrated on attempting to predict

maintainability and reliability by using traditional complexity metrics and showing how those

measures relate to object-oriented software. The second approach has been to develop new

object-oriented specific metrics. Both approaches will be discussed below.

2.7.1. Traditional Complexity Metrics Applied to Object-Oriented Code

Tegarden and Sheetz [107] have identified problems with the application of traditional

software metrics such as lines of code, McCabe's cyclomatic complexity, and Halstead's software

science to object-oriented programs.

For lines of code, the questions that must be resolved are: 1) Should the lines of code of an

inherited method be counted as part of every object in the hierarchy that inherits it, or just the

objects that use the method? Or should lines of code be counted only once at the level of

definition? 2) Should the lines of code of class and instance methods be counted differently? 3)

When polymorphism is used, should the lines of code be summed over all definitions of the

method, or should each method be viewed independently of the other methods? 4) How much of

the class libraries used should be counted?

When considering the use of Halstead's software science, Tegarden and Sheetz assume that

methods correspond to operators, and that variables correspond to operands. The problems that

arise are: 1) Should an inherited class/instance method or variable count in each object that

48

inherits it, the object that uses it, or only in the object that defines it? 2) Is each polymorphic

definition of a method a separate operator, or an increment to the count of that operator at the

highest level in the object hierarchy?

When considering the use of McCabe's cyclomatic complexity, they determined that a system

level cyclomatic complexity cannot be calculated by summing the cyclomatic complexity of all the

methods in subordinate objects, because not all contributions to the complexity of a method can be

derived from subordinates. Some methods are inherited from superclasses, some methods are

used from other parts of the object hierarchy, and some methods are used from the object. To

sum the constituent values into a system level metric, consistent with the calculation mechanism

employed in systems designed using the functional-decomposition paradigm, requires the

generation of the metric for all objects in the inheritance hierarchy. They mention that some

decisions normally made locally in a structured module would, in an object-oriented system, be

passed through a message to other objects. Thus, they expect that methods in object-oriented

systems would tend to have low values for cyclomatic complexity.

Tegarden and Sheetz also calculated the traditional metrics for four systems written in C++:

1) a system that included neither polymorphism or inheritance, 2) a system that included only

polymorphism, 3) a system that included only inheritance, and 4) a system that included both

polymorphism and inheritance. They determined that the use of inheritance or polymorphism

tends to decrease the complexity of an object-oriented system. They concluded that traditional

metrics can be used on object-oriented systems, although the magnitude of these metrics when

used for comparison to systems that were designed in the functional-decomposition paradigm is

suspect.

2.7.2. Object-Oriented Design Metrics

In several cases, object-oriented metrics are more appropriate when applied to the design of

object-oriented software than its implementation. For example, the height (or depth) of the

inheritance hierarchy can be used to determine the amount of coupling, and in determining

49

maintainability. This metric can be derived at design time, as can most of the object-oriented

metrics that have currently been defined.

The study of object-oriented metrics and object-oriented design techniques leads to the

conclusion that object-oriented software itself maps more closely to its design than software

developed using the functional-decomposition paradigm. This is advantageous since it makes an

evaluation of the current design practicable, allowing improvements before that design has been

converted into code. This also means that meaningful design metrics values can be calculated by

an examination of the source code, which supports an assessment of modifiability for reuse.

Good values for design metrics imply that the modification will be easier.

2.7.3. A Survey of Object-Oriented Design Metrics

Several different object-oriented design metrics suites have been proposed and are discussed

in this section. A complete, validated set of object-oriented design metrics does not exist.

2.7.3.1. Chidamber and Kemerer

Chidamber and Kemerer [26][27] proposed six object-oriented design metrics:

1) DIT--depth of inheritance tree. This metric measures the distance from the base class

to the bottommost children in an inheritance tree.

The lower a class is in the inheritance tree, the more superclass properties it may inherit,

and thus the complexity is larger. High values of DIT tend to result in high values of

complexity and low values of maintainability.

2) NOC--number of children. This metric measures the number of classes that inherit the

current class.

The more children a class has, the more classes it may affect if modified (because of

inheritance). This tends to result in lower maintainability.

50

3) RFC--response for a class. The response set for a class is a measure of all the local

methods, and all the methods called by local methods.

The larger the response set for a class, the more complex the class, and the lower the

maintainability.

4) LCOM--lack of cohesion of methods. The cohesion of a class is characterized by how

closely the local methods are related to the local instance variables.

Low cohesion increases complexity. Thus, the larger the lack of cohesion, the lower the

maintainability.

5) WMC--weighted methods per class. The WMC is the sum of the complexities of all

local methods. If all method complexities are considered to be unity, then WMC = the

number of methods inthe class.

The more methods, and the more complex the methods, the more complex the class. Thus

the larger the WMC, the lower the maintainability. Objects with large numbers of

methods are likely to be more application specific, which limits the possibility of reuse.

6) CBO--coupling between objects. The CBO for a class is a count of the non-inheritance

related couples with other classes. Two classes are coupled when the methods of one class

use methods or instance variables of another class.

The calculation of some of these metrics is straightforward--such as the calculation of the

DIT and NOC metrics. The calculation of other metrics is less straightforward. Indeed, some of

the metrics have more than one definition. For example, the lack of cohesion of methods metric

(LCOM) has been defined two different ways by Chidamber and Kemerer [27].

2.7.3.2. Li and Henry

 In their study of the use of object-oriented metrics to determine maintainability, Li and Henry

[74][75][76] used five of the six object-oriented metrics proposed by Chidamber and Kemerer:

51

depth of inheritance tree (DIT), number of children (NOC), response for a class (RFC), lack of

cohesion of methods (LCOM), and weighted methods per class (WMC). They did not use the

coupling between objects (CBO) metric because they considered Chidamber and Kemerer's

definition of CBO as the "count of non-inheritance-related couplings" to be vague, since they felt

that there is more than one form of non-inheritance-related coupling in various object-oriented

languages.

Li and Henry defined LCOM as: LCOM is equal to the number of disjoint sets of local

methods. No two disjoint sets intersect (by definition); any two methods in one disjoint set access

at least one common local instance variable; the number of local instance variables accessed

ranges from 0 to N, where N is a positive integer.

Li and Henry used the definition of the weighted method per class (WMC) metric as defined

by Chidamber and Kemerer. However, they chose the measure of complexity of a method to be

the McCabe's cyclomatic complexity metric. Thus WMC was calculated as the sum of the

McCabe's cyclomatic complexities of each local method.

They defined some additional coupling metrics: 1) coupling through inheritance, 2) coupling

through message passing, and 3) coupling through abstract data types. They used DIT and NOC

to measure coupling through inheritance (in addition to their use as a measure of complexity).

They defined a new metric called MPC (message passing coupling). MPC was defined as the

number of messages sent out from a class. The number of messages sent out from a class

indicates how dependent the implementation of the local methods is on the methods in other

classes. They defined a new measure called Data Abstraction Coupling (DAC) to measure

coupling through abstract data types. A variable within a particular class may have a type which

is an abstract data type; that is, a variable within a particular class may be an instance of another

class. DAC was defined as the number of abstract data types within a class.

Li and Henry [74][75][76] also defined a metric that was intended to measure the size of the

interface of a class. The interface of a class is the set of operations, or local methods, defined in

the class. The metric used to measure the incremental interface of a class is the number of

52

methods metric (NOM). They also defined two size metrics: SIZE1, the number of semicolons

in a class, and SIZE2, the number of attributes plus the number of local methods.

A validation study was performed on two commercial products implemented in Classic-Ada

[74][75] (Classic-Ada is an object-oriented version of Ada). The maintenance effort was

measured by the number of lines changed per class, and was collected over three years. The

results of the validation showed a strong correlation of the metrics values to the maintenance

effort. They concluded that software designs can be measured quantitatively using software

metrics in the object-oriented paradigm, and that software metrics collected from the design can

predict maintenance effort.

2.7.3.3. Rajaraman and Lyu

Rajaraman and Lyu [94] proposed four coupling metrics, intended primarily for C++

software, but that could be extended to other object-oriented languages. These metrics were to be

used in calculating reusability and maintainability. These four metrics were:

1) Class inheritance-related coupling (CIC)

This metric counts the number of times that a class accesses a variable or uses a member

function defined in a proper ancestor class.

2) Class Non-inheritance related coupling (CNIC)

This metric counts the accesses to variables and the uses of member functions that have

neither been defined in the class itself, nor in any of its proper ancestors. A way in C++

in which non-inheritance related coupling can occur is by the use of friend functions or

classes.

3) Class Coupling (CC)

Class Coupling (CC) is the sum of the method couplings (MC) of all methods in the class,

where method coupling is defined as:

Method coupling (MC) = number of non-local references

= gv + gf + om + iv

53

where: gv = number of global variable references

gf = number of global function uses

om = number of messages to other classes

iv = number of references to instance variables of other

 classes

4) Average Method Coupling (AMC)

AMC = CC/n,

where CC = class coupling, n = the number of member functions in the class

The above metrics were validated in four different C++ systems versus a ranking of the

classes by the developers in the order of perceived testing and maintenance. Their validation

experiment showed that CC and AMC correlated better with perceived testing and maintenance

difficulty than the traditional complexity metrics such as McCabe's cyclomatic complexity and

Halstead's Software Science.

2.7.3.4. Lorenz and Kidd

Lorenz and Kidd [78] collected object-oriented metrics for several years over a large number

of Smalltalk and C++ projects. They defined and collected metrics at the project level, and at the

design level. Examples of project level metrics they collected were number of key classes, number

of support classes, and average number of support classes per key class, where a key class is a

class that is central to the domain being developed.

For the design level metrics, Lorenz and Kidd collected metrics designed to measure the

following areas: method size, method internals, class size, class inheritance, method inheritance,

class internals, and class externals. For class size, they used metrics relating to the number of

instance variables and methods in a class. They used the number of public instance methods as an

indicator of the number of services being provided by the class to other classes. For method size,

they used the number of message sends, and the number of lines of code, among others. For

method internals they used strings of message sends, and method complexity, which they

54

calculated using a variety of measures. Among these measures were the number of parameters,

the number of nested expressions, the number of temporary variables, and etc. For class

inheritance, they used the depth of the inheritance tree, among others. For method inheritance,

they used the number of methods overridden by a subclass, the number of methods inherited by a

subclass, and the number of methods added by a subclass. For class internals they used the use of

friend functions, the average number of parameters per method, the average number of comment

lines per method, and the average number of commented methods, among others.

Lorenz and Kidd provided threshold numbers for many metrics discussed in their book.

Thesethreshold numbers reflected empirical data derived using these metrics over many Smalltalk

and C++ projects. They mention that these thresholds are heuristics, and not absolute numbers.

2.7.3.5. Bansiya and Davis

Bansiya and Davis [9] employed object-oriented metrics in an assessment of high level quality

metrics. They defined several "design properties," i.e., tangible concepts that can be directly

assessed by the examination of the internal and external structure, relationships, and functionality

of the design components. These design properties were: 1) abstraction--a measure of the

generalization-specialization aspect of the design, 2) encapsulation--the enclosing of data within a

single construct, 3) modularity--a property that relates to developing classes with a comparable

number of services, 4) coupling--the interdependency of an object with other objects in the design,

5) cohesion--assesses the relatedness of methods and attributes in a class, 6) composition--reflects

aggregation relationships (such as part-of, or consist-of) in an object-oriented design, 7)

inheritance--a measure of the is-a relationship between classes, 8) polymorphism--the measure of

services that are dynamically determined at run-time in an object, 9) messaging--a measure of

public methods that are available as services to other classes, and 10) complexity--the degree of

difficulty in understanding and comprehending the internal and external structure of classes and

their relationships.

55

Bansiya and Davis specify a comprehensive set of design metrics to cover all the above design

properties. These design metrics are derived metrics; that is, they combine results from simple

counting metrics (such as depth of inheritance tree) using standard statistical methods. To

measure abstraction, a design metric called Average Number of Ancestors (ANA) was used.

Encapsulation was measured by a metric called Data Access Metric (DAM). Modularity was

measured by a metric called Measure of Functional Modularity (MFM). Coupling was measured

by Average Direct Coupling (ADC), and cohesion by Average Class Cohesion (ACC).

Composition was measured by a metric called Measure of Aggregation (MOA). Inheritance was

measured by Average Depth of Inheritance (ADI). Polymorphism was measured by a Number of

Overridden Methods (ANM), and complexity by Mean Class Complexity (MCC). Most of these

metrics were not further defined in the Bansiya and Davis paper; however, it was mentioned that

the average depth of inheritance metric (ADI) is computed by dividing the summation of nesting

levels of all classes by the number of classes.

Finally, Bansiya and Davis employed the design properties in a software quality metrics

model, to calculate values for software quality factors such as Reusability and Maintainability.

They performed a validation test over 18 object-oriented project designs. Based on this study,

they concluded that quality assessment using an approach employing design metrics to calculate

high level quality attributes is a non-intrusive and easy to apply process.

56

Chapter III

APPROACH TO THE AUTOMATED IDENTIFICATION OF REUSABLE

COMPONENTS IN OBJECT-ORIENTED CODE

This research addresses the reuse of object-oriented legacy software by the development of an

automated approach to the identification and qualification of object-oriented software

components. This chapter will provide an overview of the research goals and choices that led to

the final research approach.

3.1 Reuse Concept and Research Goals

The process of identifying potentially reusable components in legacy code, and of determining

whether each component has sufficient quality to make reusing it worthwhile has traditionally

been performed in an ad-hoc manner by software developers. One primary goal of this research is

to develop and demonstrate an automated approach for the identification and qualification of

reusable components. These techniques will make the identification of potentially reusable code

faster, more accurate, more consistent, and more affordable. The software to be analyzed is

object-oriented legacy code that has not specifically been prepared for later reuse. A large body

of such code currently exists, and more is being created each day[83][84].

Figure 1 represents the processing stages that would be required in order to prepare classes

from object-oriented legacy code for insertion into a reusable component repository. This

includes 3 major phases: 1) an understanding, or identification, phase, which is required to

understand a class and thus identify whether or not that class is useful in the domain of interest,

57

Figure 1. The Process of Identifying, Qualifying, and Classifying Reusable
Components in Object-Oriented Legacy Code

58

2) a qualification phase, which is required to determine whether or not a class is of sufficient

quality to be reused, and 3) a classification phase, which classifies the class so that it can be

inserted into a code component repository and retrieved later for reuse. The understanding phases

and qualification phases are shown occurring in parallel in Figure 1, since they can be

implemented as independent operations.

The approach described in this dissertation automates as many of these tasks as was practical.

The shaded boxes in Figure 1 are the only tasks that have not been automated. Manual tasks

include updating the domain knowledge by learning (automating this process is a possible future

research topic). Also, the rejection or acceptance of components based on the values of

reusability quality metrics still requires a knowledgeable person. A knowledge-based assistant for

this task could also be a fruitful area of further research. The automated classification of reusable

components, based upon information provided by the system is also a future research topic.

To achieve the goals of this approach, four main sub-problems had to be solved: 1)

automating the understanding of the functionality of a particular software component, 2)

determining an appropriate set of metrics to estimate how reusable the software is, 3) automating

the understanding and metrics assessment process, and 4) validating that reasonable and

predictable results can be obtained using this approach. Each of these areas will be described in

the following sections.

3.2. Choices Made for the Program Understanding Approach

One major goal for this research was to automate the identification and qualification process

as much as possible. Thus the previously described algorithmic approach [24], which normally

requires the intervention of a software engineer, was not appealing. The transformational

approach suffered from the previously mentioned problems [73]: rules must be matched only to

strict syntactic form, which makes the knowledge-base very large; also, it is possible to have a

"transformation cycle," where part of a program is transformed back into its original form; and

59

finally, a transformation rule can not match to non-adjacent program components. Therefore,

techniques from the knowledge-based approaches appreared to have the greatest potential for

success.

Two of the three primary knowlege-based approaches, the graph-parsing and heuristic

concept recognition approaches, possess several difficulties: first, these approaches require a

fairly large knowledge base for the understanding of even small programs, and thus can be

difficult to apply to large systems, and second, domain level knowledge is not addressed by either

of these approaches.

Therefore, since the approach needed to work on large software systems, a knowledge-based,

heuristic, approach to program understanding was selected, specifically, the informal tokens

approach. An approach based on informal tokens taken from comments and identifiers is

particularly appropriate for object-oriented software. For object-oriented software, more so than

for functionally-oriented software, much understanding can be performed by simply looking at

comments and identifier names [41][42][48][50]. This is true since object-oriented software is

organized in classes, with everything required to implement a class at least mentioned (if not

defined) in the class definition. Figure 2 represents a C++ class whose purpose is serial

communications. The member functions associated with this class would largely consist of

writes-to and reads-from various hardware locations. The hardware writes and reads would be

extremely difficult to understand without a schematic of the underlying hardware. Obviously in

this case a maintenance person, or a software engineer considering inclusion of the class and its

member functions in a software reuse library, would be heavily dependent on the information

received from comments and identifiers.

Informal tokens by their nature are related to the natural language of the software developer.

Previous approaches using informal tokens failed to address issues important to natural language

processing. They did not formalize an approach to comment analysis as part of natural language

understanding. They provided no syntactical analysis; rather, they consisted of a keyword

semantic analysis of comments and identifiers. The understanding approach in this research

differs from earlier informal tokens approaches [16][17][18][19][20][21] in many ways, which

60

Figure 2. The Necessity for Informal Tokens in Program
Understanding

eliminate these shortcomings. This is done by treating comments in computer programs as a

grammatical and subject-matter sublanguage [41] and using natural language processing

techniques. This approach uses as a basis a study of identifiers in C++ programs that identifies

certain common formats which allow the syntactic tagging of identifiers and the use of natural

61

language processing techniques. Metrics adapted from the area of information extraction are also

used to measure the effectiveness of the understanding techniques employed in this research.

The choice of a knowledge-base for program understanding is directly related to the program

understanding approach followed. Since an approach using informal tokens was chosen, the most

appropriate knowledge-base is a semantic network. This type of knowledge-base is appropriate

since informal tokens are a form of natural language, and semantic networks are commonly

employed for natural language processing. As this research demonstrates, the program

understanding task at a certain level can be treated as a natural language understanding task. The

semantic network employed by this approach differs from the semantic networks employed by

earlier informal tokens approaches in that syntactical information is employed in the interface

layer, and conceptual graphs are employed in the interior. The inferencing mechanism is similar

to the inferencing mechanism of the semantic nets employed in earlier informal tokens approaches,

but differs in that conceptual graphs as well as concepts can be used in the inferencing process.

The use of conceptual graphs permits a deep, language-independent level of program

understanding. Also, the employment of conceptual graphs in the semantic net allows the use of

standard natural language generation techniques to produce a natural language description of the

capabilities of a class.

3.3. Choices Made for the Reusability Analysis Approach

In deciding how to predict reuse, it became apparent that reuse must be considered at several

levels. Four different views of reuse were devised: Reusability-in-the-Class, Reusability-in-

the-Hierarchy, Reusability-in-the-Subsystem, and Reusability-in-the-Original-System. The reuse

views Reusability-in -the-Class and Reusability-in-the-Original-System are used to determine

whether a particular class is reusable. Reusability-in-the-Class examines particular aspects of

reusability of a single class. Reusability-in-the-Original-System examines the usage of a class in

the original system, which is a predictor of the reusability of the class in a new system.

62

Reusability-in-the-Hierarchy is used to determine whether a particular class hierarchy is reusable,

and Reusability-in-the-Subsystem is used to determine whether a selected subsystem of classes is

reusable.

These different views of reuse were measured using the following reusability quality factors:

Modularity (which consists of cohesion and coupling), Interface, Documentation, and Simplicity

(which consists of size and complexity). This selection of reuse quality factors provides a

high-level, generic software quality metrics hierarchy, that will provide a good estimate of the

reusability of a software component. They were adapted and modified from existing metrics using

the rationale described below.

Two primary criteria required for a software component to be considered reusable are for the

component to be easily understood and easily modified [21][85][86][24]. If a software component

is not easily understood, it is unlikely to be chosen for reuse. A software engineer would likely

choose a more easily understood component, even if that component were not implemented as

well as another, simply because he would be more certain that the easily understood

component provided the necessary functionality. Most reuse of components requires at least some

modification of the components and thus the requirement for easy modifiability is important. The

Documentation quality factor was chosen since documentation is very important to both the

understandability and modifiability, and therefore the reusability, of software.

 Code complexity is important from a software component reusability standpoint because it

tends to predict understandability and modifiability. For example, a complex software component

is hard to understand, and thus hard to modify. The size of a component is important in a similar

way from a software reusability standpoint since larger components tend to be more complex and

thus harder to understand and modify. The Simplicity quality factor was chosen to reflect the

complexity and size of a software component as important factors in the understandability and

modifiability, and thus the reusability, of software.

The interface of a software component is important from a reusability standpoint since the

more understandable and clean the interface, the more easily the component can be integrated into

a new system. The Interface quality factor was chosen to reflect these considerations.

63

Figure 3. Reusability-in-the-Class

64

Figure 4. Reusability-in-the-Original-System

From the standpoint of a legacy software component, the modularity of the component is

important. If the component is self-contained, is cohesive, and not overly coupled with other

components, then it can easily be detached from its original system for reuse in another system.

This also has applicability to the size of the component when reused in another system, e.g., if the

component is uncohesive it can provide many functionalities, and only one might be needed in the

new system and therefore the component requires storage for functionalities that are not used. A

similar situation occurs if the component is heavily coupled with other components. The

component itself might provide the needed functionality, whereas the other components provide

additional, unused functionality, thus requiring storage for functionalities that are not used. The

Modularity quality factor was chosen for these reasons.

The Interface, Documentation, and Simplicity quality factors are considered to be various

aspects of understandability and modifiability. If the interface to a class is small and clean, then

65

the interface is both understandable and easily modifiable. If the documentation of a class, and a

class' methods is informative, then the class is easily understood, and thus more easily modified

than a poorly documented class. If the class and the class' methods are small and uncomplex, then

the class is both more easily understood and more easily modified than for a larger, complex class.

Modularity is considered to be a predictor of how easily the class can be detached from its

original system, and to a certain extent, of how closely the class will match the requirements

needed in a system in which it is to be reused (of how the class will not provide excessive,

unneeded functionality).

Certain quality factors that are important in general are less important from a reusability

standpoint. For example, whether or not a component is efficient is not particularly important in

determining if that component is easily reusable. In certain areas of reuse, the determination of a

component's efficiency might be of overwhelming importance; however, the efficiency of a

software component would have to be compared to the efficiency of other software components

within the context of the requirements of that particular system. The determination of whether a

component can be easily reused is separate from the determination of whether a particular

component is appropriate for a particular system.

The quality factor Modularity is similar to the Asdjodi-Mohadjer reuse quality factors (for

cohesion) modularization, encapsulation, and abstraction, and (for coupling) independence of

execution, and to the GPALS quality factors abstraction, cohesiveness, coupling, and modularity.

The quality factor Interface corresponds to the Asdjodi-Mohadjer reuse quality factor Clear

module interface/standardization of interfaces. The quality factor Documentation has some

similarity with the Asdjodi-Mohadjer reuse quality factor Availability of parts and documentation

and is similar to the GPALS quality factor Understandability. The quality factor Simplicity is

similar to a criterion that Asdjodi-Mohadjer defined for evaluating the reusability of software.

This Asdjodi-Mohadjer criterion asked if the complexity of the software is acceptable, and is

similar to the GPALS quality factor Size.

In order to measure the quality factors mentioned above, several standard, widely-used

object-oriented metrics have been used. The relationship between the metrics and the quality

66

Figure 6. CHRiS Structure Chart

Figure 5. PATRicia System Structure Chart

67

Figure 7. Metrics Analyzer Structure Chart

factors are shown in Figures 3 and 4. The quality factors and metrics used for

Reusability-in-the-Hierarchy and Reusability-in-the-Subsystem are the same as those shown in

Figure 3, but the metrics are collected over several classes instead of a single class. The detailed

description of these metrics and their use in measuring quality factors is contained in Chapter V.

3.4. Choices Made for Automation

Automation of the understanding/identification and qualification approaches required the

development of a tool (the Program Analysis Tool for Reuse, also known as the PATRicia

system). The tool carries out the following functions: 1) syntactical analysis of natural language,

2) C++ parsing, 3) semantic analysis of natural language, 4) reusability quality metrics analysis,

68

and 5) object-oriented metrics collection. Since some of these functions are standard

functions, but also functions that can be difficult and time-consuming to develop, it was decided to

take advantage of existing software tools.

3.4.1 Tool Selection for the PATRicia System

The organization of the PATRicia system is shown in the structure charts in Figures 5, 6, and

7. The syntactical analysis of natural language is largely handled in the PATRicia system by the

Sleator and Temperley natural language parser. The Sleator and Temperley parser was selected

after an examination of several natural language parsers. The primary reasons for the selection of

the Sleator and Temperley parser were: 1) it is a fast parser, O(n3), 2) it is a word-based parser

that can easily be modified for sublanguage use (the use of sublanguages in the program

understanding approach is described in section 4.2 below), 3) it is a widely-used natural language

parser.

 C++ parsing is handled in the PATRicia system by the Brown University C++ parser. The

primary reasons for the choice of the Brown University C++ parser were: 1) it provides the

output of a C++ program in the form of an abstract syntax tree stored in a text file, which can be

easily processed, and 2) other similar projects in the computer science department had already

successfully used the Brown University C++ parser, which indicated that it could be easily

employed in another such project.

A tool used in the PATRicia system for the collection of object-oriented metrics is the

PCMETRICTM tool [89]. This inexpensive tool calculates some low-level object-oriented metrics.

It was felt to be robust enough to calculate metrics needed for the operation of the PATRicia

system.

The semantic analysis of natural language, the reusability quality metrics analysis, and some

object-oriented metrics collection in the PATRicia system required new code written for those

purposes, and will be described in Chapter VI.

69

3.5 Validating the Approaches

The validation of the research approach as implemented in the PATRicia system was done

through analyzing the reusability of software in the domain of graphical user interfaces. This

domain was chosen since it is large and complex enough to be a good test domain, and since there

were many graphical user interface packages available to examine. There were two phases to the

evaluation: 1) an evaluation of the program understanding phase of the PATRicia system, and 2)

an evaluation of the reusability analysis phase of the PATRicia system.

The evaluation of the program understanding phase of the PATRicia system compared the

understanding operation of the PATRicia system to that of human software developers. The

human software developers agreed on a list of concepts that are handled by a particular C++

class. The PATRicia system then evaluated the class, and the concepts associated with the class

by the PATRicia system were compared to the human software developers' list of concepts for the

class. The system was then evaluated based upon the ability of the PATRicia system to identify

those concepts that human software developers felt were contained in the class. The details of the

evaluation of the program understanding phase of the PATRicia system is described in section

7.2.

The evaluation of the reusability analysis phase of the PATRicia system compared reusability

decisions made by human evaluators to the reusability decisions made by the PATRicia system.

Human evaluators evaluated the various reusability aspects of a class (or class hierarchy). The

PATRicia system then evaluated the class (or class hierarchy), and the reusability values provided

by the PATRicia system were compared to the human evaluators' reusability values. The system

was evaluated upon its ability to predict reuse factors consistent with the evaluators' reusability

values. A description of the reusability analysis phase of the PATRicia system is described in

section 7.3.

70

Chapter IV

PROGRAM UNDERSTANDING APPROACH

4.1. Introduction

The program understanding approach employed in this research is a knowledge-based,

heuristic approach that focuses on informal tokens from comments and identifiers. The approach

employs natural language processing techniques for the analysis of comments and identifiers. A

semantic network that is appropriate for natural language processing is used.

4.2. Description of Comment/Identifier Approach

4.2.1. The Use of a Sublanguage

The ability to treat comments as a sublanguage of English has a strong impact on the

feasibility of the approach that was taken. It impacts the choice of the natural language parser,

the dictionary provided for the natural language parser, and the size and complexity of the

knowledge base.

A study of comments showed that comments can be considered to be a grammatical and

subject-matter sublanguage of the English language. While this research focuses on comments

written in the English language, the general approach is also appropriate for comments written in

other languages. An additional study of identifiers in C++ classes showed that identifers tend to

have certain common formats, and that by the use of heuristics involving these formats the

71

keywords extracted from the identifiers could be syntactically tagged. See Section 4.3 below for a

description of both of these studies.

Based on these studies, it was determined that a natural language approach to the

understanding of the comments and identifiers in a software component was appropriate to the

understanding of that component. The natural language approach chosen employs separate

syntactic and semantic phases. This is compositional semantic interpretation, in which semantic

processing is applied to the parse of a sentence. Figure 8 demonstrates the interrelation of the

various natural language processing phases.

4.2.2. The Syntactic Phase

In the syntactic phase, keywords from comments are syntactically tagged by the use of a

natural language parser. Keywords from identifiers are syntactically tagged by the use of various

heuristics based on common formats of identifiers. The operation of these heuristics also include

the use of a natural language parser.

Selectional restraints within the natural language parser result in some removal of ambiguity

during the syntactic phase. However, most ambiguity during this phase is removed by the use of a

grammatically restricted language that is also restricted in subject-matter. The reduced subject

matter of the sublanguage results in a restricted dictionary for the natural language parser, which

limits the number of possible parses. The restricted grammar of the sublanguage also results in a

restricted dictionary for the natural language parser since various word senses that are possible in

unrestricted English are not included in the dictionary. This also limits the number of possible

parses.

72

Figure 8. Natural Language Processing Phases in the
Program Understanding Approach

73

4.2.3. The Semantic Phase

After the syntactic phase, the various parses are analyzed during the semantic phase of the

program understanding approach. Additional ambiguity removal and final understanding of the

software components are performed by the use of a knowledge-base in the form of a semantic

network.

In the semantic phase, understanding follows the class hierarchy. The base classes are

understood first, followed by derived classes. This choice of the class hierarchy as the interest set

results in the class hierarchy performing the role of a "slice" in interactive program understanding

tools. A "slice" in an interactive tool is a user-selectable interest set of variables and statements.

Two different types of information are desired as output from this approach. First, a list of

standard concepts covered by a software component is required. This list of concepts can be used

as criteria for the insertion of the class into a class library. Second, a natural language description

of the operation of the class is required. This natural language description provides an indication

of the functionality of the class from the point of view of the functionalities that are useful in the

current domain. Both of these can be derived by use of the semantic net that is employed in

understanding the software component.

4.2.4. The Knowledge-Base

The knowledge-base employed in the semantic phase of the program understanding approach

is a weighted, hierarchical semantic network. The semantic net has an interface layer of

syntactically-tagged keywords. Note that a keyword in the interface layer that is listed as an

adjective is a separate keyword from a keyword of the same name in the interface layer that is

listed as a noun, for example. Syntactically-tagged keywords in the interface layer infer interior

concepts. The interior concepts are either conceptual graphs, or are a concept within a conceptual

graph. Figure 9 illustrates the semantic network employed in the program understanding

approach.

74

Figure 9. The Semantic Network Employed in The Program
Understanding Approach

Inferencing in the semantic network is by a form of spreading activation. Each

syntactically-tagged keyword in the interface layer has one or more links to concepts or

conceptual graphs in the interior. Each link has associated with it a weight. Each concept or

conceptual graph in the interior has associated with it a threshold level. A concept "fires" when

the weights of the links connecting to the concept achieve the weight of the threshold level.

The conceptual relations employed in the conceptual graphs within the semantic network

include AGNT (for agent), OBJ (for object), ATTR (for attribute), LOC (for location), IS-A (this

is a type relation), and IS_PART_OF (this is a whole-part relation).

IS-A relations and IS_PART_OF relations take part directly in inferencing. They have

qualities similar to an inferencing link, as well as to a concept. If a concept with an IS-A relation

75

to a different concept is fired, then the different concept is also fired. Often that concept will have

an IS-A link to yet another concept, and that concept is also fired. In other words, if a concept of

a particular type is fired, then the type is fired, and passed on.

A concept with an "upward" (part to whole) IS_PART_OF relation to another concept will

fire that concept only if several of the other parts of the concept are present (the weights on the

inferencing IS_PART_OF links achieve the threshold value). A concept with a "downward"

(whole to part) IS_PART_OF relation normally operates similarly to the IS-A relation in that the

concept related to the current concept by the IS_PART_OF relation is also fired. However, it is

also possible to have a threshold value attached to the whole to part relation. In some cases, when

a high level concept is identified, one can assume definitely that the sub-parts of the concept are

present, but in other cases the assumption is less strong. Consider a concept labeled "body of a

human." One can strongly assume that the human has a heart and a brain that are related to the

human being with a whole-part relationship. However, the assumption that a human possesses a

pair of legs, arms, or eyes is less strong, since some human beings have lost one or more legs,

arms, or eyes.

4.2.5. Natural Language Generation

Natural language generation is performed very simply in the program understanding

approach. It is based on the low-level conceptual graphs in the semantic net. If an OBJ

conceptual relation connects from concept A to concept B, then concept A is considered to be a

verb, and concept B a noun that is the object of the concept A verb. If an AGNT conceptual

relation connects from Concept A to Concept C, then Concept C is considered to be a noun, and

the subject of the Concept A verb. In the case of a single AGNT link, the verb is normally

considered to be singular (defaults to singular). If Concept A is connected to two or more

concepts with AGNT conceptual relations, then those concepts are considered to form a

compound subject, and the verb becomes plural. See Chapter VI for a discussion of how natural

language generation has been implemented in the Program Analysis Tool for Reuse.

76

4.3. Feasibility Studies

A study of comments was performed to determine whether comments can be considered to be

a grammatical and subject-matter sublanguage of the English language. An additional study of

the syntactic format of identifiers in C++ classes was also performed.

4.3.1. Comments as a Sublanguage

In order to show that a particular corpus contains a sublanguage of natural language it is

necessary to show that the language in the corpus is either grammatically restricted (a

grammatical sublanguage) or restricted in semantic domain (a subject-matter sublanguage), or

both. The grammatical restrictions in a sublanguage may involve commonality in the use of the

imperative or the indicative, uniformity of tense, restriction of modality, and the deletion of

articles (telegraphic). The restriction in semantic domain means that the language in the corpus

will contain some words and word senses based on the intended use of the corpus, whereas other

words and word senses will typically not be used.

An initial examination of typical comments led to the following observations:

1) Comments are usually written in the present tense, with either indicative mood or

imperative mood. For example, "This routine reads the data." is present tense, indicative mood.

"Read the data." is present tense, imperative mood.

2) The set of verbs typically used for comments is much restricted over the set of all English

verbs. Verbs often used in comments include: is, uses, provides, implements, accesses, prints,

inputs, outputs, reads, writes, supplies, defines, retrieves, gets, etc. Verbs seldom used in

comments include: smiles, frowns, laughs, rides, flies, jumps, sings, fights, electrocutes, falls,

punishes, hires, fires, pats, throws, pitches, calms, etc.

The set of comment verbs, while still very large, is still in general much smaller than the set of

natural language verbs. Also, since the domain for analysis will also be restricted, the selection of

verbs to support becomes much smaller.

77

3) Comments tend to be certain types. Two major types are header block comments and

inline comments. Header block comments usually come in two formats--the operational

description, and the definition. Examples of operational description header block comments are:

/* This routine reads the data */ and /* READ_DATA reads the data */

An example of a definition header block comment is:

/* GeneralMatrix--rectangular matrix class */

Header block comments, however, very often consist of several comment lines.

Inline comments also usually come in operational description and definition formats. An

example of an operational description inline comment is:

// Get matrix row.

Examples of definition format inline comments include:

// index variable

// counter of incoming characters

Note that comments often have a telegraphic quality--certain determiners are left out. For

example, a typical comment would be "Open file," rather than "Open the file." This telegraphic

quality can be considered a "deviant" rule of grammar, that is common to a sublanguage.

The typical restriction of comments to present tense tended to indicate that comments could be

considered as a grammatical sublanguage of English. The restriction on verbs tended to indicate

that comments could be considered as a subject-matter sublanguage of English--particularly when

considered as comments within computer code that is itself restricted to a limited domain.

Comments are either in sentence form, or not in sentence form. When in sentence form, it was

found that comments are usually in either present tense, simple past tense, or simple future tense,

but most often present tense. Other tenses were quite rare. A description of the common formats

for sentence form comments is shown in Figure 10. When not in sentence form, it was found that

comments still tended to have common formats. A description of the common formats for

non-sentence form comments is shown in Figure 11. Comments were also examined as to content.

A description of the common content of comments is shown in Figure 12.

78

Figure 11. Common Formats of Non-sentence-Style Comments

Figure 10. Common Formats of Sentence-Style Comments

79

Figure 12. Common Content of Comments

The comment study was performed on three independent C++ graphical user interface

packages [8][102][111], and a C++ parallelization tool [88]. A degree of randomness was

achieved by examining comments from files selected by directory order. The first one hundred and

eight comments in each package were examined, excluding revision and copyright notices.

Typically this included comments from several different files. Comments that consisted of code

were ignored, since it was felt that in this case the comment characters were performing two

duties: one duty was to document the code, and the other duty was to remove code from the

compilation process. This study was restricted to comments in C++ software. Figure 13 shows

the results of an analysis of tense in sentence style comments. Note that 57% of all comments are

in sentence style. From Figure 14, it can be seen that 82% of all sentence style comments are in

present tense, and that 6% of sentence-style comments are not in present tense, simple future

tense, or simple past tense. From Figure 15, it can be seen that 58% of present tense, sentence

80

Figure 13. Sentence-style Comments versus
Non-Sentence-style Comments

48%

43%

4%

2%

3%

Present

non-sentence

simple future

simple past

other

style comments are in indicative mood, active voice, while another 31% are in imperative mood,

active voice. From Figure 16 it can be seen that definition format comments make up 90% of the

non-sentence-style comments. These particular packages examined in the study had no comments

of the Itemname--definition format, or of mathematical formulas. Figure 17 shows that 51% of

the comments provide an operational description. Note that only 3% of all comments were not

directly related to the immediate description of computer software. No instructions to the reader

occurred in this study, although other packages that were examined did have a very small number

of such comments.

From the above study, it can be seen that comments typically are grammatically restricated

when compared to natural language as a whole, in relation to the use of tenses, mood, and voice

employed. It can therefore be concluded that comments can be treated as a grammatical

sublanguage of English. Since comments are used to describe the operation of computer software,

and to define portions of computer software, comments can therefore also be treated as a

subject-matter sublanguage related to the operation of computer software.

81

Figure 14. Analysis of Tense in Sentence-style
Comments

82%

8%

4%

6%

present

simple future

simple past

other

58%

8%

31%

2%
0%

indicative, active

indic., active, missing subj

imperative, active

indicative, passive

indic., passive, missing subj

Figure 15. Mood and Voice of Present Tense
Sentence-style Comments

82

90%

4%

6%

Definition

unattached prep. phrase

Value definition

Figure 16. Non-sentence-style Comments

Figure 17. Content of Comments

51%

44%

2%

3%

Operational Description

Definition

Description of Definition

Other

83

4.3.2. Syntactic Tagging of Identifiers

The syntactic tagging of identifiers was approached by looking empirically at the syntactical

format of C++ identifiers over 17 classes from 5 independent sources. These sources included

three independent Graphical User Interface packages [8][102][111], a parallelization tool [88],

and classes taken from a C++ textbook [112]. The results of this study are shown in Figures 18

and 19. Attribute (variable) identifiers are overwhelmingly noun related ({adj}* noun), whereas

most member functions are verb related (either verb {adj}* noun [obj.] or {not+&}verb or verb

combination). This seems reasonable when considered in regard to, for example, a rule of thumb

for nomenclature in object-oriented systems given by Grady Booch [22]:

"Modifier operations should be named with active verb phrases such as draw or

MoveLeft. Selector operations should imply a query or be named with verbs of the form
'to be', such as extentOf or isOpen."

Consider also the following rules of thumb from Rumbaugh [99]:

"Associations often correspond to stative verbs or verb phrases."
"Attributes usually correspond to nouns followed by possessive phrases, such as 'the color
of the car' or 'the position of the cursor.'"

An algorithm which can be used for the syntactic tagging of keywords extracted from member

function identifiers is shown in Figure 20. This algorithm is based on the common formats of

identifiers that were discovered during the identifier study. This algorithm utilizes a natural

language parser in order to syntactically tag the keywords extracted from the identifiers. Some

aspects of the algorithm such as the insertion of "the" after the first keyword in a two keyword

identifier that is suspected of being an identifier with the format verb {adj}* noun[obj.] (two

keywords, of course, means that no adjectives are present--an example two keyword identifier

with this format would be "open_file"), or the insertion of "it" at the end of an identifier suspected

to be of format {not+&}verb or verb combination (an example identifier with this format might be

a single verb such as "open") are heuristics that attempt to make the sentence acceptable to the

84

Figure 19. Results of Identifier Study, Functions

Figure 18. Results of Identifier Study, Variables

85

parser. Using the member function identifier algorithm shown in Figure 20, it should be clear that

up to 82% of member function identifiers could be correctly syntactically tagged (those with

formats verb {adj}* noun[obj.], {adj}*noun[obj.]verb, {not+&}verb or verb combination, verb

{noun+&} preposition {adj}*noun{ {and {adj}*noun}+&}), depending upon the operation of the

chosen natural language parser, whereas 18% of member function identifiers will not be

syntactically tagged. However, the percentage of member function identifers that are not

syntactically tagged would normally be rejected by the natural language parser, and would

therefore not be tagged erroneously.

Attribute (variable) identifiers can be treated in a similar manner. However, the attribute

algorithm shown in Figure 21 results in the erroneous tagging of a small percentage of identifiers.

This algorithm correctly handles all {adj}* noun, { {adj}* noun}* preposition {adj}* noun

[obj.prep], and most verb {adj}* noun [obj.] and verb {noun + &} preposition {adj}* noun {

{and {adj}* noun} + &} identifiers. In the best case this would be 92% of identifiers. However,

all No Standard Format identifiers would be erroneously tagged as {adj}* noun. For that reason,

the attribute algorithm was not employed in this approach. Note that the attribute algorithm could

be improved by heuristics similar to those used for the function algorithm.

86

Figure 20. Algorithm for Syntactic Tagging of
Member Function Identifiers

87

Figure 21. Algorithm for Syntactic Tagging of
Attributes (Variables)

88

Chapter V

REUSABILITY ANALYSIS APPROACH

5.1. Introduction

Reusability of software components in object-oriented software can be examined at various

levels, depending on what set of software components might be chosen for reuse, and how

individual software components compare to all software components that must be reused along

with the individual software components. These reuse views can be considered as software

quality factor frameworks [80][92][98]. They differ from generalized software quality factor

frameworks in that they do not attempt to derive an overall look at quality, but are limited to

quality factors that affect reuse.

The following reuse views of an object-oriented system have been defined:

Reusability-in-the-class, Reusability-in-the-hierarchy, Reusability-in-the-original-system, and

Reusability-in-the-subsystem.

5.2. Reusability Software Quality Metrics Hierarchies

5.2.1. Reusability-in-the-Class

Reusability-in-the-Class consists of qualities of an individual class that tend to make a class

reusable. Figure 22 lists the various quality factors, subfactors, and metrics that together form

the Reusability-in-the-Class view. Modularity is a measure of the independence and

89

Figure 22. Reusability-in-the-Class

90

Figure 23. Reusability-in-the-Original-System

self-containment of the class. Interface complexity measures how hard the class is to integrate

into a new system. Interface Complexity, Documentation, and Simplicity together form an

indication from various viewpoints of the class' understandability and modifiability.

Reusability-in-the-class is calculated as a weighted sum of its quality factors. During validation

studies, all quality factors were weighted equally.

5.2.2. Reusability-in-the-Original-System

The number of uses of a class in the original system for which it was designed can be used as

a predictor of reuse in a new system. Figure 23 lists the quality factors and metrics that together

form the Reusability-in-the-Original-System view. The three different quality factors, Abstract

91

Figure 24. Reusability-in-the-Hierarchy and
Reusability-in-the-Subsystem Quality Factors
Hierarchy

Data Type Usage, Inheritance Usage, and Calls Usage correspond to three different ways that a

class can be used. A class can be used as a type definition for variables (Abstract Data Type

Usage); it can be inherited by a derived class that can reuse its functionality and add additional

functionality (Inheritance Usage); and various member functions within the class can be called

(Calls Usage). Reusability-in-the-Original-System is calculated as a weighted sum of its quality

factors. Currently, all quality factors were weighted equally.

5.2.3. Reusability-in-the-Hierarchy

Since a particular class cannot be reused without also reusing the classes that are its direct

ancestors, the qualities of its direct ancestors in regard to reuse must also be examined. However,

92

Reuse-in-the-Hierarchy is not simply a sum of all the reusability quality factors of all the classes

in the inheritance hierarchy. Qualities of the inheritance hierarchy, primarily the depth of the

inheritance tree, tend to affect the reusability of classes in a particular class hierarchy. Figure 24

lists the various quality factors and subfactors that form the Reusability-in-the-Hierarchy view.

Reusability-in-the-Hierarchy is calculated as a weighted sum of the quality factors Average

Modularity, Average Interface Complexity, Average Documentation, Average Simplicity, and

Inheritance Complexity. During validation studies, quality factors were weighted equally.

Average Modularity is calculated as a weighted sum of Average Cohesion and Average Coupling.

Average Simplicity is calculated as a weighted sum of Average Size and Average Method

Complexity. During validation studies, quality subfactors were weighted equally.

5.2.4. Reusability-in-the-Subsystem

A selected subsystem of classes might provide a particular functionality that is useful in a new

system. The reusability of such a subsystem is a sum of the qualities related to reuse for all

individual classes in the subsystem. In addition, all inheritance hierarchies in the subsystem

would tend to influence reuse of the subsystem.

The quality factor hierarchy for Reusability-in-the-Subsystem would be the same as for

Reusability-in-the-Hierarchy. However, the set of classes for which Average Cohesion, Average

Coupling, Average Interface Complexity, Average Documentation, Average Size and Average

Complexity are calculated would be different. Also, Inheritance Complexity would require a

somewhat different calculation, which is described in Section 5.3 below.

93

5.3. Object-oriented Metrics to Predict the Reusability Quality Factors

In this section, the various object-oriented metrics that have been chosen to predict the various

reusability quality factors are described, and the rationale behind the choice of each metric is

discussed.

5.3.1. Reusability-in-the-Class

5.3.1.1. Modularity

Modularity, as specified in the Reusability-in-the-Class hierarchy, consists of Cohesion and

Coupling. As values for Coupling increase, Modularity tends to decrease. Various

object-oriented metrics are used to predict Cohesion and Coupling.

5.3.1.1.1. Coupling

The Coupling quality factor is measured by a weighted sum of the number of friend functions,

the number of external variable accesses, and the number of message sends (Message Passing

Coupling, or MPC). The number of friend functions, the number of external variable accesses,

and the number of message sends are used by Lorenz and Kidd [78]. The number of message

sends, otherwise known as Message Passing Coupling (MPC) was first defined by Li and Henry

[75].

The Coupling quality factor is non-inheritance-related Coupling. Non-inheritance-related

Coupling is undesirable coupling, and a high value for Coupling is undesirable.

Friend functions are a reference to an external function, and thus a form of coupling. They

also tend to break the encapsulation of objects [78], and thus are undesirable from a Cohesion

standpoint; however, if the metric had been used to measure Cohesion as well as Coupling, then it

94

would have applied twice to the Modularity calculation, which seemed inappropriate. Thus the

decision was made to have the number of friend functions apply only to the Coupling calculation.

The number of external variable accesses, and the number of message sends are both

references to entities that are defined outside the class hierarchy, and thus are a form of

non-inheritance related coupling. External variable accesses includes both global variables, and

public variables in another class. The number of message sends is calculated by Li and Henry

[75] as equivalent to the number of external function calls. Thus calls to global functions are

included in the number of message sends, as are calls to public member functions in other classes.

Other coupling metrics such as Chidamber and Kemerer's Coupling Between Objects (CBO)

and Rajaraman and Lyu's Class Non-inheritance-related-coupling (CNIC) were considered, but

were not chosen for several reasons.

The CBO metric was not chosen for use for the following reasons: 1) it combines two metrics

used elsewhere, the number of message sends and the number of external variable accesses, which

are themselves simpler metrics, and 2) it defines the message sends and instance variable accesses

as occurring only to another class. Within the context of C++, all message sends (all external

function accesses, including global functions as well as member functions in other classes), and all

external variable accesses (global variables plus variables in other functions) should be included

in a coupling calculation.

Rajaraman and Lyu defined two non-inheritance-related coupling metrics, Class

Non-inheritance-related coupling (CNIC) and Class Coupling (CC). Class

Non-inheritance-related coupling counted the accesses to variables and the uses of member

functions that have neither been defined in the class itself, or in any of its proper ancestors.

Similarly to the Chidamber and Kemerer CBO metric, this metric restricted the message passing

calculation to member functions of other classes, which is not appropriate for C++.

 Rajaraman and Lyu's Class Coupling metric is the sum of the number of global variable

references, global function calls, references to instance variables in other classes, and number of

messages to other classes. This metric is exactly equivalent to the Coupling quality factor--it was

95

felt that this combination of low level metrics is more appropriate considered as a quality factor

than simply as a higher level metric.

Lorenz and Kidd [78] provide empirical threshold values based on many C++ and Smalltalk

projects, and on their own observations of what is appropriate for object-oriented software, for the

number of message sends, and the number of friend functions.

5.3.1.1.2. Cohesion

The object-oriented metric that is normally considered when trying to measure cohesion is the

Lack of Cohesion of Methods (LCOM) metric. The multiple definitions of the LCOM metric

currently in use include: 1) the original definition of the LCOM metric by Chidamber and

Kemerer [27][48], 2) the definition of the LCOM metric provided by Li and Henry

[74][75][76][48], 3) the redefinition of the Li and Henry version of the LCOM metric by Hitz and

Montazeri [58][48], and 4) the redefinition of their original LCOM metric by Chidamber and

Kemerer [26][48][49].

Chidamber and Kemerer originally defined the Lack of Cohesion in Methods metric (LCOM)

as the number of disjoint sets of methods of a class formed by the intersection of the set of

instance variables accessed by each method [27]. This definition of disjointness of sets was

somewhat ambiguous, and was further defined by Li and Henry [74][75]:

"LCOM = number of disjoint sets of local methods; no two sets intersect; any two methods
in the same set share at least one local instance variable; ranging from 0 to N; where N is a
positive integer."

 Hitz and Montazeri proposed a different, graph-theoretic formulation of Li and Henry's

version of the LCOM metric, which they claim is equivalent to Li and Henry's definition of

LCOM.

96

Chidamber and Kemerer redefined the LCOM metric [26]:

"Consider a Class C1 with n methods M1, M2, ..., Mn. Let { I j } = set of instance variables
used by method Mi. There are n such sets { I 1 } ... { I n}. Let P = { (Ii, Ij) | Ii intersecting
Ij is equal to the null set } and Q = { (Ii, Ij) | Ii intersecting Ij is not equal the null set }. If
all n sets { I 1 }...{ In} are the null set then let P = the null set.
LCOM = |P| - |Q|, if |P| > |Q|

 = 0 otherwise"

In this definition, Q = the number of pairs of methods which both access the same instance

variables. P = the number of pairs of methods which do not have any instance variable accesses

in common.

This definition of LCOM has some drawbacks in that classes with widely different cohesions

will result in the same LCOM value [11][58]. Chidamber and Kemerer themselves note that "the

LCOM metric for a class where |P| = |Q| will be zero. This does not imply maximal cohesiveness,

since within the set of classes with LCOM = 0, some may be more cohesive than others" [26].

There are some variations on the LCOM metric that are independent of which definition is

used. Some of these variations include the determination of exactly which member variables and

member functions take part in the calculations. One question of LCOM implementation is

whether or not inherited member variables should be used as part of the cohesiveness

determination. Neither of the Chidamber and Kemerer definitions specifies whether or not

inherited variables should be used. The Li and Henry definition specifies local variables only.

Another possible problem with the implementation of the LCOM metric is the inclusion of the

constructor member function and/or the destructor member function in the LCOM metrics

calculation. Constructor member functions, for example, tend to include all or most of the

member variables. This is reasonable, since a primary purpose of a constructor function is to

initialize the member variables of a class. However, including the constructor in an LCOM

calculation can result in an LCOM value that erroneously measures a class with poor cohesion as

having good cohesion. See Figure 25 for an example of LCOM implementation with constructor

and without constructor.

97

Since the different definitions and implementations of the LCOM metric can result in different

values for LCOM, the question is which definition and which implementation of LCOM should be

chosen. An experiment to determine which LCOM definition and implementation best measures

cohesion was performed as part of this research. In this experiment, C++ classes and hierarchies

of classes were chosen from three independent C++ graphical user interface (GUI) packages.

Seven experienced domain experts rated each class for cohesiveness by categorizing it as

acceptably cohesive, or not cohesive. An acceptably cohesive class was classed as 100%, a

non-cohesive class as 0%.

LCOM was measured for these classes in 8 different ways: 1) revised Chidamber and

Kemerer definition, including inherited variables, including constructor function, 2) revised

Chidamber and Kemerer definition, including inherited variables, not including constructor

function, 3) revised Chidamber and Kemerer definition, not including inherited variables,

including constructor function, 4) revised Chidamber and Kemerer definition, not including

inherited variables, not including constructor function, 5) Li and Henry definition, including

inherited variables, including constructor function, 6) Li and Henry definition, including inherited

variables, not including constructor function, 7) Li and Henry definition, not including inherited

variables, including constructor function, and 8) Li and Henry definition, not including inherited

variables, not including constructor function.

The various LCOM values collected for each class are shown in Figure 26. There are certain

interesting aspects to these results. First, consider class number 7. This class results in large

values for both the Chidamber and Kemerer revised definition, and the Li and Henry definition, so

presumably the class possesses a large number of non-cohesive member functions. However,

consider the values for the Chidamber and Kemerer LCOM definition. The largest number occurs

in the implementation of LCOM that does not use inheritance, and that does include the

constructor function. In this case the value is 1142. This value is well over twice as large as the

next largest value for that implementation, which is 435. This occurs because the Chidamber and

Kemerer revised definition is bounded by the number of combinations of two functions possible in

the number of member functions (n choose 2), which is:

98

Figure 25. LCOM Implemented With and Without
Constructor

Class example {
 int Visible;
 int X,Y;
 float salary;
 int val_from_port;

 example(); // Constructor
 void Hide();
 void calculate_salary(int num_months,
 float amt_per_month);
 void read_val_from_input_port();
}

void example::example() {
 Visible = false;
 salary = 0.0;
 val_from_port = 0;

void example::Hide() {
 Visible = false;
 putpixel(X,Y, getbkcolor());
}

void calculate_salary(int num_months, float
 amt_per_month) {

 salary = num_months *
amt_per_month;
}

void read_val_from_input_port() {
 val_from_port = inportb(PORTA);
}

}

Using the revised Chidamber and Kemerer metric,
 P = 3, Q = 3, so LCOM = |P| - |Q| = 0, which supposedly means the class is completely
cohesive

Using the revised Chidamber and Kemerer metric, but leaving out the constructor,
P = 3, Q = 0, so LCOM = |P| - |Q| = 3, which is a more reasonable cohesiveness value, since the
class is actually not cohesive

Using the Li and Henry metric,
the LCOM sets are { example() (constructor), Hide(), calculate_salary(),
read_val_from_input_port() }
so LCOM = number of disjoint sets = 1, which supposedly means the class is completely
cohesive

Using the Li and Henry metric, but leaving out the constructor,
the LCOM sets are: {Hide() }
 {calculate_salary() }
 {read_val_from_input_port () }
so LCOM = number of disjoint sets = 3, which is a more reasonable cohesiveness value, since
the class is actually not cohesive

99

 n! / [(2!) * (n-2)!] = n(n-1)/2

This can result in large values of LCOM for very non-cohesive functions with large numbers of

member variables, whereas most other classes will have very much smaller values of LCOM.

Now consider classes 8 and 9. When inheritance is included in the calculation, class 8 is

considered to be more cohesive than class 9 by both the Chidamber and Kemerer revised

definition and the Li and Henry definition, irregardless of whether or not the constructor function

is included in the calculation. However, when inheritance is not considered in the calculation,

class 8 shows as less cohesive than class 9. Similarly for classes 13 and 14.

 Using the Li and Henry definition of LCOM, no changes in rank of cohesiveness of classes

were found when comparing implementations that did not consider the constructor function versus

those that did consider the constructor function, although in several cases the relative distance

between values in a comparison of one class versus another did vary.

When considering the Chidamber and Kemerer definition of LCOM, a change in rank of

cohesiveness was found when comparing implementations that did not consider the constructor

function versus those that did consider the constructor function. This change in rank is in classes

14 and 15. With the constructor function, class 14 shows as more cohesive than class 15.

Without the constructor function, class 14 shows as less cohesive than class 15.

A linear regression study was performed that compared the experts' ratings of cohesiveness to

the various implementations of the LCOM metric. This was a simple study with LCOM as the

independent variable, and cohesiveness (as measured by the experts) as the dependent variable.

For the Li and Henry definition of LCOM, the best results were obtained using the LCOM

implementation that did not include inheritance, and that did include the constructor function. In

this case the regression was highly significant (p < 0.0001), and the R2 value was 66%. R2 for the

Li and Henry definition, without inheritance and without the constructor was 62%. R2 for the Li

and Henry definition, with inheritance, was 49% with the constructor, and 46% without the

constructor. A scatter plot of the Li and Henry definition, without inheritance, and with

constructor, is shown in Figure 27.

100

 Chidamber and Kemerer Li and Henry
 revised definition definition
 with with without without with with without without
 Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance

 with without with without with without with without
 Class Const. Const. Const. Const. Const. Const. Const. Const.

 1 34 34 34 34 8 8 8 8

 2 24 16 24 16 6 5 6 5

 3 343 321 343 321 24 24 24 24

 4 287 276 287 276 18 18 18 18

 5 247 247 247 247 21 21 21 21

 6 1 0 1 0 2 1 2 1

 7 1142 1118 1142 1118 37 44 37 44

 8 195 166 435 406 15 14 30 29

 9 321 298 323 298 24 24 25 24

 10 64 48 136 120 9 8 17 16

 11 22 15 28 15 6 6 8 6

 12 48 31 66 49 7 6 10 9

 13 76 66 76 66 10 10 10 10

 14 25 32 91 78 4 5 14 13

 15 28 21 28 21 8 7 8 7

 16 378 351 378 351 27 26 27 26

 17 13 10 13 10 5 5 5 5

 18 2 1 4 3 2 2 3 3

Figure 26. Different Calculations of LCOM Over 18 Different Classes

101

Figure 27. Li and Henry LCOM, Without Inheritance,
With Constructor

 Considering only the Li and Henry definition, these results were somewhat surprising in view

of the anomalies discussed earlier relating changes in rank between classes measured with

inheritance considered, and without inheritance considered. A possible reason for this might be

that inherited variables are used as general purpose variables such as global display flags. The

use of such variables would not be considered by the experts as showing a relationship between

member functions. The difference between the Li and Henry implementations with the

constructor, and without the constructor was very small.

For the revised Chidamber and Kemerer definition, the best results were obtained using the

LCOM implementation that did not include inheritance, and that did include the constructor,

although the difference from the Chidamber and Kemerer measured without inheritance but also

without the constructor was minimal. However, the Chidamber and Kemerer metric had an R2

only of 41% in the best case (p <0.0043). R2 was 30% in the worst case (with inheritance,

without constructor). A scatter plot of the best case (without inheritance, with constructor) is

shown in Figure 28.

102

Figure 28. Chidamber and Kemerer LCOM, Without Inheritance, With
Constructor

The implementation of LCOM that seemed to best measure cohesiveness was the Li and Henry

definition of LCOM, which did not include inherited variables, and that did include the

constructor function in the calculations, although the difference between this implementation of

LCOM and the implementation of LCOM which did not include inherited variables and did not

include the constructor function was small. Thus the LCOM definition and implementation that

was chosen for use in the reusability hierarchy to measure the Cohesion quality factor was the Li

and Henry definition of LCOM, implemented without inheritance, and with the constructor

function.

5.3.1.2. Interface Complexity

Li and Henry [74][75] used the number of local methods to measure the size of the interface

of a class. Lorenz and Kidd used the number of public instance methods in a class as a measure

103

of the services that are available from that class to other classes [78]. Lorenz and Kidd provided

an empirical threshold value for this metric based on a large number of C++ and Smalltalk

projects.

Thus Interface Complexity is measured by the number of public methods metric based on the

Lorenz and Kidd metric. This was chosen since the rationale behind the Lorenz and Kidd metric

seemed appropriate--that the interface of a class with respect to other classes is best described by

the services provided by the class. The Li and Henry metric, the number of local methods,

includes private and protected methods as well as public methods. Private methods are not really

part of the interface of the class, since they are not accessible external to the class.

5.3.1.3. Documentation

Lorenz and Kidd used the Average Number of Comment Lines per Method metric and the

Average Number of Commented Methods metric as indicators of the good implementation of a

class [78]. They provided empirical threshold values for both these metrics based on a large

number of C++ and Smalltalk projects. Additionally, it was felt that comments were also

necessary in the class definition. Thus a count of comments compared to the number of attributes

and member functions is also used in the calculation of Documentation. Documentation is

calculated as a weighted sum of all three of these metrics. During validation studies, the weights

were equal.

5.3.1.4. Simplicity

Simplicity, as specified in the Reusability-in-the-Class hierarchy, consists of Size and

Complexity of Methods. As Size and Complexity of Methods increase, Simplicity tends to

decrease. Numerous object-oriented metrics are used to predict Size and Complexity.

104

5.3.1.4.1. Size

 Lorenz and Kidd [78] calculated size using the number of methods in a class, the number of

attributes in the class, and the average method size in Lines of Code. They also provided

empirical thresholds for the metrics based on a large number of C++ and Smalltalk projects. Li

and Henry [78] also used two similar metrics: SIZE1, the number of semicolons in a class, and

SIZE2, the number of attributes in a class plus the number of local methods. Size is calculated

here using the number of methods in a class, the number of attributes in the class, and the average

method size in Lines of Code. This is the same as those metrics used by Lorenz and Kidd, and

similar to those used by Li and Henry.

5.3.1.4.2. Complexity

The complexity of a class is measured using the Weighted Methods per Class (WMC) metric,

that was originally defined by Chidamber and Kemerer in their 1991 OOPSLA paper [27]. The

definition of the Weighted Methods per Class (WMC) metric remained basically the same in

Chidamber and Kemerer's 1994 IEEE Transactions on Software Engineering paper [26]. In both

papers, WMC is the sum of the complexities of all local methods in the class. In both cases, the

definition says "If all method complexities are considered to be unity, then WMC = n, the number

of methods."

Neither of the definitions specifies how the complexity of the methods is to be determined.

However, Li and Henry [75] specifies that the measure of the complexity of a single method is

McCabe's cyclomatic complexity metric. Thus Li and Henry calculated WMC as the sum of the

McCabe's cyclomatic complexities of each local method. Complexity here will be calculated

using Li and Henry's definition of WMC.

105

5.3.2. Reusability-in-the-Original-System

Reusability-in-the-Original-System is calculated as a weighted sum of three different quality

factors, Abstract Data Type Usage, Inheritance Usage, and Calls Usage. Abstract Data Type

usage is the number of times the class was used as a type definition for a variable. This has some

similarity to the Li and Henry metric Data Abstraction Coupling (DAC), except that the purpose

of the metric is different. Inheritance Usage is calculated as the Number of Children (NOC) of a

class. Calls Usage is the number of calls to member functions in the class.

5.3.3. Reusability-in-the-Hierarchy

Reusability-in-the-Hierarchy is calculated as a weighted sum of the quality factors Average

Modularity, Average Interface Complexity, Average Documentation, Average Simplicity, and

Inheritance Complexity (see Figure 24). During validation studies, each quality factor was

weighted equally. Average Modularity is calculated as a weighted sum of Average Cohesion and

Average Coupling. Average Simplicity is calculated as a weighted sum of Average Size and

Average Method Complexity. During validation studies, each subfactor was weighted equally.

Inheritance Complexity is the depth of the inheritance tree.

5.3.4. Reusability-in-the-Subsystem

Reusability-in-the-Subsystem is calculated the same as Reusability-in-the-Hierarchy, except

that the set of classes over which it is calculated is different, and Inheritance Complexity is the

maximum depth of any hierarchy tree in the subsystem.

106

107

Figure 29. PATRicia System Context Diagram

The knowledge-base or domain base of the PATRicia system is a semantic network which is

implemented in CLIPS version 6.0 objects and messages. The implementation of this

knowledge-base is further described in section 6.1.4. Prior to the analysis of candidate software

components, a domain base for the domain area of interest must be established. This is a

labor-intensive task, that requires the identification and definition of important concepts related to

the domain, the identification of links between concepts in order to form conceptual graphs that

represent the interrelationship of knowledge within the domain, and the definition and weighting of

inference links between concepts and conceptual graphs. An area of future research is the

development of tools that would aid in the establishment of a domain base.

The CHRiS tool determines what functions a component is capable of performing, and the

Metrics Analyzer tool provides metric data that will allow a knowledgeable software developer to

108

Figure 30. PATRicia System Level 1 Data Flow Diagram

determine if a software component is easily reusable. The operation of the CHRiS tool requires

the prior establishment of an appropriate domain base.

The CHRiS tool provides several different reports for each candidate software component.

One of the reports is a natural language description of the functions that a class can perform.

Another report is a list of concepts that is covered by a class. These concepts could be used to

help classify the component for insertion into a software reuse library. These reports are

described further in section 6.1.5. The Metrics Analyzer tool provides three different reusability

reports. One report is a list of the values of various object-oriented metrics for a particular class

or class hierarchy. A second report contains the values determined for the reusability quality

metrics for the current class, and a third report lists reusability quality metrics for the current

class hierarchy. These reports are described further in section 6.2.4.

109

Figure 31. PATRicia System Level 2 Data Flow
Diagram -- the CHRiS Tool

110

6.1. The Conceptual Hierarchy for Reuse including Semantics (CHRiS) Tool

6.1.1. Introduction

The operation of the CHRiS tool is shown in the level 2 data flow diagram in Figure 31.

The Parse C++ function shown in Figure 31 is implemented using the Brown University C++

parser, which produces output in the form of an abstract syntax tree, in a file in ASCII format.

The Parse natural language function is implemented using the Sleator and Temperley natural

language parser [101], which is a link grammar parser. A discussion of the selection and use of

the Sleator and Temperley parser is in section 6.1.2 below. The domain base and the Infer

concepts function are implemented in the CLIPS version 6.0 expert system shell.

The transforms on the data flow diagram in Figure 31 are described below.

6.1.1.1 Traverse Graph

Input to the Traverse graph transform is a class hierarchy chart in a file (provided by the

Metrics Analyzer) for the C++ package being analyzed. The Traverse graph transform traverses

the class hierarchy chart beginning at the base classes. All base classes are visited first, followed

by immediately derived classes, and so on, using a breadth-first search. As each class in the

hierarchy is visited, it is selected to be analyzed. The current class name is then output to the

Parse C++ transform, and to the Extract Comments transform.

6.1.1.2. Parse C++

Inputs to the Parse C++ transform are the current candidate component file (a file containing

C++ code), and the name of the current class to be analyzed. The Parse C++ transform extracts

the current class from the candidate component, and uses the Brown University C++ parser to

111

produce an abstract syntax tree, in an ascii file, for that class. This abstract syntax tree

file, or current parsed file, is then output to the Parse Current Parsed File transform.

6.1.1.3 Parse Current Parsed File

Input to the Parse Current Parsed File transform is the current parsed file, an ascii file that

contains the abstract syntax tree of the current class. The Parse abstract syntax tree transform

then extracts member function identifiers and attribute identifiers from the abstract syntax tree.

Syntactical tagging of the member function identifiers is then performed, where possible. Output

from the Parse abstract syntax tree transform is syntactically tagged (where possible) member

function identifiers and attribute identifiers.

6.1.1.4 Extract Comments

Inputs to the Extract comments transform are the current candidate component file, and the

name of the current class to be analyzed. Each sentence-form comment from the current class is

selected and placed in a separate file, the current class comment file, which is output to the Parse

natural language transform. Keywords from non-sentence-form comments are output directly to

the Build facts transform.

6.1.1.5 Parse natural language

The Parse natural language transform uses the Sleator and Temperley natural language parser

to parse comment sentences. Input to the Parse natural language transform are comments, in the

current class comment file. Output from the Parse natural language transform are the parses of

the comments, in the form of keywords from the comments, with each keyword tagged with

sentence usage and syntactical information.

112

6.1.1.6 Build facts

Inputs to the Build facts transform are program keywords in the form of syntactically-tagged

identifiers, keywords from sentence-form comments with usage and syntactical information, and

keywords from non-sentence-form comments, that have no syntactical information. Keywords are

asserted as facts in the CLIPS expert system shell. Examples of facts that contain syntactical

information are as follows:

(term_part_of_speech (id_name user) (type noun) (usage subject) (location Application))

(term_part_of_speech (id_name accepts) (type verb) (usage) (location Application))

Keywords for which no syntactical information is available are also asserted as facts in the

CLIPS expert system shell. An example of a fact that contains no syntactical information is as

follows:

(term_identify (id_name application) (location Application))

6.1.1.7 Infer Concepts

Input to the Infer concepts transform are CLIPS facts, coupling information from the Metrics

Analyzer (information as to the names of friend classes and functions), and programming concepts

and domain concepts from the PATRicia system knowledge-base, which is implemented in CLIPS

version 6.0 objects and messages. CLIPS rules present the facts in an efficient manner to the

interface layer of the knowledge-base. Inferencing then proceeds through the knowledge-base.

The inferencing scheme of the PATRicia system knowledge-base is described in section 6.1.4.

6.1.1.8 Produce Output Reports

Input to the Produce Output Reports transform are the current identified class concepts from

the knowledge-base. Output from this transform are the CHRiS candidate software component

capability reports.

113

6.1.2. Sleator and Temperley Natural Language Parser

6.1.2.1. Description of Operation

After an examination of natural language parsers, the Sleator and Temperley parser was

chosen for use in the CHRiS tool for several reasons. The primary reason is that its dictionary is

easily modified for sublanguage use. Second, it is a widely accepted and used parser, and third, it

is a fast parser, on the order of K*n 3, where n is the length of the sentence, and K is a constant

dependent on the algorithm.

The Sleator and Temperley parser is a word-based, link grammar parser [101]. A link

grammar has a power similar to that of a context-free grammar, and therefore the Sleator and

Temperley parser is as powerful as most modern natural language parsers. Most comment-style

sentences can be parsed with the Sleator and Temperley parser, as well as a large variety of more

complicated sentences. The Sleator and Temperley parser handles: noun-verb agreement,

questions, imperatives, complex and irregular verbs, many types of nouns, past-or-present

participles in noun phrases, commas, a variety of adjective types, prepositions, adverbs, relative

clauses, possessives, coordinating conjunctions, and more [101]. Figure 32 gives an example of

the output of the Sleator and Temperley parser for an example comment sentence. In the example

parse shown, "this" is a determiner that modifies "routine." The noun "routine" is the subject of

the verb "reads." The noun "data" is the object of the verb "reads" and the determiner "the"

modifies "data." The graphical output of the parser is also augmented by a non-graphical output

which is used by the CHRiS tool.

Similarly to other natural language parsers, the Sleator and Temperley parser has a few

limitations when parsing comments. For example, errors in punctuation can cause difficulties.

Consider the following sentence, which is handled by the Sleator and Temperley parser:

It opens the file; then it reads the data a character at a time.

114

Figure 32. Parse of an Example Comment Sentence using the Sleator and
Temperley Parser

> Accepted (2 linkages, 2 with no P.P. violations)
 Linkage 1, cost vector = (0, 0, 2)

 +-----O----+
 +---D--+---S---+ +--D--+
 | | | | |
this routine.n reads the data.n

 ///// CLg <---CLg---> CL routine.n
 (g) this D*u <---D*u---> D*u routine.n
 (g) routine.n Ss <---Ss----> Ss reads
 (g) reads O <---Os----> Os data.n
 (g) the D <---Dmu---> Dmu data.n

If the semicolon between "file" and "then" is omitted, or replaced by a comma, then the

Sleator and Temperley parser rejects the sentence.

 Yet another difficulty with the Sleator and Temperley parser is that it doesn't handle

parentheses. It treats the words within a pair of parentheses as a single word, and gives a "not in

the dictionary" error message.

One particular problem with the parsing of comment sentences is their telegraphic quality,

e.g., connector words such as "the" are often left out. This tends to confuse the Sleator and

Temperley parser. For example, the Sleator and Temperley parser does not accept the following

comments:

1) Scan argument declaration for template.

2) Scan the argument declaration for template.

3) Scan argument declaration for the template

However, the Sleator and Temperley parser does accept:

4) Scan the argument declaration for the template.

115

42%

36%

15%

5%

2%

Single parse only

1st parse correct

Very minor 1st parse prob

Somewhat minor 1st parse prob

1st parse incorrect

Figure 33. Results of the Sleator and Temperley Parser on
Parsable Comments

The CHRiS tool has been designed to anticipate some of these difficulties, and puts the

sentence in a structure more likely to be accepted by the parser.

6.1.2.2. Study of the Application of the Sleator and Temperley Parser to Comments

Prior to the selection of the Sleator and Temperley parser for use in the PATRicia system, a

study applying the parser to a set of typical comments was performed. The purpose of the study

was to determine how well the parser worked on parsable comments (as opposed to comments that

were rejected by the parser).

This study examined the first 20 parsable comments taken from each of five different sources:

three graphical user interface packages [8][102][110], a parallelization tool [88], and comments

from a C++ textbook [112]. In all, 83 parsable comments were examined. The overall results of

this study are shown in Figure 33.

For 78% of comments, the first parse was the correct parse. For 93% of comments, the first

parse provides useful information, with very minor errors from the standpoint of the CHRiS tool.

116

These errors include such errors as a prepositional phrase that is attached to the wrong word, an

adverb that modifies the wrong verb, or an adjective treated as part of a noun phrase (that is, as

part of the noun). This is not important since the CHRiS tool does not currently look at the

prepositional phrase attachment provided by the parser, but rather, prepositional phrase

attachment is handled semantically within the inferencing engine of the knowledge-base. There is

very little adverbial usage in the knowledge-base of CHRiS since adverbs qualify verbs, and this

is also generally not needed for a knowledge-base whose purpose is examining computer software.

The treatment of an adjective as part of a noun phrase labels the adjective as an adjectival, which

is a noun performing as an adjective. The CHRiS tool simply treats adjectivals the same as

adjectives.

For 5% of the parsable comments, some very minor erroneous information would be

presented to the CHRiS tool; however, most of the parsing information even in this 5% segment

would still be correct. Only for 2% of parsable comment sentences does the Sleator and

Temperley parser truly fail from the standpoint of the CHRiS tool.

The dictionary used with the Sleator and Temperley parser for this study was the dictionary

that was supplied with the parser, with the addition of a few words. In actual application, the

parses would be even more correct with a sublanguage restriction on the dictionary.

6.1.3. Syntactic Phase--Description of Operation

6.1.3.1. Order of Understanding

The CHRiS tool uses the class hierarchy as the focus for understanding, starting with base

classes first, then derived classes. This results in an almost top-down understanding process,

since high level concepts are understood first, followed by lower level concepts. This has two

advantages. In the first place, the set of concepts that makes up the class is limited. No concept

associated with another class that is not part of this class' hierarchy (unless a friend class, which

is also defined within the current class) could possibly be part of the makeup of the class. Also,

117

after the concepts related to a particular class have been identified, a shrinking of the domain can

occur when attempting to understand derived classes, which can lead to a quicker and more

accurate understanding of the derived classes. This domain shrinking has been investigated and is

described in the knowledge-base discussion in section 6.1.4 below.

6.1.3.2. Comment Heuristics

Comments are extracted from the current class definition and its member function definitions

by the Extract comments and keywords function. Various heuristics are applied to each comment

and the keywords within the comments in order to make them more acceptable to the Sleator and

Temperley parser. An example of a definition style of comment is shown below:

Read_Data: Reads the data.

or

Read_Data--Reads the data

Neither of these comments is acceptable as written to the natural language parser. Both of the

above are handled by having the sentence replaced by the following sentence:

Read_Data reads the data.

The software that implements this heuristic looks to see if a colon or dash is found after the

first word in a sentence, then removes the colon or dash, and converts the first character in the

following word to lower case. The Read_Data identifier itself will be understood separately, as

part of the identifier understanding process.

Another heuristic relates to sentences of two words. First the natural language parser is

applied to the sentence. If the sentence is rejected, then the determiner "the" is inserted between

the two words within the sentence, and the natural language parser is again applied. This is

identical to a heuristic that is used in the identifier understanding process. One other heuristic

employed is placing the word "This" in sentences that begin with a plural verb, and uncapitalizing

the verb ("Read the data." thus becomes "This reads the data.") This is determined in a very

simple manner, e.g., if the original sentence is rejected by the natural language parser, then the

118

software looks at the sentence to see if the first word ends with an 's'. If this is so, the word

"This" is added to the beginning of the sentence, and the natural language parser is again applied

to the sentence.

Other heuristics involve the removal of parenthetical information from a comment before the

application of the natural language parser, and the appending of each comment sentence with a

period character before the application of the natural language parser. Many comments in

computer software do not have a sentence terminated with a period. Also, many comment

sentences do not begin with a capital letter, and ensuring that they do is another heuristic.

This leads to another comment processing difficulty, which is the difference between

comments that occur on a single line and comments that continue between several lines. Consider

a C style comment of the following type:

/* The following routine extracts sentences from the header buffer

 and sends them to the natural language parser. If parsable,
 additional information about the usage of keywords is
 included in the facts sent to CLIPS.
 Certain types of sentence based heuristics are handled here. */

In this case, where a sentence is extended over multiple lines, each sentence must be extracted

separately (a sentence here is a sequence of characters terminated by a period), and sent separately

to the natural language parser.

A harder challenge comes from C++ style comments that extended across multiple lines. For

example,

// We begin the
// sentence on one line and
// complete it on another. Worse yet,
// we have two sentences in the
// same manner.

This type of sentence is handled by a preprocessor that is applied to the software prior to the

CHRiS tool being run on the software. C++ style comments that appear sequentially, on lines

119

that did not include actual code, have the C++ comment characters removed, and a C style

comment character added at the beginning and the end of the sequence of comments. They can

then be processed by CHRiS in the same manner as the C style comments discussed above.

6.1.3.3. Identifier Heuristics

Class identifiers are determined by use of the Brown University C++ parser. The C++ parser

is applied to the candidate component, and produces an abstract syntax tree in an ASCII file. The

abstract syntax tree file is then parsed to retrieve the identifiers of the current class, primarily the

member function and attribute identifiers.

There are many heuristics related to the processing of identifiers. First, the identifiers (as well

as keywords extracted from comments) are broken into separate keywords based on underscore

and capitalization information. For example, "read_data" would be broken into the two keywords

"read" and "data," with the break occurring at the underscore. ReadData would be broken into the

two keywords "read" and "data" based on capitalization information. At this point, for member

function identifiers, the algorithm described in Chapter IV, Figure 21, is applied.

6.1.3.4. CLIPS Facts

Parsing information which is derived from the natural language parser is then built into facts

which are presented to the CLIPS expert system shell. The facts include the parsing information

such as the part of speech (noun, adjective, verb, etc.) and sentence usage information (subject,

object, etc.), as well as location information (the location is normally the name of the class that is

presently being understood). Some example facts are:

120

(term_identify (id_name application) (location Application))

(term_part_of_speech (id_name user) (type noun) (usage subject) (location Application))
(term_part_of_speech (id_name accepts) (type verb) (usage) (location Application))

 CLIPS rules present the information in an efficient manner to the interface layer of the

knowledge-base. Inferencing then proceeds through the knowledge-base.

6.1.4. Semantic Processing--Knowledge-Base

The CHRiS knowledge-base is itself object-oriented, and is implemented in CLIPS version

6.0 objects. The inferencing that is required for semantic processing is implemented as spreading

activation within the knowledge-base. The spreading activation is implemented within the

knowledge-base as messages sent from one CLIPS object to another.

6.1.4.1. Interface Layer

The CHRiS knowledge-base is a weighted, hierarchical semantic network. The semantic

network has an interface layer of syntactically-tagged keywords. The CLIPS class definition for a

keyword node in the interface layer is shown in Figure 34.

A description of the various portions of a keyword interface node starts with the id_name,

type, and usage slots which together categorize a particular keyword interface node. For example,

the keyword node "window" can be a noun (type) and can be used as a subject, object, or object of

a preposition (usage). Usage is a multislot since the various usage possibilities often are not used

to break a particular keyword interface node into separate keyword interface nodes. In CLIPS, a

"multislot" can contain multiple values, whereas a "slot" can contain only one value. This is a

definition of a CLIPS version 6.0 object; however, the "slot" notation traces to Artificial

Intelligence frames, which are very similar to objects. "Type" is a multislot since in some cases it

is not necessary to differentiate between different parts of speech (such as noun versus adjective),

121

(defclass TERM_NODE (is-a USER)

(role concrete)
(pattern-match reactive)

(slot id-name (create-accessor read-write)) ; Keyword string

; The certainty of a concept being matched is increased if
; the keywords corresponding to that concept are found multiple
; times in the current area of interest in the code under examination
(slot number_times_found (type NUMBER)

 (create-accessor read-write)
 (default 0))

(slot overall_number_times_found (type NUMBER)
 (create-accessor read-write)
 (default 0))

(multislot type (create-accessor read-write))
(multislot usage (create-accessor read-write))
(slot match (create-accessor read-write) (default FALSE))
(multislot location (create-accessor read-write))
(multislot restriction (create-accessor read-write))
(slot binding (create-accessor read-write))
(slot level (type NUMBER) (create-accessor read-write) (default 0))
(slot printed (create-accessor read-write) (default "FALSE"))
(multislot up-links (create-accessor read-write))
(slot module_defined_in (create-accessor read-write) (default A))

) ; end class TERM_NODE

Figure 34. CLIPS Class Definition for a Keyword Interface Node in the
Interface Layer of the CHRiS Semantic Net

122

Figure 35. CLIPS Class Definition for an Interior Concept Node
in the CHRiS Semantic Net

(defclass NODE (is-a USER)
 (role concrete)
 (pattern-match reactive)
 (slot id_name (create-accessor read-write)
 (default NIL)) ; Concept's generic name
 (slot threshold (type NUMBER) (create-accessor read-write)

(default 1.0))
 (slot sum_of_input_weights (type NUMBER) (create-accessor read-write)

 (default 0.0))
 (slot sum_of_input_weights_due_to_NODE_inference

 (type NUMBER) (create-accessor read-write)
 (default 0.0))

 (slot match (create-accessor read-write)
 (default FALSE))
 (multislot location (create-accessor read-write))
 (multislot restriction (create-accessor read-write))
 (slot level (type NUMBER) (create-accessor read-write) (default 0))
 (slot major_or_minor (create-accessor read-write) (default minor))
 (slot module_defined_in (create-accessor read-write) (default A))
 (multislot facts (create-accessor read-write))
 (slot printed (create-accessor read-write) (default "FALSE"))
 (slot nl_generation (create-accessor read-write)
 (multislot up_links (create-accessor read-write))
 (multislot down_links (create-accessor read-write))

) ; end class NODE

although most commonly these parts of speech will differentiate similar id_names into two

different keyword interface nodes.

The number_times_found and overall_number_times_found slots are counts of the number of

times a particular keyword interface node is fired. The number_times_found is the number of

times a particular keyword, with associated usage and part of speech information, is found in the

fact base for the current CLIPS "run" or inference session. The overall_number_times_found is

123

the count of the number of times a particular keyword, with associated usage and part of speech

information, is found in the fact base after several CLIPS "runs." The number_times_found slot

is used to increment the overall_number_times_found slot. The number_times_found slot is

cleared after each CLIPS run. The certainty of a concept being matched is increased if the

keywords corresponding to that concept are found multiple times in the current area of interest

within the software being examined.

The match slot is set to TRUE when a fact in the current fact base contains a keyword that

matches the current id_name, type, and usage. The match slot is cleared after every matching set.

The printed slot is used during the generation of a CLIPS keyword report. It is possible for a

keyword interface node to be visited multiple times during the keyword report generation, and the

printed slot prevents multiple reports of the same node.

6.1.4.2. Domain Shrinking

The binding, restriction, and module_defined_in slots are used when the knowledge-base is

restricted, based on earlier concepts identified. Restriction based on previous concepts identified

is possible, but difficult in the current implementation of the knowledge-base.

The identification of certain concepts would tend to indicate that certain other concepts are

more likely to occur, and that certain other concepts are less likely to occur. What would be

desirable would be to effectively shrink the knowledge-base after certain concepts were identified

by heightening the sensitivity of certain other concepts, which is a schemata-like approach.

Heightening the sensitivity of certain concepts would speed the identification of the more likely

concepts, then the less likely concepts could be searched only if the more highly sensitive concepts

were not matched.

In CLIPS rules, the heightening or reducing of the sensitivity of a rule is called the "salience"

of the rule [28][29][30][31]. In CLIPS, the agenda is the list of all rules which have had their

conditions satisfied and have not yet been executed. The agenda acts similarly to a stack, i.e. the

top rule on the agenda is the first one to be executed. When a rule is newly activated, it is placed

124

on the agenda. Newly activated rules are placed above all rules of lower salience, and below all

rules of higher salience. By use of the SetSalienceEvaluation command (set to when-activated),

dynamic salience of rules can be achieved. This allows a re-evaluation of a rule's salience during

processing, and thus certain rules can acquire priority over other rules. Conditions could be set

during the firing of a higher priority rule that would then prevent rules with lower salience from

firing.

However, the CHRiS semantic net was implemented in CLIPS version 6.0 objects and

messages instead of CLIPS rules, for several reasons. First, it seemed intuitive to compare

object-oriented software versus an object-oriented knowledge-base. A concept in one environment

tends to map naturally to a concept in the other environment. Second, the use of objects allowed a

simple implementation of the inferencing required via messages between objects. Third, the slots

of the objects allowed for easy matching of concepts with several criteria. If the semantic net was

implemented in a rule-based manner, each of these objects would have required several separate

rules to implement. Unfortunately, an object in CLIPS version 6.0 can not receive higher or lower

salience. This precludes an implementation of the restriction of a knowledge-base similar to that

described above.

A more restrictive version of knowledge-base restriction is possible by the use of CLIPS

modules [30]. CLIPS modules allow a knowledge-base to be partitioned. They allow a set of

constructs to be grouped together such that explicit control can be maintained over restricting the

access of the constructs by other modules. The control provided by a CLIPS module is similar to

scoping in C or Pascal. However, with the CLIPS modules scoping is hierarchical, and operates

in one direction only, i.e., if module A can see module B's constructs, then module B cannot see

module A's constructs. Unless specifically exported and imported, the constructs of one module

may not be used by another module. Modules can be used to provide execution control.

However, since a module once defined cannot be deleted or redefined, all knowledge-base

shrinking must be planned for at the time of the knowledge-base design, and is very restrictive.

Constructs that are imported into one module must have been defined for export in the module

125

exporting them at the time that module is defined. Thus dynamic exportation from one

module to another is quite difficult.

As part of this research, a non-dynamic knowledge-base shrinking mechanism was

implemented and tested. This domain shrinking information is defined statically within the

knowledge-base. Interior concepts, those that are not part of the interface layer, are divided into

two categories, major and minor. Within the context of the CHRiS knowledge-base, a major

concept is a concept that can be used to shrink a domain. The domain shrinking is performed by

the use of CLIPS modules. CLIPS modules must be defined a priori, with all necessary

constructs that the module uses defined when the module is defined. Each major interior concept

corresponds to a CLIPS module. Only a few concepts within a particular knowledge-base should

be defined as major concepts, otherwise an exponential increase in the number of CLIPS modules

occurs.

However, this method is very restrictive, since it does not allow lower level concepts (those

within other modules) to fire if the higher level concepts are not found in the current module. This

means that there must be a strong certainty that the current knowledge-base restriction (module

selection) is appropriate.

Domain shrinking of another kind has been implemented by the use of downlinks. Each major

concept can have associated downlinks to all of its main sub-concepts (and those sub-concepts can

have downlinks to their sub-concepts). These downlinks are used to send restriction information

to sub-concepts. For example, if a particular major concept has been identified, the name of that

major concept can be sent to its subconcepts. Then only concepts containing the name of that

major concept in its restriction information will be tagged as identified during future inferencing.

This is not as effective as the use of CLIPS modules. The use of restriction information can

reduce false identification of concepts not belonging to the new sub-domain; however, the

concepts that do not belong to the new sub-domain are actually examined by the CLIPS

inferencing engine, as well as the concepts that do belong to the new sub-domain. Thus no actual

comparison time is saved. The only way to prevent the CLIPS inferencing engine from examining

concepts (defined as an instance of a CLIPS class) not in the sub-domain is by the use of a CLIPS

126

Figure 36. CLIPS Class Definition for a Conceptual
Relation in the CHRiS Semantic Net

(defclass CONCEPTUAL_RELATION (is-a USER)

(role concrete)
(pattern-match reactive)

; Relations between concepts
(slot relation_type (create-accessor read-write)

 (visibility public)
 (default NIL))

(slot cg_printed (create-accessor read-write)
 (default NONE))

(multislot concept_number (create-accessor read-write)
 (visibility public))

(slot from (create-accessor read-write)
 (visibility public))

(slot to (create-accessor read-write)
 (visibility public))

) ; end class CONCEPTUAL_RELATION

module defined "around" the sub-domain, in other words including all concepts in that

sub-domain, but not in other domains or sub-domains.

6.1.4.3. Semantic Net Implementation

Three kinds of links are used within the semantic net: "uplinks," or inferencing links, which

are used to form super-concepts out of sub-concepts, "downlinks," which are used in domain

shrinking and for report printing, and "conceptual relations," which link concepts in a conceptual

127

graph. Each of these links, as well as the keyword interface nodes, and interior concept nodes, is

a CLIPS version 6.0 object. See Figure 35 for the CLIPS class definition associated with with an

interior concept node. Note that the interior concept node class serves as a template for concepts

within a conceptual graph.

Each uplink has a weight associated with it. The weights on the uplinks of the semantic net,

together with the threshold values in concept nodes, are used as the main inferencing mechanism

of the semantic net. Messages associated with CLIPS classes are used to implement this

inferencing mechanism, which is a form of spreading activation. See Chapter IV for a description

of spreading activation within the semantic net.

The slots sum_of_input_weights and sum_of_input_weights_due_to_NODE_inference are

related to spreading activation within the semantic net. The sum_of_input_weights is compared to

the threshold value in order to determine whether or not a particular interior concept node should

be asserted. The sum_of_input_weights_due_to_NODE_inference contains the weight based on

uplinks from other interior concept nodes, whereas the sum_of_input_weights contains the weight

based on all uplinks, and includes those from the keyword interface layer as well as from interior

concept nodes. At the end of a run the sum_of_input_weights is set to the value from the

sum_of_input_weights_due_to_NODE_inferencing. The idea here is that keywords in the

interface layer are valid only for a single "run," whereas recognized concepts are valid for

multiple "runs."

Each interior concept node within the semantic net has associated English text defining the

operation of that concept within the current domain, e.g., see the multislot facts in Figure 35.

This text gives the high-level definition of the concept, without as much low-level detail as is

found in the software. The English text associated with each identified concept is included in a

final report generated by CHRiS.

Both interior concept nodes and keyword interface nodes allow for information regarding the

location where a node was specified. Currently this operates only down to the class level,

although hooks are included for the addition of finer-grain (within a class) information. Location

128

is identified by class name. If finer-grain location is later added, it will probably also be

necessary to add information as to the type of location, i.e., class member function, class data

definition, etc.

Figure 36 contains the CLIPS class definition for a conceptual relation. The relation_type

slot contains the type of conceptual relation. The conceptual relations employed in the conceptual

graphs within the semantic network include AGNT (for agent), OBJ (for object), ATTR (for

attribute), LOC (for location), IS-A (this is a type relation), and IS_PART_OF (this is a

whole-part relation). See Chapter IV for the use of IS-A and IS_PART_OF within the CHRiS

inferencing engine.

The multislot concept_number is used to differentiate between different conceptual graphs. A

conceptual relation may be a member of multiple conceptual graphs, and the distinction between

different conceptual graphs is made statically at the time of knowledge-base design.

The "from" slot and the "to" multislot list the different concepts linked by the conceptual

relation. In some situations it was convenient for the same conceptual relation type to connect

from one concept to multiple concepts; for example, the situation where a concept has multiple

agents or objects.

6.1.4.4. Semantic Net Design for Selected Domains

In order to take full advantage of the word usage information derived from the natural

language parser, a careful design of the semantic net for a particular domain is required. The

format of possible comments must be considered during the knowledge-base design, particularly

when considering uplinks from the interface layer to interior concepts. This can be a fairly

difficult task, since it is necessary to consider not only possible comments that might occur in the

current domain, but also possible comments that might occur in other domains that would tend to

cause a false keyword identification in the current domain.

For example, consider a listen mode menu concept, and assume that a semantic net is being

designed to handle the domain of Graphical User Interfaces (of which multimedia graphical user

129

Figure 37. Portions of a CHRiS Concept Report

Class wxObject

1) object, with weight 1.000000, at location(s) wxObject found
Facts are:

"GUI item that can be placed, hid, redrawn, scaled, etc."

Class wxbWindow

1) activate, with weight 1.000000 at location(s) wxbWindow found

2) box_frame, with weight 1.000000 at location(s) wxbWindow found
Facts are:

"The part of a dialog box that defines the box's boundaries and
 separates each box from the other boxes and windows that it
 may overlap. Note the modeless dialog boxes have complete
 frames with title bars; modal boxes often have thin borders
and no title bars"

3) control_menu, with weight 1.500000, at location(s) wxbWindow found
Facts are:

"A menu that controls whether the current window is opened or
closed. Some GUIs have a close button instead of a control menu"

. . .

Class wxWindow

. . .

9) cursor, with weight 1.000000, at location(s) wxbWindow wxWindow found
Facts are:

"Marks a location on a screen or in a window"

10) dialog_box,with weight 9.200000,at location(s) wxbWindow wxWindow found
Facts are:

"A window in which the computer can present several alternatives, ask
 for more information, or warn the user an error has occurred.

130

interfaces are a sub-domain). In order to take advantage of word usage information, the

knowledge-base designer might consider (for example) the following comments:

1) This is a listen mode menu.

2) This menu has a listen mode.

3) Listen to the port in the basic mode to read the menu.

The first comment is definitely related to the domain in question. The second comment might

be related to the domain concept (depending on context there are other interpretations). The third

comment is a comment that would be found in some type of communications interface software,

and has no direction to the GUI domain. In the first sentence, the Sleator and Temperley parser,

with the appropriate dictionary, recognizes "listen" and "mode" as adjectives, with "menu" as a

noun with usage object. In the second sentence, the parser recognizes "menu" as a noun with

usage subject, with "listen" as an adjective, and "mode" as a noun with usage object. In the third

sentence, the parser recognizes "listen" as a verb, "mode" as a noun with usage object of

preposition, and "menu" as a noun with usage object. A knowledge-base that differentiated the

listen mode menu concept by requiring a keyword interface node "listen" with usage adjective

would assure that the third comment did not result in a false identification of the listen mode menu

concept. By the use of simple English syntax information, such as that provided by the Sleator

and Temperley parser, it is not possible to determine whether the second comment is related to the

GUI domain or not, unless other contextual information is also available. Thus the understanding

of the second sentence is a more semantically-related problem.

6.1.5. Reports Produced by CHRiS

CHRiS produces four reports. The first report is a list of standard concepts identified for

each class, that could be used to categorize the class for insertion into a class library. The second

report is a description of the functionality of the class, in natural language. The third report is a

list of all keywords from the interface layer that have been identified as associated with the class.

The fourth report shows the links between nodes in the semantic net that led to certain concepts

131

Figure 38. CHRiS Description of Functionality Report -- Natural
Language Generation

Class wxbItem:

-- contains the concept 'text' that is described by a font descriptor and a height
descriptor and a width descriptor.

-- minimizes a window.
 HINT: A button that can be described by a color descriptor and a left
descriptor can minimize a window.

-- focuses an <object>.
 HINT: It is possible to focus an area.

-- tracks a mouse.
 HINT: It is possible to track a mouse that can own a button.

being identified. This information can serve as a simple explanation feature, but is exceptionally

space consuming, since currently all identified concepts, and the links leading to their firing, are

included in the same report.

6.1.5.1. Concept Report

Figure 37 shows an example of various portions of a concept report. This report is a list of

standard concepts that have been identified as belonging to a particular class, along with English

text descriptions of the concepts. The weight determined by the inferencing mechanism for each

concept is also shown. The idea is that concepts with higher weights are more strongly identified.

The concept report includes reports for all classes that have been examined in the current

software component under examination. If a concept has been found multiple times, in multiple

132

classes, then the concept report lists all classes in which the concept was found at the time of the

current class report. This means that derived classes will have a locations list that will

occasionally list a concept that appears both in an inherited class and in the local class. Also,

concepts that were inherited from another class, but that were not explicitly discovered in the

current, derived class, will be listed, but the locations list will include only the inherited class, and

not the current class.

6.1.5.2. Natural Language Generation

Figure 38 provides an example of the natural language description of functionality report that

is provided by CHRiS. This report lists and describes the concepts that are contained in a class,

and it describes the functions that are performed by a class. Inherited concepts and functions are

reported also in the report for a derived class. This report is generated using CHRiS' simple

natural language generation facility.

CHRiS performs natural language generation very simply. Each sentence in the functionality

report is related to a numbered conceptual graph in the CHRiS semantic net that has at least one

concept identified.

 The functionality report is generated in present tense only. Verbs (concepts in a conceptual

graph that are pointed to by the "from" slot in an AGNT or OBJ conceptual relation) default to

singular. In cases where an interior concept node has multiple AGNT conceptual relations, the

plural of a verb is used (usually, the 's' form or the no 's' form of the verb is chosen, although

occasionally a verb has specified (in the knowledge-base) the 'es' form. For example, "open" is

plural, and "opens" is singular, thus the 's' form is the default). ATTR conceptual relations that

begin at the verb are considered to point to adverbs. There is a nl_generation slot in the interior

concept node class definition (see Figure 35). This contains specialized information about the

form in which each concept is to be generated. For example, adverbs can be generated with "ly"

appended, or without. For example, something can move "slowly," and it can move "up." Both

are adverbs modifying "move," since they describe the move. However, one adverb has "ly"

133

appended and the other does not. Adverbs default to having "ly" appended. In the nl_generation

slot, however, a "notly" entry is possible. This prevents move "up" from being generated as move

"uply," for example.

Each noun concept (concepts in a conceptual graph that are pointed to by the "to" slot in an

AGNT or OBJ conceptual relation) has a determiner generated. Usually, when the determiner is

generated as part of a sentence that also contains a verb, then the determiner generated is

indefinite, either 'a' or 'an', and the selection of 'a' versus 'an' is made based on whether the

following concept begins with a consonant or a vowel. For example, such constructs as these

would be generated, with appropriate determiners:

-- minimizes a window

or

-- activates an object

When a noun concept is determined as belonging to a class, and the verb in the conceptual

graph is either not present, or has not been identified as belonging to the class, then the determiner

generated is specific. The following is an example of such a construct:

-- contains the concept 'text' that is described by a font descriptor and a height descriptor

 and a width descriptor

In this case the concept "text" did not have any identified verbs in conceptual graphs appended

to it. Thus it was generated as "the concept text," and the determiner selected was "the," which is

specific.

However, "text" did have ATTR conceptual relations that connected to identified concepts.

An ATTR conceptual relation from concept A to concept B means that concept B is a quality that

can describe concept A. This construct is generated by the use of the phrase "that can be described

by," then an appropriate indefinite determiner, followed by the word, followed by the word

"descriptor."

134

Multiple OBJ conceptual relations result in a compound predicate. For example:

-- erases a line and a window.

For more than two OBJ conceptual relations, the and construct simply continues:

-- erases a box and a circle and a rectangle and a cylinder

When a numbered conceptual graph that has at least one concept identified also contains other

concepts that were not identified, then those concepts are used to produce hints regarding how the

class might operate. For example, the report for one class generates the following sentences:

-- moves up a mouse and an object

HINT: It is possible to move a mouse that can own a button and an object that can be

described by an orientation descriptor and a position descriptor and a size descriptor

and a style descriptor.

In the conceptual graph that represents the following, the concepts "move," "up," "mouse,"

and "object" were identified. However, each noun concept had various ATTR links to concepts

that were not themselves identified. This resulted in the given hint. Hints are specified in the form

"can be" and "it is possible" to ensure that they are not confused with identified concepts.

The CHRiS natural language generation facility is not intended to produce general natural

language; rather, it is intended to produce a simple report of the functionality of a class. It has

sufficient power to enable it to produce such a report. Some improvements are possible; for

example, the compound subject handling could be extended to use the comma construct rather

than always the and construct. However, the natural language generation that has been provided

is sufficient for the task of report generation.

135

6.1.5.3. Other CHRiS Reports

The CHRiS tool also produces two other reports: a list of all keywords from the interface

layer that have been identified as associated with the class, and another report that shows the links

between nodes in the semantic net that led to certain concepts being identified. The keyword

report lists each keyword identified as having been associated with the class, and the number of

times the keyword was found. The other report (typically called a "full" report) can serve as a

simple explanation feature, but is exceptionally space consuming, since currently all identified

concepts, and the links leading to their firing, are included in the same report.

6.1.6. Limitations

Most of the limitations of CHRiS are caused by the limitations of the various tools it uses.

For example, the Sleator and Temperley parser has several limitations as to the sentences it will

handle; the most common problem is that it does not handle telegraphic-style sentences well (see

section 6.1.2 above for a greater discussion of the limitations of the Sleator and Temperley

parser).

Another limitation is caused by the Brown University C++ parser, which is used by CHRiS

primarily to extract identifiers from C++ software. The Brown University C++ parser handles

most common C++ constructs; however, there are several that it does not handle. It has difficulty

compiling some XWindows files. It will not handle DOS-style code constructs such as "far"

pointers.

One tool that is not normally considered a part of CHRiS, but whose operation does impact

CHRiS is the PCMETRICTM tool [89]. The PCMETRICTM tool is used by the Metric Analyzer

to generate various low level object-oriented metrics. One such metric, the class hierarchy graph,

is used by CHRiS to guide its understanding process. PCMETRICTM seems to have an

occasional problem with large files.

136

The major limitation of CHRiS, which is both its strength and its weakness, is the

knowledge-base. The form of the knowledge-base, that of a semantic net consisting of conceptual

graphs, seems quite powerful, and appropriate to the task of identifying reusable components.

However, a large amount of work is required to develop the knowledge-base in order to achieve

sufficient knowledge for even a fairly small domain. The development of a sufficient

knowledge-base for the area of Graphical User Interfaces was a task that required well over three

months work. Semantic, conceptual graph tools are needed to ease the knowledge-base

development process.

CHRiS currently is a research prototype, that was intended as a proof of concept. Thus the

user interface of CHRiS has not been carefully addressed. The user interface is currently a

simple command line interface.

137

6.2. The Metrics Analyzer Tool

6.2.1. Introduction

The purpose of the Metrics Analyzer tool is to determine the extent to which object-oriented

software components are reusable. The Metrics Analyzer tool implements

Reusability-in-the-Class, Reusability-in-the-Original-System, and Reusability-in-the-Hierarchy.

However, since the user interface to the PATRicia system is a very simple, command line

interface, the Metrics Analyzer does not currently implement Reusability-in-the-Subsystem. The

lack of an easily defined way to select a particular subsystem is the reason

Reusability-in-the-Subsystem was not implemented. However, this should be a simple extension

to Reusability-in-the-Hierarchy when a graphical interface is implemented for the PATRicia

system.

The Metrics Analyzer uses a combination of commercial and shareware tools, new C and

C++ software, and various lex-generated parsers. Figure 39 is a level 2 Data Flow Diagram of

the Metrics Analyzer within the PATRicia system. The Parse C++ function shown in Figure 39

is implemented using the Brown University C++ parser, which produces output in the form of an

abstract syntax tree, in a file in ASCII format. The Collect OO metrics function calculates

several object-oriented metrics. For some low level object-oriented metrics, it uses the

PCMETRICTM tool [89], which is a commercial tool that provides various simple object-oriented

metrics for C++.

6.2.1.1 Parse C++

Input to the Parse C++ transform is a C++ candidate software component. The Parse C++

transform is implemented using the Brown University C++ parser. Output from the Parse C++

transform is an abstract syntax tree of the candidate component, in an ascii file.

138

Figure 39. PATRicia System Level 2 Data Flow Diagram -- the
Metrics Analyzer Tool

6.2.1.2 Collect OO Metrics

The Collect OO Metrics transform has as input the current parsed file, which is an abstract

syntax tree produced by the Brown University C++ Parser. The Collect OO metrics transform

analyzes the abstract syntax tree information, and uses this information to calculate several

object-oriented metrics. The metrics calculated are listed in Figures 22 and 23 in Chapter V. A

few metrics are calculated here by use of the PCMETRICTM tool. These metrics are Number of

Children, average number of commented methods, and average number of comment lines per

method. Additionally, McCabe's complexity values for member functions that are provided by the

PCMETRICTM tool are used in the calculation of the WMC metric, sum of the static complexities

of all local methods. All other metrics are calculated using information from the abstract syntax

139

tree. Outputs from the Collect OO Metrics transform are the various object-oriented metrics, in a

file, and the names of friend classes and functions, which are used separately by the CHRiS

module.

6.2.1.3 Analyze Reusability

Input to the Analyze Reusability transform are object-oriented metrics for each class or class

hierarchy. First, each metric is mapped to a value between 0 and 1.00, using an empirical

threshold-based function (thresholds used are from Lorenz and Kidd [78]). Then, for each class,

the quality factors shown in Figure 22 of Chapter V are calculated as a weighted sum of the

mapped metric values. Output from the Analyze Reusability transform is a candidate software

reusability report.

6.2.2. The Brown University C++ Parser

The Brown University C++ parser provides an abstract syntax tree for a C++ file. It is not a

compiler in that it does not produce object software. An example of the output of the Brown

University C++ parser is shown in Figure 40. This output represents part of the parse of a

function. The Brown University C++ parser produced a parse of the C++ software of the

function GetY--the parse is represented as keywords in ASCII. For example, the FctDecl

keyword signals that the following is the beginning of the function declaration. The ReturnStmt

keyword signifies that a return statement in C++ has been found. Indentation within the output

file corresponds to hierarchy levels. The hexadecimal numbers shown at the left hand side of the

file are unique identifiers assigned to each node in the parse tree. Much of the challenge of the

development of the Metrics Analyzer tool was to handle parsing of the abstract syntax tree file

for all possible cases.

 The Brown University C++ parser handles most C++ constructs; however, there are several

it will not handle. It has difficulty compiling some XWindows files, and some common GNU

140

 150a00 Object_Function GetY### 9 Line 39 of file "li.C"
* 14e700 Scope 5 ### 8 Line 27 of file "li.C"
* 150c00 Type_MemberFunction ### 4 Line 36 of file "li.C"
* b7940 ProtectSpec public ### 0
* b7640 LinkageSpec C++ ### 0
* b7b00 StorageSpec gfunction### 0
 13e680 FctDecl ### 5 Line 39 of file "li.C"
* 150a00 Object_Function GetY ### 9 Line 39 of file "li.C"
 13e800 CtorInitList### 0 Line 39 of file "li.C"
 13e6c0 FctBody ### 1 Line 39 of file "li.C"
 13e780 StmtList ### 1 Line 39 of file "li.C"
 13e740 ReturnStmt ### 1 Line 39 of file "li.C"
 151c80 BuiltinCast ### 2 Line 39 of file "li.C"
* b9a00 Type_Primitive int ### 0
 13c980 SimpleName Y### 2 Line 39 of file "li.C"
* 14e200 Object_Variable Y### 6 Line 29 of file "li.C"
* 150500 Type_Address ### 1 Line 31 of file "li.C"
 150100 Scope 4 ### 2 Line 39 of file "li.C"
* 14e700 Scope 5### 8 Line 27 of file "li.C"
 152e00 Object_Variable this ### 6
 152f80 Scope 7### 2 Line 39 of file "li.C"
* 150100 Scope 4### 2 Line 39 of file "li.C"
* 152e00 Object_Variable this ### 6
* 150f80 Type_Qualified ### 2 Line 31 of file "li.C"
* b7900 ProtectSpec none ### 0
* b7640 LinkageSpec C++ ### 0
* b7b80 StorageSpec argument ### 0
* b75c0 EmptyExpr### 0
* 152f80 Scope 7 ### 2 Line 39 of file "li.C"
 14d180 ExprList ### 1
* b75c0 EmptyExpr ### 0
* b7f80 KeyDeclSpec inline ### 0
* b7f00 KeyDeclSpec not_virtual ### 0

Figure 40. Abstract Syntax Tree -- Output of the Brown University C++
 Parser

141

library files (the version of the C++ parser used in the Metrics Analyzer will not handle the GNU

include file iostream.h without changes). It will not handle DOS-style code constructs such as

"far" pointers. Due to problems in getting some to compile with the Brown University C++

parser, the Metrics Analyzer tool was modified to operate on partial parses of source code files.

As long as the actual code of interest is parsable, the Metrics Analyzer will work.

6.2.3. Description of Operation

When the understood candidate component is presented to the Collect OO metrics function, it

is first parsed by the Brown University C++ parser. This produces an abstract syntax tree from

which the Collect OO metrics function is able to gather structural information such as calls from

one member function to member functions of other classes or to global functions, calls from one

member function to attributes of other classes or to global variables, number of times a class is

used as an abstract data type, number of member functions per class, number of attributes per

class, etc. In fact, many of these quantities derived from the abstract syntax tree correspond fairly

directly to low-level object-oriented metrics. Others can be used to calculate various

object-oriented metrics fairly easily. After the Collect OO metrics function has collected and

stored the structural information derived from the abstract syntax tree, then it calculates several

object-oriented metrics using that data. Then the Collect OO metrics function reads the output of

the PCMETRICTM tool to collect various other metrics. The primary metrics that are collected

from the PCMETRICTM tool are the class hierarchy chart, the McCabe's cyclomatic complexity

number for member functions, and counts of lines of code and comments for member functions.

The PCMETRICTM tool in its current form does not produce the desired output without user

intervention. This is due to the fact that most of the PATRicia system runs under Linux, whereas

the PCMETRICTM tool is a DOS utility. However, the PCMETRICTM tool is capable of running

in the Linux DOS emulator. The PCMETRICTM tool can be eventually replaced with separate

software, which will result in the complete automation of the Metrics Analyzer.

142

REUSE-IN-THE-CLASS METRICS

Metrics for class TAppWindow, with node number 976d00
 MODULARITY:
 COUPLING:
 MPC is 26
 AVC is 18
 DAC_coupling is 17
 num_friend_classes is 0
 num_friend_functions is 0
 COHESION:
 LCOM1 is 247
 LCOM1_without_constructor_destructor is 247
 LCOM2 is 247
 LCOM2_without_constructor_destructor is 247
 LCOM3 is 21
 LCOM3_without_constructor_destructor is 21
 LCOM4 is 21
 LCOM4_without_constructor_destructor is 21
 INTERFACE:
 num_public_functions is 23
 DOCUMENTATION:
 avg_num_of_comment_lines_per_method is 0.83
 percentage_of_commented_methods is 47.83
 num_comments_in_class_definition is 13
 SIMPLICITY:
 SIZE:
 num_methods is 23
 num_attributes is 9
 avg_method_size_in_LOC is 19.22
 avg_method_size_in_executable_semicolons is 9.57
 COMPLEXITY OF METHODS:
 WMC is 44

Figure 41. Object-Oriented Metrics Report -- the Metrics Analyzer Tool

143

REUSE-IN-THE-ORIGINAL-SYSTEM METRICS

Metrics for class TAppWindow, with node number 976d00

 ABSTRACT DATA TYPE USAGE:
 num_uses_as_abstract_data_type is 4
 INHERITANCE USAGE:
 DIT is 1
 NOC is 0
 CALLS USAGE:
 number of calls to member functions in this class is 8

REUSE-IN-THE-CLASS

Reusability results for class wxbBrush with node_number 879400
 MODULARITY is 0.93
 COHESION is 0.85
 COUPLING is 1.00

 INTERFACE is 1.00

 DOCUMENTATION is 0.00

SIMPLICITY is 1.00
 SIZE is 0.99
 COMPLEXITY is 1.00

REUSABILITY is 0.73

Figure 43. Reusability-in-the-Class Reusability Quality Metrics Report

Figure 42. Reuse-in-the-Original-System Object-Oriented Metrics
Report

144

REUSE-IN-THE-HIERARCHY

Reusability results for class wxObject with node_number 769200
 MODULARITY is 0.99
 COHESION is 0.99
 COUPLING is 1.00
INTERFACE is 1.00
DOCUMENTATION is 0.50
SIMPLICITY is 0.99
 SIZE is 0.99
 COMPLEXITY is 1.00

HIERARCHY is 1.00

REUSABILITY is 0.87

Figure 44. Reusability-in-the-Hierarchy Reusability Quality
Metrics Report

After the metrics are gathered from PCMETRICTM , the Analyze reusability function uses

those metrics, and the object-oriented metrics calculated by the Collect OO metrics function using

structural information from the abstract syntax tree to calculate various reusability metrics. The

Reusability-in-the-Class quality factors are calculated, and an overall number for

Reusability-in-the-Class is calculated. The Reusability-in-the-Hierarchy quality factors are

calculated, and an overall number for Reusability-in-the-Hierarchy is calculated. See Chapter V

for a discussion of these reusability hierarchies, and the metrics that combine to form reusability

quality factors.

145

6.2.4. Reports Produced by the Metrics Analyzer Tool

The Metrics Analyzer produces five reusability reports: a list of all the object-oriented

metrics in each class, a Reusability-in-the-Class report, a Reusability-in-the-Original-System

report, a Reusability-in-the-Hierarchy report, and a report that contains all the structural

information that was derived by parsing the abstract syntax tree file.

 Figure 41 contains an example of the object-oriented metrics report. In this report, MPC is

Message Passing Coupling, AVC is Attribute/Variable Coupling, and DAC_coupling is Data

Abstraction Coupling. The various LCOM values relate to the discussion on the multiple

definitions of LCOM in the literature (see Chapter V). LCOM1 is the revised Chidamber and

Kemerer LCOM definition [26], with inheritance. LCOM2 is the revised Chidamber and Kemerer

LCOM definition, without inheritance. LCOM3 is the Li and Henry LCOM definition [75], with

inheritance. LCOM4 is the Li and Henry LCOM definition, without inheritance. WMC stands

for weighted methods per class, and is the sum of the McCabe's cyclomatic complexity numbers

for each of the member functions of the class. The metrics in this report are grouped according to

the quality factor they are said to affect. However, the resulting values of each quality factor are

not shown in this report.

An example of a Reusability-in-the-Original-System object-oriented metrics report is shown

in Figure 42. An example of a Reusability-in-the-Class reusability quality metrics report is shown

in Figure 43. In this report, separate values for reusability quality metrics are provided for

quality factors and for quality sub-factors such as cohesion and coupling. Figure 44 is an

example of a Reusability-in-the-Hierarchy report. The report is similar to that of the

Reusability-in-the-Class report, with the exception of the Hierarchy quality factor.

146

Chapter VII

RESULTS

7.1. Description of Domain

The initial test domain for the PATRicia system was the domain of graphical user interfaces

(GUIs). This was chosen for multiple reasons. First, the domain is large enough to require a

fairly complex knowledge-base. Second, several C++ GUI packages were easily available.

Third, the area of graphical user interfaces, and the C++ software used to implement a graphical

user interface is a real world domain, with real software. Fourth, there are plans to upgrade the

PATRicia system with a graphical user interface of its own and this allowed an evaluation of

potential graphical user interface packages for that purpose.

Since the PATRicia system is designed to measure the concepts and functions which are

implemented in object-oriented software, it is critical to know how accurate and effective that

assessment is. The most effective way to carry out that evaluation is through the use of

knowledgeable software developers who are experienced in the domain of interest. Using their

insight and experience to identify concepts and comparing those concepts with the PATRicia

system's evaluation will provide an objective view of the tool's capabilities. These experiments

concentrated upon two critical aspects of the tool's performance: the ability to identify concepts

and the ability to predict reusability.

147

7.2. Program Understanding Experiment

7.2.1. Description of Experiment

The purpose of the program understanding experiment was to compare the concepts identified

by the members of the evaluation team, each of whom were knowledgeable in the area of C++ and

graphical user interfaces, to those identified by the CHRiS tool within the PATRicia system. In

this experiment, classes taken from three independent C++ graphical user interfaces were

examined both by knowledgeable software developers and the PATRicia system. The experiment

was conducted in two phases. The first phase was to identify an agreed-upon list of concepts that

occurred in the selected software classes. The second phase was to compare the tool's output with

those concepts. A list of the domain experts who contributed to the study and their qualifications

is provided in Appendix D.

The C++ graphical user interface packages used in the experiments were the GINA package

[8], the wxWindows package [102], and the Watson XWindows package [111]. These were

chosen because they were widely used packages that are representative of the software that could

normally be encountered in the GUI area.

7.2.2. Phase I--Determination of Concepts Handled by a Class

The objective of Phase I of the program understanding experiment was to identify the

concepts (primarily functionality) handled by each of a set of classes chosen from three

independent C++ graphical user interface packages. The five highly experienced C++ and

graphical user interface experts were given a list of standard concepts, with concept definitions,

that represented the list of concepts available in the CHRiS knowledge-base at that time. They

were given the opportunity to add concepts or to redefine concepts if necessary. Each reviewer

was also given a notebook containing C++ source code for classes chosen from the three C++

148

GUI packages. The reviewers then examined the source code, and listed for each class

the concepts that were covered by that class.

It was estimated that this procedure would require five to six hours of work from each

reviewer; however, the reviewers reported that it actually required from twelve to fifteen hours of

work. One reviewer had personal problems and was unable to complete his task. The directions

given to the reviewers, and questionnaires used by the reviewers are provided in Appendix E. At

the end of Phase I, a merged list of the concepts for each class identified by the reviewers was

prepared. This merged list was used in the formation of questionnaires in Phase II of the

experiment. An example questionnaire containing concepts for a class hierarchy from the GINA

system is shown in Appendix E.

7.2.3. Phase II--Mapping of Concepts Identified by the PATRicia System

The purpose of Phase II was to compare the output of the CHRiS tool of the PATRicia

system to the merged concept list identified by the reviewers for each class. An additional person

was chosen to replace the reviewer who had to leave the experiment before the end of Phase I.

Thus, five domain experts were given the merged list of concepts for each class that was identified

by the reviewers in Phase I. They were also given a notebook containing the reports generated by

CHRiS for each class selected from three independent C++ and GUI packages.

The reviewers listed concepts as being matched exactly or partially by the concepts in the

CHRiS report. They listed any concept generated by CHRiS that did not match any concepts in

the merged list of concepts separately as this was an indication of overgeneration, and these are

spurious concepts.

It was estimated that this procedure would take the reviewers each from two to three hours of

work, but it required closer to five hours each. The directions given to the reviewers, and

questionnaires used by the reviewers are provided in Appendix F.

149

7.2.4. Metrics for Validation

The results of the program understanding experiment were evaluated for recall, precision, and

overgeneration. Recall is a measure of completeness of concept generation. Precision is a

measure of the accuracy of concept generation. Overgeneration is a measure of spurious

generation of concepts.

Metrics for recall, precision, and overgeneration were adapted from metrics that are used in

the area of Information Extraction [34][35].

The metrics that were employed in this experiment are defined as follows:

POS (possible)--the total number of concepts identified by the reviewers for a class

ACT (actual)--the number of concepts either matched or partially matched plus the number of

spurious concepts

correct--the number of concepts identified by the reviewers that were matched exactly by the

output of the CHRiS tool

partial --the number of concepts identified by the reviewers that were partially matched

(matched by similar concepts) by the output of the CHRiS tool

The metrics for recall were:

recall = (correct + partial X 0.5) / POS

matched recall = correct/POS

The metrics for precision were:

precision = (correct + partial X 0.5) / ACT

matched precision = correct/ACT

The metrics for overgeneration were:

overgeneration #1 = spurious/POS

overgeneration #2 = spurious/ACT

150

%

C++ Packages

0

10

20

30

40

50

60

70

80

90

100

Watson XWindows GINA wxWindows

ovg#1

ovg#2

%

C++ Packages

0

20

40

60

80

100

Watson XWindows GINA wxWindows

matched recall

matched precision

recall

precision

Figure 46. Overgeneration Overall

Figure 45. Recall and Precision Overall

151

Figure 48. Overgeneration for a wxWindows Hierarchy

%

C++ Classes

0

20

40

60

80

100

wxObjec wxbWin wxWind wxbItem wxItem wxbButt wxButto

matched recall

matched precision

recall

precision

Figure 47. Recall and Precision for a wxWindows Hierarchy

%

C++ Classes

0

10

20

30

40

50

60

70

80

90

100

wxObject wxbWin wxWindo wxbItem wxItem wxbButto wxButton

ovg#1

ovg#2

152

%

C++ Classes

0

20

40

60

80

100

TAppWindow

matched recall

matched precision

recall

precision

%

C++ Classes

0

10

20

30

40

50

60

70

80

90

100

TAppWindow

ovg#1

ovg#2

Figure 50. Overgeneration for Watson XWindows

Figure 49. Recall and Precision for Watson XWindows

7.2.5. Analysis of Results

The overall results for recall, precision, and overgeneration for the three different GUI

packages are shown in Figures 45 and 46. An early indication can be obtained by noting that

153

Figure 52. Overgeneration for a GINA Hierarchy

%

C++ Classes

0

10

20

30

40

50

60

70

80

90

100

GnContracts GnObject GnCommand GnMouseDown

ovg#1

ovg#2

%

C++ Classes

0

20

40

60

80

100

GnContracts GnObject GnCommand GnMouseDown

matched recall

matched precision

recall

precision

Figure 51. Recall and Precision for a GINA Hierarchy

matched recall and matched precision, which are the more strict versions of the recall and

precision measurements, are always 70% or above, and that overgeneration (of both categories) is

under 10%.

A look at the individual software packages is shown in Figures 47 through 52. Within the

154

wxWindows package, matched recall or matched precision was greater than 72%, and

overgeneration was under 10%.

In the Watson XWindows package, all processing is performed within a single class, and the

class TAppWindow represents the entire package. Recall and precision for TAppWindow are

above 80%, while overgeneration is under 10%.

In the GINA package, GnContracts had no graphical user interface concepts, so recall,

precision, and overgeneration are arbitrarily shown as zero. The very high numbers for recall and

for overgeneration in the class GnObject are artifacts of the fact that the class had only a single

graphical user interface concept. CHRiS generated another concept that some reviewers counted

as a spurious concept, and others did not. The classes GnCommand and

GnMouseDownCommand had a larger number of graphical user interface concepts, and so the

metrics for those classes approach those seen elsewhere.

It should be noted that the GINA package, which was well-designed from a code standpoint,

had comments and identifiers with unusual wording which were somewhat hard to understand.

The GINA package was designed and implemented at the German National Research Institute for

Computer Science, and the people who implemented it were thus probably not native English

speakers. (There was also a very small number of German comments in the code). Even with this

potentially nonstandard wording of English comments, the operation of CHRiS still proved

satisfactory.

155

7.3. Reusability Analysis Experiment

7.3.1. Description of Experiment

The purpose of the reusability analysis experiment was to determine how closely the Metrics

Analyzer tool's predictions of Reusability and the reusability quality factors such as Modularity

(cohesion and coupling), Interface, Documentation, and Simplicity (size and method complexity)

matched reality.

In this experiment, seven knowledgeable C++ software developers were given a set of

questions to answer and criteria to evaluate when rating classes and hierarchies for reusability.

The directions and questionnaires that were given to the reviewers are provided in Appendix G.

The members of the evaluation team were also given source code from three independent C++

graphical user interface packages. They answered questions in the questionnaires about each

class, and each class hierarchy. Based on their own answers to the questions in the

questionnaires, and any other criteria that they thought was important, the reviewers rated each

class, and class hierarchy for the various quality factors, on the following scale:

Excellent = 100%

Good = 75%

Fair = 50%

Poor = 25%

It was estimated that this procedure should require approximately five hours of work.

However, only one reviewer was able to complete the procedure in approximately that time, while

the other reviewers reported that the procedure required well over twenty hours of work.

According to most reviewers, the primary reason for the difficulty was the analysis of coupling.

This required a strict code inspection, that was made harder by the proliferation of macros in

certain packages.

156

7.3.2. Analysis of Results

The results which compare an averaged combination of the reviewers' reusability quality

factors ratings to those of the Metrics Analyzer over 18 classes are shown in Figures 53-76.

Each of these figures represents a comparison of the Reusability-in-the-Class quality factors

hierarchy.

As can be seen by the figures, the Metrics Analyzer did a very good job of predicting both

individual quality factors, and overall reusability for each class. In no case did the Metrics

Analyzer predict a class as reusable that the reviewers had rated as not reusable. The reverse was

not true, and in four cases the Metrics Analyzer rated a class as not reusable, when the reviewers

had rated it as reusable. This occurs in the predictions for the classes wxbWindow (see Figure

59), wxbItem (see Figure 61), wxMouseEvent (see Figure 70), and wxWindow (see Figure 60).

This was due to differences in the Metrics Analyzer and the evaluations team's prediction of the

Interface, Documentation, and Simplicity quality factors.

As an example of how these differences occurred, the wxbWindow class will be discussed. In

the case of the complexity sub-factor of Simplicity for this class, the reviewers rated the class as

not complex. The class definition was quite large, with 11 attributes and 39 member functions;

however, the member functions themselves were quite simple. The reviewers rated complexity

low even though the class has a large number of member functions, because the member functions

themselves were not complex. However, the WMC (weighted methods per class) metric that was

used to measure complexity added all the complexities of each method of a class. Thus the metric

assumes that complexities are additive. The WMC metric is a standard object-oriented metric;

however, based on these results, a better metric might be AMC, or Average Method Complexity.

In the case of the Interface quality factor, the Metrics Analyzer rated it low for that class

since it had 49 public member functions. The Lorenz threshold for this metric was 20, so

wxbWindow was well over twice the threshold. Apparently the reviewers thought that the

Interface was clean and understandable due to good, informative member function identifier

names, and rated it high.

157

In the case of Documentation for the class, the reviewers rated the documentation quite high,

whereas the Metrics Analyzer rated it low. In this class, the average number of comment lines

per method was 0.35, and the percentage of commented methods was 8%, which are quite low

numbers. However, the number of comments in the class definition was 35, which divided by the

49 methods plus 11 attributes in the class definition resulted in about a 50% comment rate, which

although it is a fairly low number was still higher in that class than in most others in the package.

It is possible that, even though the class was not particularly well documented in general, it

received a better Documentation score since it was better documented than surrounding classes.

More than likely the good identifier names were another reason why the reviewers rated this class

good for Documentation.

For the classes wxbItem and wxMouseEvent, Simplicity, Documentation, and Interface are

again rated low by the Metrics Analyzer. The problems here seems to be identical to the

problems that occurred with wxbWindow in that the reviewers did not think that having a large

number of uncomplex member functions made the class more complex, and apparently the

reviewers considered good variable names to be very important to Interface and Documentation.

In wxWindow, Interface again was rated low by the Metrics Analyzer. Again, the problem

seemed to be that the reviewers thought good member function names were more important than

the size of the interface. An obvious direction for future research would be to try to discover a

way to measure the quality of variable names.

The results comparing an averaged combination of the reviewers' reusability quality factors

ratings to those of the Metrics Analyzer over several class hierarchies are shown in Figures

69-76. In these figures a rating for Inheritance Complexity is not shown since the reviewers did

not rate that quality factor separately, although they did include depth of inheritance tree in their

evaluation criteria for the class. In all cases, hierarchies that the reviewers rated as acceptable

were also rated as acceptable by the Metrics Analyzer, with a score of 50% reusability

considered the minimum for acceptability. Only one hierarchy was rated as not reusable, and both

the evaluators and the Metrics Analyzer rated this hierarchy as unacceptable.

158

Figure 54. GnObject

Figure 53. GnContracts

0

0.5

1
Modular ity

Interf ace

DocumentationSimplic ity

Reus ability Experts

PA TRic ia

0

0.5

1
Modularity

Interf ace

DocumentationSimplic ity

Reusability
Experts

PA TRic ia

159

Figure 56. GnMouseDownCommand

Figure 55. GnCommand

0

0.5

1
Modularity

Interface

DocumentationSimplicity

Reusability Experts

PATRicia

0

0.5

1
Modularity

Interface

DocumentationSimplicity

Reusability
Experts

PATRicia

160

Figure 58. wxObject

Figure 57. TAppWindow

0

0.5

1
Modularity

Interf ac e

DocumentationSimplic ity

Reusability Experts

PA TRic ia

0

0.5

1
Modularity

Interf ac e

Doc umentationSimplic ity

Reusability Ex perts

PA TRic ia

161

Figure 60. wxWindow

Figure 59. wxbWindow

0

0.5

1
Modularity

Interface

DocumentationSimplic ity

Reusability
Experts

PATRicia

0

0.5

1
Modularity

Inter f ac e

Doc umentationSimplic ity

Reus ability
Experts

PA TRic ia

162

Figure 62. wxItem

Figure 61. wxbItem

0

0.5

1
Modular ity

In te r f ac e

Doc umenta tionS implic ity

Reus ab ility
Ex per ts

PA TRic ia

0

0.5

1
Modular ity

In ter f ac e

Doc umentationSimplic ity

Reus ability Ex per ts

PA TRic ia

163

Figure 64. wxButton

Figure 63. wxbButton

0

0.5

1
Modularity

Inter f ac e

Doc umentationSimplic ity

Reus ability Ex per ts

PA TRic ia

0

0.5

1
Modular ity

In ter f ac e

Doc umenta tionSimplic ity

Reus ability Ex per ts

PA TRic ia

164

Figure 66. wxMenu

Figure 65. wxbMenu

0

0.5

1
Modular ity

In ter f ac e

Doc umentationSimp lic ity

Reus ability Ex per ts

PA TRic ia

0

0 .5

1
Mo d u la r ity

In te r f a c e

Do c u me n ta tio nS imp lic ity

Re u s a b ility
Ex p e r ts

PA TRic ia

165

Figure 68. wxTimer

Figure 67. wxbTimer

0

0 .5

1
Mo d u la r ity

In te r f a c e

Do c u me n ta tio nS imp lic ity

Re u s a b ility Ex p e r ts

PA TRic ia

0

0.5

1
Modularity

Interf ace

DocumentationSimplic ity

Reusability
Experts

PA TRic ia

166

Figure 70. wxMouseEvent

Figure 69. wxEvent

0

0.5

1
Modular ity

In ter f ac e

Doc umentationSimplic ity

Reus ability Ex perts

PA TRic ia

0

0.5

1
Modularity

Interf ace

DocumentationSimplic ity

Reusability
Experts

PA TRic ia

167

0

0.5

1
Modularity

Interface

DocumentationSimplicity

Reusability
Experts

PATRicia

0

0.2

0.4

0.6
Modularity

Interface

DocumentationSimplicity

Reusability
Experts

PATRicia

Figure 71. GINA Hierarchy

Figure 72. Watson Hierarchy

168

Figure 73. wxWindows Hierarchy #1

0

0.5

1
Modularity

Interface

DocumentationSimplicity

Reusability
Experts

PATRicia

0

0.5

1
Modularity

Interface

DocumentationSimplicity

Reusability
Experts

PATRicia

Figure 74. wxWindows Hierarchy #2

169

0

0.5

1
Modularity

Interface

DocumentationSimplicity

Reusability
Experts

PATRicia

Figure 75. wxWindows Hierarchy #3

Figure 76. wxWindows Hierarchy #4

0

0.5

1
Modularity

Interface

DocumentationSimplicity

Reusability
Experts

PATRicia

170

Chapter VIII

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The identification of reusable components in object-oriented software can be automated to a

high degree. Through careful attention to knowledge extraction, knowledge base development,

and metrics analysis, tools can be built that will present sufficient information to the user that an

intelligent reuse choice can be made. The assumption that comments can provide sufficient

information for determining what an object-oriented software component is doing has proven

valid. While many other domains are yet to be explored, the domain used in this research was

sufficiently complex to give a high degree of confidence in extendability to other domains.

Building an effective knowledge-base to capture and analyze information about software products

has proven key to the success of an automated software reusable components identification

approach. This research has shown that the development of this knowledge-base is a difficult and

tedious task and must be done for each domain of interest. In order to make understanding tools

more effective, a better way to automate the capture of this information will have to be developed.

The gathering of information about potential reusable software components is quite doable.

However, the metrics used to assess software reusability are currently very subjective and much

work needs to be done to quantify and improve this assessment process.

While the conclusions of this research are very positive, many additional areas that need to be

resolved have been identified. These can be broadly classified in the areas of tool improvements,

domain expansion, improved artificial intelligence concepts, and better metrics.

When considering tool improvements, the initial version of the PATRicia system lacks several

features that would facilitate its use in a production environment. The most important of these is

171

a graphical user interface. This would have the added advantage of allowing the tool to be used

as a maintenance tool as well as a legacy software reuse tool. A related need would be a better

explanation facility for the PATRicia system since the current explanation facility overwhelms

with data. Also, the PATRicia system currently works only on C++ software and it would be

useful to extend it to other computer languages. For use in other countries, the PATRicia system

could also be extended to operate on comments in other natural languages than English.

There is a need to have a better way to categorize a component for insertion into a software

reuse library. This might be done by using the concepts identified for a keyword list. This could

be extended to implement some of the currently used faceted classification approaches.

When considering domain expansion, the PATRicia system could be extended to operate in

other domains with the addition of a semantic net generation tool that would reduce the difficulty

of creating a new knowledge-base. Also, the problem of domain shrinking was investigated, but

not completely solved during this research. The knowledge-base of the PATRicia system could

be re-implemented in a medium that allows for more control of the salience of objects such as

CLIPS rules.

Several artificial intelligence-related investigation areas have been identified. First, the

knowledge-based techniques available in the PATRicia system could be refined to identify and

possibly quantify different programming styles. This could also be used as a teaching tool for

students as well as an aid to standards enforcement. Next, the natural language processing

portion of the PATRicia system could be extended to handle on-line documentation. While this

becomes a much more general natural language processing problem, by applying the sublanguage

concepts it is possible that computer documentation in general could be handled. Additionally, the

PATRicia system could be extended to allow the analysis of software developed in the functional

decomposition paradigm.

Several investigation areas related to metrics have been identified. There is a need to quantify

how well a certain class' functionality matches the reuse area of interest. This might be

172

accomplished by a count of the number of concepts identified compared to the number of

lines of code. This could be used to identify a key class or a non-key class according to the

definitions by Lorenz and Kidd [78].

There is a continual need for better and more refined metrics. It became clear during the

metrics portion of this project that "Granularity" is a better measure of Modularity than is

Cohesion. If all classes are perfectly cohesive then many classes will be required to perform even

a fairly simply task. This also tends to result in very deep class hierarchy trees, which are not

desirable from a complexity standpoint. The application of knowledge-based techniques could

potentially be used in a granularity calculation.

It would be very useful to find a way to measure the quality of identifier names in order to

improve the calculation of the Interface and Documentation reusability quality factors in the

Metrics Analyzer. Possibly a knowledge-based approach with some heuristics would help in this

area.

A related problem that needs to be explored is the need to quantify how well a class is

documented from a semantic, understanding standpoint, rather than just counting comments. This

could be used during development, or as a teaching tool for students. It could also be used in the

Metrics Analyzer in the calculation of the Documentation reusability quality factor.

173

APPENDIX A

STUDY OF COMMENTS AS A SUBLANGUAGE

Identified Types of Comments:

I) Sentence form, present tense:
a) indicative mood, active voice. For example, "This routine reads the data."

b) indicative mood, active voice, missing subject. For example, "Reads the data."
c) imperative mood, active voice. For example, "Read the data."

d) indicative mood, passive voice. For example, "This is done by reading the data."
e) indicative mood, passive voice, missing subject.

For example, "Is done by reading the data."

II) When not in sentence form:
A) Definition format

a) Itemname -- definition. For example, "MaxLength -- Maximum CFG Depth"
b) definition. For example, "Maximum CFG Depth"

Most of this type of comment are associated with variable definitions. Another
category of this type of comment consists of the comments that signal areas
within a file. For example, "Start of Get Area"

B) unattached prepositional phrase.
For example, "used for application data", or "to support scrolling text".

C) value definitions. For example, "0 = not selected, 1 = is selected"

D) Mathematical formulas. Can be Boolean expressions, in some cases.
Note that mathematically intensive code would normally have more of this
type of comment.

III) Content

a) operational description.
b) definition
c) description of definition. For example, "This defines a NIL value for a list."
d) instructions to reader. For example, "See the header at the top of this file."

IV) simple future tense, indicative mood
V) simple past tense, indicative mood

174

For the following comment analyses, a comment stripper program was used to extract the
comments from the code. The order of the comments was chosen by performing an ls *.* >mm
command in Linux in each directory containing software of interest; the comment stripper then
accessed the files in order as they appeared in the mm file, and placed the resulting comments in a
single comment file. The first 108 comments in the comment file were examined. This process
achieves a reasonable amount of arbitrary selection/randomness, since the 108 comments typically
includes comments from several files within a particular package, and especially since comments
such as revision notices and copyright notices are ignored (the revision and copyright comments
are considered to be non-representative of the operation of the software, and therefore not of
interest to this study). Similarly, comments consisting of commented-out code were ignored. The
reasoning here is that in this case comment characters are performing two duties -- one duty is to
document the software (the interest area of this project), and the other duty (as shown by
commented-out code) is to (presumably temporarily) remove code from the compilation process.
In one case (the wxWindows case), an exceptionally large file consisting solely of data definitions
(called common.h) was skipped since it was felt that this file erroneously skewed the number of
definition-style comments vs. sentence-style comments when compared to the software as a
whole, when considering only the first 108 comments.

175

Analysis of Ga Tech C++ Parallelization Tool*

Format
 |
 |
 V Content ---->

IIIa) IIIb) IIIc) IIId) other

40.7% I a) 37 (34.3%) 0 7 (6.48%) 0 0

4.6% I b) 5 (4.6%) 0 0 0 0

23.2% I c) 24 (22.2%) 0 0 1 (0.9%) 0

0.9% I d) 1 (0.9%) 0 0 0 0

0% I e) 0 0 0 0 0

0% II A) a) 0 0 0 0 0

11.1% II A) b) 0 12 (11.1%) 0 0 0

0% II B) 0 0 0 0 0

0% II C) 0 0 0 0 0

11.1% IV) 12 (11.1%) 0 0 0 0

5.6% V) 6 (5.6%) 0 0 0 0

2.8% other 0 0 0 0 3(2.8%)

* Note: Comments dating code revisions, and listing the person performing the revision were

ignored.

Total number of sentence style comments = (37+7+5+24+1+1) + (12) + (6) +(3) = 96

Total number of sentence style comments in present tense = (37+7+5+24+1+1) = 75

Total number of sentence style comments not in present tense = 12+6+3 = 21

%sentence style comments in present tense = 75/96 = 78%

%sentence style comments not in present tense = 21/96 = 22%

176

Analysis of Watson DOS GUI Package*

Format
 |
 |
 V Content ---->

IIIa) IIIb) IIIc) IIId) other

36.1% I a) 39 (36.1%) 0 0 0 0

0% I b) 0 0 0 0 0

3.7% I c) 3 (2.8%) 0 1 (0.9%) 0 0

0% I d) 0 0 0 0 0

0% I e) 0 0 0 0 0

0% II A) a) 0 0 0 0 0

37.0% II A) b) 0 40 (37.0%) 0 0 0

6.5% II B) 7 (6.5%) 0 0 0 0

10.2% II C) 11 (10.2%) 0 0 0 0

3.7% IV) 4(3.7%) 0 0 0 0

0% V) 0 0 0 0 0

2.8% other** 0 0 0 0 3 (2.8%)

* Note: Comments containing copyright notices were ignored.

** Note: Comments containing code that for some reason had been commented out were ignored.

Total number of sentence style comments = (39+3+1) + (4) + (3) = 50

Total number of sentence style comments in present tense = (39+3+1) = 43

Total number of sentence style comments not in present tense = 4 + 3 = 7

%sentence style comments in present tense = 43/50 = 86%

%sentence style comments not in present tense = 7/50 = 14%

177

Analysis of wxWindows GUI package

Format
 |
 |
 V Content ---->

IIIa) IIIb) IIIc) IIId) other

13.9% I a) 15 (13.9%) 0 0 0 0

8.3% I b) 8 (7.4%) 1 (0.9%) 0 0 0

13.0% I c) 14 (13.0%) 0 0 0 0

0.9% I d) 1 (0.9%) 0 0 0 0

0% I e) 0 0 0 0 0

0% II A) a) 0 0 0 0 0

61.1% II A) b) 0 66 (61.1%) 0 0 0

0.9% II B) 1 (0.9%) 0 0 0 0

0% II C) 0 0 0 0 0

0.9% IV 1 (0.9%) 0 0 0 0

0.9% V 1 (0.9%) 0 0 0 0

0% other 0 0 0 0 0

Total number of sentence style comments = (15+8+1+14+1) + (1) + (1) = 41

Total number of sentence style comments in present tense = (15+8+1+14+1) = 39

Total number of sentence style comments not in present tense = 1+1 = 2

%sentence style comments in present tense = 39/41 = 95%

%sentence style comments not in present tense = 2/41 = 5%

178

Analysis of GINA GUI Package*

Format
 |
 |
 V Content ---->

IIIa) IIIb) IIIc) IIId) other

22.2% I a) 22 (20.4%) 2 (1.8%) 0 0 0

3.7% I b) 1 (0.9%) 3 (2.8%) 0 0 0

18.5% I c) 2 (1.9%) 18 (16.7%) 0 0 0

0% I d) 0 0 0 0 0

0% I e) 0 0 0 0 0

0% II A) a) 0 0 0 0 0

44.4% II A) b) 0 48(44.4%) 0 0 0

0% II B) 0 0 0 0 0

0% II C) 0 0 0 0 0

1.9% IV 2 (1.9%) 0 0 0 0

1.9% V 2 (1.9%) 0 0 0 0

7.4% other 0 0 0 0 8 (7.4%)

* Note: Some GNU code and comments were included as part of the GINA package. Note that
many files in GINA have no comments at all, other than filename, last edit, etc. (those comments
were not included in this study). It required many GINA files to achieve 108 comments.

Total number of sentence style comments = (22+2+1+3+2+18) +(2)+(2)+(8) = 60

Total number of sentence style comments in present tense = (22+2+1+3+2+18) = 48

Total number of sentence style comments not in present tense = 2+2+8 = 12

%sentence style comments in present tense = 48/60 = 80%

%sentence style comments not in present tense = 12/60 = 20%

179

Overall
Format
 |
 | Content ---->
 V

IIIa) IIIb) IIIc) IIId) other

28.24% 122 I a) 113(26.16%) 2 (0.46%) 7 (1.62%)

4.17% 18 I b) 14(3.24%) 4 (0.93%)

14.58% 63 I c) 43(9.95%) 18 (4.17%) 1(0.23%) 1(0.23%)

0.46% 2 I d) 2(0.46%)

I e)

 II A) a)

38.4% 166 II A) b) 166(38.43%)

1.85% 8 II B) 8(1.85%)

2.55% 11 II C) 11(2.55%)

4.40% 19 IV 19(4.40%)

2.08% 9 V 9(2.08%)

3.24% 14 other 14(3.24%)

Note: Total = 108 X 4 = 432 comments examined

Total number of sentence style comments = 96+50+41+60=247

Total number of sentence style comments in present tense = 75+43+39+48=205

Total number of sentence style comments not in present tense = 21+7+2+12=42

%sentence style comments in present tense = 205/247 = 83%

%sentence style comments not in present tense = 42/247 = 17%

180

APPENDIX B

STUDY OF SYNTACTIC TAGGING OF IDENTIFIERS

Identifiers of variable names and function names from C++ class definitions were examined,

and various common identifier formats were determined. The classes from which these identifiers

were derived were chosen from three independent GUI implementations (wxWindows[102],

Watson XWindows[111], and GINA[8]), from a parallelization tool [88](called PAT) developed

at Georgia Tech, and from example classes in the book The Complete C++ Primer[112].

Formats

Notation: adj = either adjective or an adjectival (a word that occupies an adjective's

position but does not show degrees of comparison)

verb, noun, preposition = defined as in English

Items in brackets [obj], [obj. prep] = describe the usage of the

preceding noun

& = empty string

{ }* = 0 or more strings of the type specified in the set (i.e. empty string

& is allowed)

181

Common Formats of variable identifiers:

Format 1: {adj}* noun

Format 2: {{adj}* noun }* preposition {adj}* noun [obj.prep]

Common Formats of function identifiers:

Format 3: verb {adj}* noun [obj.]

Format 4: verb {adj}* noun [obj] infinitive verb

Format 5: noun adverb (verb is assumed)

Format 6: {adj}* noun [obj] verb

Format 7: {not + &} verb

(can be single verb, combination of verbs such as "is

 shown")

Format 8: verb {noun + &} preposition {adj}* noun { {and {adj}* noun} + & }

Less common Formats of variable identifiers:

Format 3 occasionally is used for variables as well as functions

Less common Formats of function identifiers:

Format 1 occasionally is used for functions as well as variables

Note: Formats 1,2, 3, 7, and 8 represent English sentence portions (Formats 3 and 8 are parsable

as complete sentences), and are in normal English grammatical order. Formats 5 and 6 are not in

normal English grammatical order.

182

Summary for Each Class:

File wx_button.h, class wxButton (wxWindows GUI):

variables:

2 Format 1

functions:

6 Format 3

1 Format 7

File applib.h, class TAppWindow (Watson XWindows GUI):

variables:

4 Format 1

2 Format 2

functions:

1 Format 1

12 Format 3

2 Format 5

1 Format 6

2 Format 8

File GnMouseDownCommand.h, class GnMouseDownCommand (GINA GUI):

variables:

3 Format 1

2 Format 3

1 No Standard Format

functions:

4 Format 1

7 Format 3

1 Format 5

2 Format 6

183

1 Format 7

1 No Standard Format

The Complete C++ Primer, p. 54, class temp_dial:

variables:

4 Format 1

2 No Standard Format

functions:

2 Format 3

The Complete C++ Primer, p. 98, class nest_egg:

variables:

1 Format 1

functions:

4 Format 7

The Complete C++ Primer, p. 179, class stack:

variables:

2 Format 1

functions:

2 Format 7

The Complete C++ Primer, p. 181, class piggy_bank:

variables:

1 Format 1

functions:

2 Format 7

The Complete C++ Primer, p. 211, class button:

variables:

1 Format 1

184

functions:

1 Format 3

1 Format 7

The Complete C++ Primer, p. 212, class menu:

variables:

2 Format 1

1 No Standard Format

functions:

1 Format 3

File wx_menu.h, class wxMenu (wxWindows GUI):

variables:

4 Format 1

1 No Standard Format

functions:

8 Format 3

5 Format 7

File wx_Menu.h, class wxMenuBar (wxWindows GUI):

variables:

none

functions:

5 Format 3

3 Format 7

File wx_dialg.h, class wxDialogbox (wxWindows GUI):

variables:

5 Format 1

1 Format 3

185

functions:

5 Format 3

6 Format 7

File GnCommand.h, class GnCommand (GINA GUI):

variables:

2 Format 1

2 Format 3

functions:

1 Format 1

7 Format 3

3 Format 7

2 Format 8

6 No Standard Format

File datastruct.h, class Hast_Table (Ga Tech parallelization tool):

variables:

3 Format 1

functions:

1 Format 1

1 Format 7

File depend.h, class dependence (Ga Tech parallelization tool):

variables:

1 Format 1

functions:

3 Format 1

2 Format 7

1 No Standard Format

186

File depend.h, class Hole_Dependence (Ga Tech parallelization tool):

variables:

none

functions:

3 Format 3

4 Format 7

File flowg.h, class flownode (Ga Tech parallelization tool):

variables:

11 Format 1

functions:

1 Format 1

7 Format 3

187

Results of Identifier Study

This analysis was performed over 17 classes, from 5 independent sources.

variables:

78.0% 46 Format 1

3.4% 2 Format 2

8.5% 5 Format 3

1.7% 1 Format 8

8.5% 5 No Standard Format

59 total

functions:

8.6% 11 Format 1

50.0% 64 Format 3

2.3% 3 Format 5

2.3% 3 Format 6

27.3% 35 Format 7

3.1% 4 Format 8

6.3% 8 No Standard Format

128 total

Using the algorithm for variables described earlier (see Figure 16):

91.6% Format 1, Format 2, most Format 3 and Format 8 identifiers are handled.

Problem: 8.4% All No Standard Format identifiers will be erroneously identified as

Format 1.

188

Using the algorithm for functions described earlier (see Figure 15):

82.7% Format 3, Format 6, Format 7, Format 8 identifiers are handled.

17.3% Format 1, Format 5, and No Standard Format identifiers will be asserted

with no usage information. (didn't help, but didn't hurt)

Note: In functions, all no standard format identifiers were in the Gina package, except for one

found in the Georgia Tech parallelization tool package. Also, in variables, 4 of 5 Format 3

identifiers (uncommon for variables since contain a verb) were found in the Gina package. This

can perhaps be understood since the Gina package originated in Germany, and was presumably

written by non-native English speakers. This assumption goes along with the fact that the Gina

package was the most sparsely commented of the three GUI packages examined.

Only the algorithm for function identifiers has currently been implemented. The reason that

the function algorithm has been implemented whereas the variable algorithm has not yet been

implemented, even though the variable algorithm has a higher success rate, is that the variable

algorithm does result in some false identifications.

Using the function algorithm alone, the PATRicia system was run on some classes (the

applib.h file, classes Application and TAppWindow) it had been tested on before, prior to the

addition of the function algorithm. In class TAppWindow, there was a "plot_line" identifier and a

"clear_display" identifier. Previously, "line", obviously a noun, usage subject here, had been

tentatively identified in the keyword layer of the PATRicia system knowledge base as a noun,

usage object as well as a noun, usage subject. Also previously, "clear" had been tentatively

identified in the PATRicia system knowledge base as an adjective, as well as a verb. After the

addition of the function algorithm, "line" was appropriately identified only as a noun, usage

object, and clear was appropriately identified only as a verb. Therefore, the function algorithm

can result in an appropriate word-sense identification, that can reduce the occurrence of erroneous

conclusions.

189

Class Variables and Functions and Their Associated Formats

Description: adjectives and adjectivals are italicized

adverbs are both italicized and underlined

nouns and pronouns are bold

verbs are underlined

File wx_buttn.h, class wxButton:

variables:

buttonBitMap Format 1

wxButton Format 1

functions:

Create Format 3

SetSize Format 3

SetDefault Format 3

SetLabel Format 3

GetLabel Format 3

Command Format 7

(from the context, "command" is a verb here, such as "I command you to

 depart")

ChangeColour Format 3

(Note the British spelling of "color")

File applib.h: class TAppWindow:

variables:

string_height Format 1

string_width Format 1

saved_text Format 1

number_of_saved_lines Format 2

190

current_ring_buffer_start Format 2

redraw_both_text_and_graphics Format 8

functions:

init_scrolling_text Format 2

put_scrolling_text Format 3

reset_scrolling_text Format 3

plot_line Format 3

plot_string Format 3

plot_rect Format 3

erase_rect Format 3

clear_display Format 3

do_edit Format 3

(here "edit" is a noun)

show_info Format 3

choose_one Format 3

choose_one_from_list Format 8

choose_file_to_read Format 4

choose_file_to_write Format 4

mouse_down Format 5

mouse_up Format 5

mouse_move Format 6

do_menu_action Format 3

update_display Format 3

idle_proc Format 1

191

File GnMouseDownCommand.h, class GnMouseDownCommand

variables:

start_x Format 3

start_y Format 3

last_x Format 1

last_y Format 1

timer Format 1

mouse_already_moved No Standard Format

functions:

submit Format 7

name Format 1

constrain_mouse Format 3

draw_feedback Format 3

track_mouse Format 3

mouse_idle No Standard Format

not_submitted Format 7

scroll_before_redo No Standard Format

hysteresis Format 1

auto_scrolling Format 1

idle_timeout Format 1

call_doit Format 3

handle_timeout Format 3

idle_action Format 1

motion_notify Format 6

button_release Format 6

get_last_x Format 3

get_last_y Format 3

192

The Complete C++ Primer, p. 54, class temp_dial

variables:

low No Standard Format

high No Standard Format

dial_increment Format 1

(here "increment" is a noun)

xloc Format 1

yloc Format 1

diameter Format 1

functions:

display_temp Format 3

set_temp_range Format 3

The Complete C++ Primer, p. 98, class nest_egg

variables:

savings Format 1

functions:

open Format 7

deposit Format 7

withdraw Format 7

balance Format 7

The Complete C++ Primer, p. 179, class stack

variables:

data Format 1

top Format 1

functions:

push Format 7

pop Format 7

193

The Complete C++ Primer, p. 181, class piggy_bank

variables:

savings Format 1

functions:

deposit Format 7

withdraw Format 7

The Complete C++ Primer, p. 211, class button

variables:

label Format 1

functions:

display_label Format 3

activate Format 7

The Complete C++ Primer, p.212, class menu

variables:

entries Format 1

num_items No Standard Format

current_item Format 1

functions:

display_entries Format 3

File wx_menu.h, class wxMenu

variables:

num_Columns No Standard Format

buttonWidget Format 1

menuid Format 1

top_menu Format 1

panelItem Format 1

194

functions:

AppendSeparator Format 3

Append Format 7

Enable Format 7

Check Format 7

Checked Format 7

SetTitle Format 3

GetTitle Format 3

SetLabel Format 3

GetLabel Format 3

Break Format 7

CreateMenu Format 3

DestroyMenu Format 3

FindMenuItem Format 3

File wx_menu.h, class wxMenuBar

variables:

none

functions:

Enable Format 7

EnableTop Format 3

Check Format 7

Checked Format 7

SetLabel Format 3

GetLabel Format 3

SetLabelTop Format 3

GetLabelTop Format 3

195

File wx_dialg.h, class wxDialogBox

variables:

dialogTitle Format 1

modal_showing Format 1

invisibleResize Format 1

dialogShell Format 1

PostDestroyChildren No Standard Format

frame Format 1

functions:

Create Format 7

SetSize Format 3

SetClientSize Format 3

GetPosition Format 3

Show Format 7

IsShown Format 7

Iconize Format 7

Fit Format 7

SetTitle Format 3

GetTitle Format 3

File GnCommand.h, class GnCommand

variables:

document Format 1

view Format 1

(here "view" is a noun)

view_x_offset Format 3

view_y_offset Format 3

196

functions:

name Format 7

(here "name" is a verb)

submit Format 7

IsStorable No Standard Format

Write_to_Stream Format 8

Read_from_Stream Format 8

executable No Standard Format

undoable No StandardFormat

clock_cursor Format 1

causes_change Format 3

doit Format 3

redoit Format 3

undoit Format 3

commit Format 7

scroll_before_redo No Standard Format

scroll_before_undo Not Standard Format

submit_to_framework Format 3

execute_undoit Format 3

execute_redoit Format 3

undoit_before No Standard Format

redoit_before No Standard Format

File datastruct.h, class Hash table:

variables:

our_table Format 1

max_size Format 1

empty_buckets Format 1

197

functions:

hash Format 7

remaining_spaces Format 1

File depend.h, class dependence:

variables:

ref Format 1

functions:

key Format 1

compare Format 7

read_write No Standard Format

dep_ref Format 1

dep_name Format 1

print Format 7

File depend.h, class Hole_Dependence:

variables:

none

functions:

print Format 7

expand Format 7

expanded Format 7

patch Format 7

store_pred_hole Format 3

store_potential_write Format 3

store_incoming_refs Format 3

198

File flowg.h, class flownode:

variables:

name Format 1

op Format 1

param Format 1

param2 Format 1

linenumber Format 1

exprs Format 1

scope Format 1

name_table Format 1

lookup_label Format 1

dummy_node_count Format 1

call_node_count Format 1

functions:

EnclosingFunction Format 1

lookup_label Format 3

enter_label Format 3

find_flownode Format 3

find_lab Format 3

make_callnode Format 3

make_dummynode Format 3

replace_name Format 3

199

APPENDIX C

STUDY OF THE APPLICATION OF THE SLEATOR AND TEMPERLEY
PARSER TO COMMENTS

Comments from wxWindows:

Comment #Parses
1) WxTimer provides simple timer functions. 1

2) Start the timer. ("the" added) 1

3) Stop the timer. ("the" added) 1

4) Every time a callback happens, these are set to point to the right values
for drawing calls to work. 312

 1st parse fails but is fairly close
First linkage: (11th parse works)

Correctly identified callback, values, calls as nouns.
Correctly identified set and to point as verbs.
Erroneously identified "for drawing calls to work", drawing as verb, calls as noun
object, work as noun.

5) Create a DC corresponding to a canvas. 3
 1st parse is correct

6) Most transactions involve a topic name and an item name. 1

7) Note that this limits the server in the ways it can send data to the client. 58
 (21 parses with no P.P. violations)

 1st parse fails but is very close
"in the ways it can send data to the client" modifies "server" instead of "limits"

 (9th parse is correct)

8) This declares menus and menu bars. 1

200

Comment #Parses

9) Get the horizontal spacing. 1

10) Start a new line. 1

11) Append to the end of the list. ("the" added) 1

12) Delete all nodes. 1

13) An event class represents a C++ class defining a range of similar event types; 2
examples are canvas events, panel item command events. 1st parse is correct

nouns = class[obj], class [obj], range [obj.], types [obj. of prep],
examples[subj.], events [obj.]

14) Read the event's arguments from any input stream. 4
1st parse fails but is very close

verb = read (2nd parse was correct)
nouns = event [possessive], arguments [obj]
error - "from any input stream" modifies "arguments" instead of "read"

15) Add a primary event handler, the normal event handler for this event.
 (replaced "-" with ",") 2

 1st parse is correct

16) Register a new event class, giving the new event class type, its superclass,
a function for creating a new event object of this class, and an optional description. 60

 1st parse is correct

17) Register the name of the event. 1

18) Get a secondary wxPanel. 1

19) Find the letter corresponding to the mnemonic, for Motif. 14
 1st parse is correct

20) After this is called, the metafile cannot be used for anything since it is now
owned by the clipboard. 10

 1st parse is correct

201

Comment #Parses

Comments from Watson Xwindows GUI

1) Need to set the pop-up menu titles. 1

2) We only allow either text or graphics to be active in a document window. 5
 1st parse is correct

nouns = text[obj], graphics [obj], window [obj. prep]
verbs = allow
adverbial phrase = to be active ("active" is counted as an adj)
adjectives = document

3) The following flag is non-zero if we are using the document window for 12
scrolling text. 1st parse fails but is very close

(5th parse was correct)
nouns = flag[obj], window [obj], text [obj. prep]
verbs = is, using
adjectives = following, document, scrolling
Erroneously defined "for scrolling text" as modifying "window" instead of "are using"

4) Note that this only looks good if the application program is careful not to draw
in the scrolling text area. 4

 1st parse is correct

5) Make room for the menu button. 3
 1st parse is correct

6) List selection. 1

7) We need to give back this storage. 1

8) Draw this once to clear the previous line. 2
 1st parse fails but is very close

verbs = draw, clear
nouns = line
adjectives = previous
Erroneously has "once" modifying "to clear"

9) Allocate storage for saved text lines. 1

202

Comment #Parses
10) Leave room for future code modifications. 4

 1st parse is correct

Comments from Watson Macintosh GUI

11) Handle menu actions. 1

12) Increase this for large windows. 1

13) This is a ring buffer. 1

14) This can be either 16 or 32 bits. 2
(both linkages are the same) 1st parse is correct

15) The user accepts all responsibility for its use. 2
 1st parse is correct

16) Expand the heap so new code segments load at the top. 5
 1st parse is correct

17) Make a single document window for this application. 6
"single" listed as part of noun phrase instead of as an adjective 1st parse fails but is very close

(2nd parse is correct)

18) Handle events. 1

19) Do idle work. 2
 1st parse fails, but is fairly close

(2nd parse is correct)
"idle" is part of verb phrase "Do idle" rather than an adj. modifying work.

20) Set the prompt text field. 2
 1st parse is correct

203

Comment #Parses

Comments from GINA

1) This is necessary to force initialization of global symbols that are contained
in the shared library. 7

 All parses fail
 However, outcome is not too bad.

nouns = symbols [obj. prep], library [obj. prep], force [obj.prep]
verbs = initialization, contained
adjectives = global, shared
Erroneously, "force" is identified as a noun in all parses.

2) Define metaclass information and downcast operators. 2
 1st parse is correct

3) This may look like C code, but it is really C++. 8
 1st parse is correct

Note: GINA has very few comments--possibly because it was apparently written by non-native
English speakers (apparently Germans) not comfortable in English--there were also a few German
comments.

Comments from code in The Complete C++ Primer

1) Create a string object. 1

2) Read a new string. 1

3) Call the friend function. (both linkages are the same) 2
 1st parse is correct

4) Copy null terminated string. 1

5) Copy a bound character array. 3
 "bound" is part of a noun phrase instead of an adjective 1st parse fails but is very close

 (2nd parse is correct)
6) Call a virtual function. (both linkages are the same) 2

 1st parse is correct

204

Comment #Parses

7) Define a general kind of button and its handler. 1

8) Do default action here. 2
 1st parse fails but is very close

nouns = action
verbs = do
adjectives = default
Erroneously, "here" modifies "action" rather than "do"

9) Derive different types of buttons and their handlers. 3
 1st parse is correct

10) Popup code goes here. 1

11) Code for scrolling goes here. 1

12) Set up buttons here. 4
 1st parse fails

 (2nd parse is correct)
nouns = buttons [obj. prep]
verbs = set
Erroneously, "up" treated as a preposition, "here" modifies "buttons"

13) Other class members go here. 1

14) The dial is now a class. 1

15) Private members go here. 2
"private" is part of a noun phrase instead of an adjective 1st parse fails but is very close

16) Protected members go here. 1

17) Public members go here. 2
 "Public" is part of a noun phrase instead of an adjective 1st parse fails but is very close

18) Declare the object. 1

19) Define the object's size. 1

20) Calculate the object's area. 1

205

Comment #Parses

Comments from the Georgia Tech Parallelization Tool

1) (This) returns the node on the far left in the subtree pathings. 5
"in the subtree pathings" modifies "left" instead of "node" 1st parse fails but is very close

2) (This) returns the node on the far right in the subtree pathings. 5
"in the subtree pathings" modifies "right" instead of "node" 1st parse fails but is very close

3) A list may be iterated over in one of two styles. 1

4) Back up the iterator by 1. 2
 1st parse is correct

5) Advance the iterator by 1. 2
 1st parse is correct

6) Return the current element. 2
 1st parse is correct

7) This file defines a wrapper class which allows the interpretation of the 58
operator ()() member function of list iterators to mean 1 of 2 things 1st parse is correct
depending upon context.

8) (This) allows one to tell if the iterator is empty. 3
 1st parse is correct

9) (This) returns the current value. 2
 1st parse is correct

10) Note that we only allow graph iterators to advance. 5
"to advance" is treated as a prepositional phrase modifying 1st parse fails but is fairly close
iterators, whereas it should be an infinitive verb with allow.
Note: removal of "advance" as a noun from the dictionary, probably not appropriate for software
anyway, would fix the problem.

11) This has the side effect of advancing the iterator past the 25 (15 with no P.P. violations)
element deleted. 1st parse fails but is very close

"past the element deleted" modifies "iterator" instead of "advancing"

206

Comment #Parses

12) Advance the iterator 1

13) Return the current element in the iterator and advance. 17
"current" treated as part of a noun phrase instead of as an adjective

1st parse fails but is very close

14) This allows one to tell if the iterator is empty. 3
 1st parse is correct

15) The template takes 2 formal parameters. 1

16) The template functions assume these members exist in any class 1
instantiated.

17) We shifted as much work as possible into the abstract class 10 (4 with no P.P. violations)
to reduce instantiation expense. 1st parse is correct

18) K is the key used for ordering the list. 3
 1st parse is correct

19) See the header at the beginning of this file. 5
 1st parse is correct

20) We allow duplicates, but they must be put to the right. 2
 1st parse is correct

207

Results

The experiment examined 83 comments from 5 different sources -- wxWindows GUI package,

Watson Xwindows GUI package[99], Watson Macintosh GUI package[99], GINA GUI

package[99], a Georgia Tech Parallelization tool package (called PAT)[99], and C++ code from

the book The Complete C++ Primer[99].

Some comments were not parsable because they were not in sentence format (for example,

consisted totally of nouns). A small number of comments in sentence form were not parsable by

the Sleator and Temperley natural language parser (approximately 5).

Note that only three of the comments in this study was not in present tense. (Comment #20,

wxWindows, has one past tense, one present tense, Comment #3, GaTech Parallelization Tool is

in future tense, Comment #17, GaTech Parallelization tool is in past tense.).

Results related to Ambiguity of a Parse

Percentage Number Description

42.17% 35 Only a single parse, no ambiguity

36.14% 30 Multiple parses, first parse was the correct parse

14.46% 12 First parse was incorrect, but missed in very minor

ways (such as a single adverb modifying the wrong

verb, a prepositional phrase that is attached to the

wrong word, or an adjective treated as part of a

noun phrase) that will not affect the PATRicia

system as currently defined.)

4.82% 4 First parse was incorrect, but the effect on the

PATRicia system is minor

2.41% 2 First parse was incorrect

83 total

208

Note: Randomness was achieved by using the first 20 parsable comments (GINA did not have

that many), except for comments relating to copyright at the top of a file. Additional randomness

was achieved by the fact that file order was determined by the order in which files were printed.

Discussion of Results

For 78.31% (42.17% + 36.14%) of the comments, the first parse was the correct parse.

For 92.77% (42.17% + 36.14% + 14.46%), the first parse provides useful information to the
PATRicia system, without having erroneous information affect the PATRicia system (as the
PATRicia system is currently defined).

For 4.82%, some very minor erroneous information is presented to the PATRicia system, but
most of the information is correct.

A summary follows of the analysis of comments that were labelled above as being comments
with minor parse errors that will not affect the PATRicia system as currently defined:

wxWindows comments

7) Note that this limits the server in the ways it can send data to the client.

Erroneous attachment of a prepositional phrase. "in the ways it can send data to the client"
modifies "server" instead of "limits"

14) Read the event's arguments from any input stream.

Erroneous attachment of a prepositional phrase. "from any input stream" modifies "arguments"
instead of "read"

Watson Xwindows GUI comments

3) The following flag is non-zero if we are using the document window for scrolling text.

Erroneous attachment of a prepositional phrase. "for scrolling text" modifies "window" instead of
"are using".

8) Draw this once to clear the previous line.

Erroneous attachment of an adverb. "once" modifies "to clear" instead of "Draw".

209

Watson Xwindows Macintosh GUI comments
17) Make a single document window for this application.

Adjective erroneously treated as a noun in a noun phrase. "single" listed as part of a noun phrase
instead of as an adjective.

Comments from code in The Complete C++ Primer

5) Copy a bound character array.
Adjective erroneously treated as a noun in a noun phrase. "bound" listed as part of a noun phrase
instead of as an adjective.

15) Private members go here.

Adjective erroneously treated as a noun in a noun phrase. "Private" listed as part of a noun
phrase instead of as an adjective.

17) Public members go here.

Adjective erroneously treated as a noun in a noun phrase. "Public" listed as part of a noun phrase
instead of as an adjective.

GaTech Parallelization Tool comments

1) (This) returns the node on the far left in the subtree pathings.
"in the subtree pathings" modifies "left" instead of "node"

2) (This) returns the node on the far right in the subtree pathings.
"in the subtree pathings" modifies "right" instead of "node"

10) Note that we only allow graph iterators to advance.
"to advance" is treated as a prepositional phrase modifying iterators, whereas it should be an
infinitive verb with allow.
Note: removal of "advance" as a noun from the dictionary, probably not appropriate for software
anyway, would fix the problem.

11) This has the side effect of advancing the iterator past the
element deleted.
"past the element deleted" modifies "iterator" instead of "advancing"

13) Return the current element in the iterator and advance.

"current" treated as part of a noun phrase instead of as an adjective

210

APPENDIX D

 BACKGROUND OF THE EXPERTS

Lisa L. Bowen received the BS degree in Computer Science in
1993 and the MS degree in Computer Science in 1996 from the
University of Alabama in Huntsville, Huntsville, AL. She is
now a Lecturer in Computer Science and a PhD student at the
University of Alabama in Huntsville. From 1985 to Feb.1987
she worked as a Systems Analyst at Delta Research, Inc.,
Huntsville, AL, where she developed engagement simulations
for the Strategic Defense Initiative. From Feb. to Oct. 1987 she
worked as a Systems Manager for PaneLogic, Inc., Huntsville,
AL, where she designed and developed database and invoicing
systems. From Oct. 1987 to Feb. 1988 she was employed as a

Software Systems Engineer at Engineering and Economics Research, Huntsville, AL, where she
developed analytic methods for Theater Missile Defense target databases and performed
targeting analysis for SDI applications. From Feb. to May 1988, she worked for Titan Systems,
Huntsville, AL, as a Software Engineer, where she designed and developed computational tools
for the SDI. From May 1988 to April 1991, she was employed as a Systems Manager at Kaman
Sciences, Huntsville, Alabama, where she managed several computer systems, and designed and
developed database systems. She worked as a Software Engineer from April 1991 to June 1992
at Techni-Core, Huntsville, AL, where she designed and developed Windows-based password
and auto-logon software for several different systems. From August 1992 to May 1997, she was
employed as a Software Engineer at Coleman Research Corporation, Huntsville,AL, where she
was responsible for the development and integration for the THAAD launcher simulation for the
THAAD Verification and Validation System. She also served as the leader of the Requirements
Management Process Action Team, where she was responsible for defining, implementing, and
improving the Requirements Management Process.

David B. Etzkorn received a Bachelors of Electrical
Engineering with highest honors in 1980, and the MS degree in
Electrical Engineering in 1988 from the Georgia Institute of
Technology, Atlanta, GA. He is currently employed at
Huntsville Microsystems, Inc., as a Senior Design Engineer.
At Huntsville Microsystems he develops hardware and
software for microprocessor emulators. From 1980 to 1981 he
was employed as a Design Engineer at Scientific Atlanta,
Norcross, GA, where he performed analog and digital design
for cable television equipment. From 1981 to 1987 he was
employed as a Senior Design Engineer at Lanier Business
Products, Atlanta, Georgia, where he performed hardware,

firmware, and software design on microprocessor-based dictation equipment. From 1989 to 1992
he did research on personnel detectors as a Senior Design Engineer at Physitron, Inc., Huntsville,
AL. His work at Physitron involved digital design, software design, and analog design.

211

LeeAnne W. Lewis received the BS degree in Business
Information Systems and Quantitative Analysis in 1978 from
Mississippi State University. She received the Master of
Combined Science in Mathematics in 1986 from Mississippi
College. She received the MS in Computer Science in 1993
from the University of Alabama in Huntsville, Huntsville, AL.
She is currently employed as a Software Quality Manager at
Ryder Transportation Systems, Miami, FL. At Ryder, she is
responsible for developing software testing strategies, processes,
plans, and environments for a variety of applications on
client/server and multiple tiered architectures. From 1979 to
1994, she was co-owner of Clifton Lewis Trucking, Brandon,
MS, where she had complete responsibility for the financial

aspect of the business and developed database applications for a fuel analysis and reporting system
for a fleet of tractor-trailer units. From 1982 to 1990 she worked as an information systems
consultant for various non-profit organizations, and also taught mathematics and computer science
courses at Hinds Community College, Jackson, MS. From 1985 to 1987 she worked as a Systems
Analyst in the office of the Mississippi Secretary of State, Jackson, MS, where she performed
system analysis and data normalization of large database systems, and was responsible for the
acquisition of hardware and software. From 1990 to 1992 she was a Graduate Research Assistant
at the University of Alabama in Huntsville, where she supported high performance computing for
high school students and teachers on a state and national level. From 1992 to 1996 she was
employed as a Senior Software Engineer at Quality Research, Huntsville, AL, where she served as
a senior member of the Air Force SEI CMM Software Capability Evaluation team. She also served
as a Program Manager responsible for the Life Cycle Software Engineering Support for the US
Army Space and Strategic Defense Command Software Engineering division. She served on
several verification/validation processes. She also developed requirements for a government
executive information system, and for an event-based commercial software product.

Anthony Mark Orme received the BS in Computer Science in
1991 and will receive the MS in Computer Science in 1997 from
the University of Alabama in Huntsville, Huntsville, AL. He is
currently employed at Oracle Corp. as a Senior Instructor.
From 1988 to 1992 he was employed as a System/Database
Administrator at the University of Alabama in Huntsville, where
he designed, implemented, and supported various very large
databases used in NASA-related research. He was in charge of
daily maintenance and management of a VAX cluster, which
included both Macintosh and PC clients connected via
Pathworks. He was responsible for purchasing hardware and
layered software to support research in the Optical Aeronomy

Lab. From 1992 to 1995, he was employed as a Technical Lead/Software Development at
CapMed Systems Corporation, Huntsville, AL, where he performed design and development of a
client/server Clinical Patient Records System. This included choosing 4GL tools to handle the
development and system lifecycle. He performed design and development of both the user
interface and functional requirements of the project using Gupta Corp. SQLWindows and
SQLBase. He developed regression testing procedures using Microsoft Test. He also

212
implemented and maintained a configuration control system. From Jan. 1996 to May 1997, he was
employed as a Lecturer in Computer Science at the University of Alabama in Huntsville.

Bradley L. Vinz received the BS degree in Computer Science,
Cum Laude, in 1987, and the MS degree in 1992 from the
University of Alabama in Huntsville, Huntsville, AL. He
currently is a PhD student in Computer Science at the University
of Alabama in Huntsville, where his primary research area is the
application of neural networks to image processing problems.
From 1987 to 1998, he worked as an Associate Programmer
Analyst at Unisys Corporation, Huntsville, AL, where he
designed and implemented a user-interface to communicate with
a complex network of computer modules. From 1988 to 1990,
he was employed as a Software Analyst at Intergraph
Corporation, Huntsville, AL, where he designed and

implemented an interactive graphical user interface used in cartographic editing of digitized
military defense maps.From 1990 to 1994 he was a NASA Fellow at the University of Alabama in
Huntsville, where he performed research on neural networks. He designed and implemented
several neural network simulators, all with user-friendly graphical interfaces. In 1994 he was the
recipient of the Dynetics Corporation Endowed Scholarship. From 1994 to 1996 he was employed
as a Lecturer in Computer Science at the University of Alabama in Huntsville.

Minyoung Yun received the BS degree in Textile Engineering in
1980 from Jeon-Buk National University in Korea. She received
the MS in Computer Science in 1989 and the PhD in Computer
Science in 1993 from the University of Alabama in Huntsville,
Huntsville, AL. She is currently employed as an Assistant
Professor at Sungkyul University, Korea. From Jan. 1994 to
Dec. 1994 she was employed as an Assistant Professor at
Alabama A&M University, Normal, AL.

Janet C. Wolf received the BS in Information and Computer
Science, with honors, in 1982 from the Georgia Institute of
Technology, Atlanta, GA. She is currently employed as a
Development Programmer at IBM Research Triangle Park, North
Carolina, where she recently worked on prototype team that
developed the BSD 4.3 Sockets-over-SNA -- an implementation
that allows TCP/IP Socket API programs to use SNA transport
with no software rewrite. From 1982 to to 1987 she worked as a
Development Programmer at IBM's EDX Communications
Facility in Palo Alto, CA, where she designed, coded, tested, and
maintained communications software for the IBM Series/1
Computer. From 1987 to 1992 she worked on VTAM

213
development as a Development Programmer at IBM Research Triangle Park, North Carolina,
where she worked on teams that designed and developed VTAM X.25 support on VM, and for the
MVS platform.

Randall P. Wolf received the BA degree in Computer Science,
Political Science, and Sociology at Birmingham-Southern
College, Birmingham, AL, in 1980. He received the MS in
Computer Science at the University of Alabama in Huntsville,
Huntsville, AL, in 1993. He currently is a PhD student in
Computer Science at the University of Alabama in Huntsville,
where his primary research area is knowledge acquisition via the
integration of personal constructs and conceptual graphs. From
1980 to 1994 he was a Software Developer/Contractor for
several different contracts. These contracts included work for
the Center for Microgravity and Materials Research on the image
analysis of crystal growth, and pattern recognition and data

visualization of residual acceleration in orbital laboratories. Other contracts included work for
General Research Corporation on the requirements analysis of the front end of a CASE tool to
support the Strategic Defense Initiative, and work for Analysts International Corporation on the
creation of the test plan for the OSI transport layer for a new operating system for the IBM AS400
computer. From 1981 to 1992 he worked for Computer Sciences Corporation, where he
participated as a member of the launch crew for the first Space Shuttle flight. He also coded and
debugged data communications simulations of Spacelab experiments communications, and
maintained and improved statistics programs used in the analysis of wind vector data from Space
shuttle launches. From 1982 to 1984 he worked for John M. Cockerham and Associates, where he
designed and implemented improvements to cost and risk programs associated with the research
and development of weapons systems. He also served as a database administrator for the Foreign
Military Sales Data Management and Tracking System. From 1991 to 1993 he was a Graduate
Research Assistant working on NASA sponsored research concerning residual acceleration levels
in orbital laboratories -- this utilized pattern recognition, database technology, data visualization,
Fourier analysis, and expert systems. From 1994 to 1996 he was a Graduate Research Assistant
working on database security analysis research -- this included formal language techniques, as well
as artificial intelligence techniques and pattern recognition and database techniques.

214

APPENDIX E

PROGRAM UNDERSTANDING EXPERIMENT PHASE I -- DIRECTIONS AND
QUESTIONNAIRES

Directions

The object of this experiment is to compare the knowledge of C++ and GUI experts to the

knowledge-base of the PATRicia system. The purpose of your portion of this project is to

provide your knowledge of C++ GUI software in a format that can be compared to the output of

the PATRicia system. There are 5 C++ and GUI experts taking part in this project. All of you

were carefully chosen for educational background, and for experience. All of you have several

years of programming experience. All of you also have technical degrees--either in computer

science or electrical engineering; indeed, most of you have master's degrees, or are very near to

completing a master's degree. I deeply appreciate your consenting to work on this project.

I have attempted to organize this experiment in such as way as to cost the experts the least

possible time. In the notebook provided to you, you will find portions of four C++ GUI packages,

the wxWindows GUI package[102] the Watson Xwindows GUI package[111], the Watson DOS

GUI package[111], and the GINA GUI package[8]. All these are either shareware packages, or,

in the case of the Watson GUI packages, was printed in a book, Portable GUI Development with

C++, by Mark Watson[111]. Each class for you to analyze has had its class definition

highlighted. Additionally, at the front of this notebook you have been provided with a list in

alphabetical order of the current high level concepts in the PATRicia system knowledge-base, and

215

a list of the current keyword interface layer, also in alphabetical order, of the PATRicia system

knowledge base.

You have been provided with two different types of report sheets. The first type, labeled at

the top "Concepts Already In the PATRicia System Knowledge Base," is to be used when you

find concepts in the software that already exist in the knowledge base. The second type, labeled at

the top "New Concepts Not Currently In the PATRicia System Knowledge Base," is to be used

when you find new concepts that do not currently exist in the knowledge base. I have provided

you with several copies of each kind of sheet. Please feel free to copy off more as needed, or

contact me and I will send you more.

Stage 1 (this is the most important part of the study):

Read the class definition of each highlighted C++ class. Please use only the comments and

identifier names associated with the class. We are interested in GUI-related concepts ONLY.

Non-GUI concepts such as programming concepts that are not GUI-related should be

ignored. As you identify each main concept, look in the list of PATRicia system concepts, and

find that concept. Then write the concept, and the class name where it was found, on a sheet of

the type labeled "Concepts Already in the PATRicia System Knowledge Base." Please try to keep

concepts from a single class sequentially written on the sheet as much as possible. (If you disagree

with the definition provided with a particular concept, please notify me in some way. If you wish,

you can write your definition on the list of concepts and return a copy of it to me). The list of

PATRicia system concepts is in alphabetical order, by concept name, to try to make this task

easier. However, it is possible that you know the concept under a different name than that used in

the PATRicia system. You may be able to find the concept under its other name by looking at the

concept definitions ("facts") provided. If you discover a concept that you did not find in the

PATRicia system concept list, please include that concept, along with the name of the class where

it was found, on a separate sheet, of the type labeled "New Concepts Not Currently In the

PATRicia System Knowledge Base." In such a case, please look in the PATRicia system's

keyword list, and identify any keywords that should map into that concept. Please write your best

216

definition of each newly identified concept in the area provided on the sheet. If you think

additional keywords should map into that concept besides those provided on the keyword list,

please include those additional keywords--however, please identifiy each new keyword (that is,

each keyword that is not currently in the PATRicia system) as new by placing "(new)" beside the

keyword.

Stage 2:

You have been given, on a diskette, a copy of the GnMouseDownCommand class. This class

is part of the GINA GUI package, and has been sparsely commented. Please comment this class

in your normal commenting style.

Stage3 (do if you have the time):

Go back through each selected class, and look at the code of the member functions (methods)

associated with that class. For any concepts that you identify in this manner, that you did not

identify just from the class definition, please handle as you did earlier by writing the concept name

and class name, etc., on the appropriate sheet.. Please add, beside each class name, in parentheses,

the word "code," and the name of the member function where the concept was identified. For

example, given a concept "mouse," and a member function named "reset_mouse," in a class

Mouse_Handler:

mouse Mouse_Handler (code, reset_mouse)

In all cases, I did not provide you with all member functions. The member functions are

provided for the Watson packages, and for the GINA packages. I have highlighted the member

functions definitions in green for those packages. Note that most of the Watson XWindows

package member functions should be there, but possibly not all. For the Watson DOS package,

all member functions should be there. For the GINA package, all member functions should be

there.

217

When you have finished, please send me the sheets on which you have written the identified

concepts. I will of course pay for postage. Tell me how much and I will pay you back, if that's

all right. I have not yet decided whether to have you mail back the notebooks, or whether to have

you keep them until the next phase of the project. Possibly you have opinions on this, such as

perhaps you do not wish to have to store the notebook. I will probably have to update them in

some way for the second phase of the project. If you wish to mail it back to me, do so, and I will

pay for postage. Otherwise, keep it for now--I may have you mail it back later.

Speaking of which, there will be a later phase of this project. This experiment is to validate

the knowledge base of the PATRicia system--the next phase will be to validate some PATRicia

system quality metrics. I currently anticipate that phase will take place sometime next spring.

If possible, I would prefer to get your reports back sometime in early January--the earlier the

better, from my standpoint. However, I do understand that this is not at the top of your task list

over the holidays.

Thank you so much for your efforts!

Feel free to call me if you have any questions or difficulties.

A B C D E F G H I J K L

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

Concepts Already In the PATRicia System Knowledge Base

_

Concept Class

A B C D E F G H I J K L

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38 | |

A B C D E F G H I J K L

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

New Concepts Not Currently In the PATRicia System Knowledge Base

Concept Name Definition Class Keywords _

A B C D E F G H I J K L

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38 | |

220

APPENDIX F

PROGRAM UNDERSTANDING EXPERIMENT PHASE II -- DIRECTIONS
AND QUESTIONNAIRES

Directions

Hi again,

This should be a whole lot easier than last time. Don't be worried because there are a number

of pages of stuff involved here--once you get going this should go very fast.(I think the hard part

is understanding just exactly what I want you to do!)

The idea behind this experiment is to compare the concepts derived by the experts earlier (that

means a merging of what you gave me last time, along with what the other experts gave me) with

the output of the PATRicia system.

This is basically a simple matching process, like what you used to do in 3rd grade, for

example:

221

Only in this case you're going to be matching expert-generated concepts to PATRicia system

concepts.

As you recall, the domain of interest is that of graphical user interfaces (GUIs).

There are a few differences in the matching process here compared to what you used to do in

third grade. Before I describe those differences, let me first give you a better idea of why this test

is desired.

There are two aspects of the PATRicia system's output that we are interested in. First, we

want to know how many of the concepts that were identified by the experts that the PATRicia

system also identified (let's call this concept coverage). Second, for this experiment, we want to

know how many extra, totally wrong concepts that the PATRicia system generates (if any) (let's

call this concept overgeneration).

The idea, of course, is that there are two primary ways that the PATRicia system could be

wrong. First, it might not identify all the concepts that it should. Second, it might identify lots of

extra garbage that really isn't there at all.

Note that when we're talking about garbage, we primarily mean really wrong information, or

concepts. For example, if you identify a window, you might imply other things normally

associated with a window (such as erase window, redraw window, etc.) Even if those were not

explicitly present in comments or identifiers in the class, it's not all all unreasonable to assume

that somewhere associated with that class such items exist, and thus not totally wrong to identify

them. However, some concepts might be totally wrong. For example, if you are working in a

class that is identified as implementing Motif, and you identify it instead as being a Microsoft

Windows class instead. Please keep these distinctions in mind.

For the reasons above, I've divided the matching process into two separate areas. First, two

concepts might match exactly, or they might match as sub-concepts. Second, two concepts might

be somewhat, or fairly related, even though not matching exactly.

222

An example of two concepts matching exactly would be to have a concept in the expert's

concept list called "redraw_window," and you matched that to a concept in the PATRicia system's

list called "redraw_window." (Note that on rare occasions these concepts might have different

names, but be basically the same thing, or extremely closely related--such as "primary_window"

and "workspace." In that case those concepts would be matched exactly). An example of

matching sub-concepts would be to match the separate concepts "redraw" and "window" to

"redraw_window." This is reasonable since those concepts have to be identified on the way to

identifying "redraw_window."

An example of two concepts being related would be to have a concept in the expert's concept

list called "move_mouse." Related concepts would include "move_mouse_down,"

"move_mouse_up," "mouse_events," and "mouse_event_messages." Matching these concepts is

reasonable for the reasons described earlier.

The other possibility would be that the concepts did not really match at all. An example of

this would possibly be "menu" and "start_timer," or, as we discussed before, "Motif" and

"Microsoft_Windows."

Explicit Instructions, or HOW TO DO IT

You have been given two kinds of report sheets:

1) a report sheet listing, for each class, all the expert's concepts that were identified for that class.

Note that each of the expert's concepts has a line reserved for you to write all PATRicia system

concepts that are matched, or very nearly matched, or sub-concepts of the expert's

concept-in-question. Note also that each of the expert's concepts has two lines reserved for you to

write all PATRicia system concepts that are related, or somewhat related, to the expert's

concept-in-question.

223

2) a report sheet, listing class names only, in which you are to write PATRicia system concepts

that did not match, or be related to, other concepts (these concepts are extraneous garbage, or

concept overgeneration--see above).

The report sheets are located in your notebook at the beginning of each package to be

analyzed. The report sheets listing the expert's concepts are stapled together. They are followed

by a single report sheet for listing the extraneous garbage.

In each package to be analyzed, following the report sheets, comes a page listing the class

hierarchy that you are to follow in your analysis (you should start at the base class and go down).

Then come the reports that were generated by the PATRicia system. There are basically three

types of reports that are generated by the PATRicia system--a keyword report (that comes first in

the notebook, following the class hierarchy sheet), a concept report (that follows the keyword

report), and finally a class operational report (this should be last in the current package).

Summary of notebook order:

For each package to be analyzed,

1) report-sheets-for-matching, stapled together

2) garbage report sheet

3) class hierarchy sheet

4) keyword report

5) concept report

6) class operational report

For the purposes of this test, you are primarily interested in the concept report. On hopefully

quite rare occasions you will look at the other reports--these rare occasions will be when there was

neither a concept nor a related concept in the PATRicia system's concept report that matched the

current-concept-being-examined from the expert's concept list.

224

You will probably want to temporarily remove your report sheets from the notebook while

you match concepts. Please write your matches, etc., on the report sheets. This will provide

some needed uniformity for this test! Also, please replace them in the notebook afterwards.

For each concept in a class, that concept might be listed as being inherited, or occurring in

that particular class, or both. You can tell this by the "at location(s)" line. Ignore inheritance

while matching. Finally, however, when listing concepts on the garbage report, do not list

inherited concepts (they will have been handled already in the earlier class).

NOTE: inherited-only concepts will have their location marked in yellow!!!

225

Procedure:

1) Select a class to analyze.

2) Extract the report-sheets-for-matching (these are stapled together).

3) Turn to the PATRicia system concept report.

4) Look at each of the expert's concepts (for the current class) that is listed in the

report-sheets-for-matching.

5) Looking at the PATRicia system concept report, find:

 a) every concept that exactly matches the expert's concept-in-question. Remember that this

 may or may not have exactly the same name as the concept-in-question--more often it

 will. List this concept under the expert's concept-in-question on the

 report-sheet-for-matching, on the line labeled "Same or very similar concepts."

 It is okay to use inherited concepts here!!!

 Put a checkmark by each of the PATRicia system's concepts that you have used

 to match the expert's concept-in-question.

 b) every concept that is a sub-concept of the expert's concept-in-question. For example,

 for the expert's concept-in-question "redraw_window," both "redraw" and "window"

 would be sub-concepts. List each sub-concept under the expert's concept-in-question on

 the report-sheet-for-matching, on the line labeled "Same or very similar concepts."

 It is okay to use inherited concepts here!!!

 Put a checkmark by each of the PATRicia system's concepts that you have used

 as a sub-concept to match the expert's concept-in-question.

 c) every concept that is related, or somewhat related, to the expert's concept-in-question. For

 example, "scrolling_text" might be somewhat related to "copy-text_pointer," or

 "dialog_box" might be somewhat related to "working_dialog_box," or

 "message_dialog_box." List each related concept under the expert's concept-in-question

 on the report-sheet-for-matching, on the line labeled "Related concepts."

 It is okay to use inherited concepts here!!!

226

 Put a checkmark by each of the PATRicia system's concepts that you have marked

 as related to the expert's concept-in-question.

6) If no match or related concept is found for the expert's concept-in-question, then look at the

PATRicia system's keyword report. If one or more keywords related to the expert's

concept-in-question is found, then write "See keyword report." under the expert's

concept-in-question on the report-sheet-for-matching, on the line labeled "Same or very similar

concepts." There is NO need to put a checkmark on the keyword report.

7) If no match or related concept is found for the expert's concept-in-question, then look at the

PATRicia system's class operational report. Read this report, and determine if the

concept-in-question is found there. For example, you are interested in the expert's concept

"position." You didn't find that concept in the PATRicia systems concept report. Then you

looked at the PATRicia system's keyword report. You didn't find that concept in the keyword

report, so you look at the PATRicia system's class operational report. In the class operational

report, you find a sentence like this "It is possible to paint an object that can be described by an

orientation descriptor and a position descriptor and a size descriptor and a style descriptor." Since

you find the word "position" in a sentence related to this class, you write "See class operational

report" under the expert's concept-in-question on the report-sheet-for-matching, on the line labeled

"Same or very similar concepts." There is NO need to put a checkmark on the class

operational report.

8) Repeat lines 4-7 for all concepts in the current class.

9) For each concept in the PATRicia system's concept that report that does not have a

checkmark after all of the expert's concepts for the class have been handled, write that concept's

name on the garbage report sheet, under the current class. DO NOT WRITE INHERITED

CONCEPTS HERE!!! (They will have been handled earlier).

A B C D E F G H I J K L

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

List all concepts that were NOT matched to another concept 0

Watson XWindows

Class TAppWindow

A B C D E F G H I J K L

 26

 27 0

A B C D E F G H I J K L

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

List all concepts that were not matched to another concept _

GINA

Class GnContracts

Class GnObject

Class GnCommand

Class GnMouseDownCommand

A B C D E F G H I J K L

 26

 27 0

A B C D E F G H I J K L

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

List all concepts that were NOT matched to another concept 0

wxWindows

wxObject

wxbWindow

wxWindow

wxbItem

wxItem

wxbButton

wxButton

A B C D E F G H I J K L

 26

 27 0

A B C D E F G H I J K L

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

GINA 0

Class GnContracts

 NONE

Class GnObject

1) object

Same or very similar concepts

Related concepts

Class GnCommand

1) cursor

Same or very similar concepts

Related concepts

2) frame

Same or very similar concepts

Related concepts

3) object

Same or very similar concepts

Related concepts

4) text

A B C D E F G H I J K L

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

Same or very similar concepts

Related concepts

5) timer_event_messages

Same or very similar concepts

Related concepts

6) view

Same or very similar concepts

Related concepts

7) xposition

Same or very similar concepts

Related concepts

8) yposition

Same or very similar concepts

Related concepts

Class GnMouseDownCommand

1) button

Same or very similar concepts

Related concepts

A B C D E F G H I J K L

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

2) button_release

Same or very similar concepts

Related concepts

3) constrain_mouse

Same or very similar concepts

Related concepts

4) cursor

Same or very similar concepts

Related concepts

5) down

Same or very similar concepts

Related concepts

6) draw_feedback

Same or very similar concepts

Related concepts

7) motion_notify

Same or very similar concepts

Related concepts

A B C D E F G H I J K L

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

8) move_mouse

Same or very similar concepts

Related concepts

9) move_mouse_down

Same or very similar concepts

Related concepts

10) mouse_down

Same or very similar concepts

Related concepts

11) mouse_event_messages

Same or very similar concepts

Related concepts

12) mouse_idle

Same or very similar concepts

Related concepts

13) scrolling_text

Same or very similar concepts

Related concepts

14) text

A B C D E F G H I J K L

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

Same or very similar concepts

Related concepts

15) text_scrolling

Same or very similar concepts

Related concepts

16) timer_event_messages

Same or very similar concepts

Related concepts

17) track_mouse

Same or very similar concepts

Related concepts

18) view

Same or very similar concepts

Related concepts

19) window

Same or very similar concepts

Related concepts

20) window_frame

Same or very similar concepts

A B C D E F G H I J K L

 126

 127

 128

 129

 130

 131

 132

 133

 134

Related concepts

21) xposition (xcoordinate)

Same or very similar concepts

Related concepts

22) yposition (ycoordinate)

Same or very similar concepts

Related concepts

236

APPENDIX G

REUSABILITY ANALYSIS EXPERIMENT -- DIRECTIONS AND

QUESTIONNAIRES

Directions

This experiment attempts to determine the reusability of portions of three separate packages

of C++ GUI software. You, along with others, will serve as a C++ expert, and will answer

several questionnaires relating to various aspects of the reusability of the given software. Then

you will rate the software as reusable on a scale where Excellent = 100%, Good = 75%, Fair =

50%, and Poor = 25%. The purpose of the questionnaire is to ensure that all experts consider the

same factors when deciding whether a class or class hierarchy is reusable or not; however, you are

allowed to add additional factors that do not appear on the questionnaire. Similarly, if you

disagree with part of the questionnaire you are allowed to say so, and state your reasons why.

You will be rating 18 classes over three separate C++ GUI packages. You will also be rating

6 different hierarchies (some of the classes appear in multiple hierarchies). You will look at the

class first as a standalone entity, and then as part of a hierarchy. The quality factor framework

related to the reusability of a single class is called Reusability-in-the-class. The quality factor

framework related to the reusability of a set of classes in a single class hierarchy is called

Reusability-in-the-Hierarchy. Your directions also include a brief description of the quality

factor frameworks Reusability-in-the-Original-System, and Reusability-in-the-Subsystem, for

completeness; we will not be concerned with the latter two quality factor frameworks in this

experiment.

237

The information on reusability derived from this experiment will be used to test the metrics

and quality metrics portion of the PATRicia system (Program Analysis Tool for Reuse), which

forms part of my doctoral dissertation. However, you are not concerned directly with the

PATRicia system in this experiment.

For those of you who have served as experts for me before, the same classes are to be

examined in this experiment as were examined in the earlier C++ experiment. However, this time

I have included the member function code along with the class definitions for all the classes. This

notebook has been reorganized somewhat, with the wxWindows portion placed last. As you

recall, the wxWindows portion was the longest. I wish to remind you that the first hierarchy in

the wxWindows section is the most important to me of the four hierarchies; however, after the

first hierarchy is completed only 6 additional classes remain to be examined (several classes are

repeated between the various hierarchies, and each class need only be examined once).

You are provided a set of Reusability-in-the-Class questionnaires, at least one each for the

18 classes, plus a couple of extras in case of errors. You are provided one Reusability-in-the-

Hierarchy questionnaire for each hierarchy. The Reusability-in-the-Hierarchy questionnaires

are specific to the particular hierarchy, whereas the Reusability-in-the-Class questionnaires are

interchangeable.

In regard to certain questions on the questionnaires: when I ask, for example, "what is the

average number of executable semicolons," or "what is the average number of commented

methods," I am not necessarily interested in your laboriously counting each comment or semicolon

(although you may if you wish, this would add excessively to the time you spent on this task, and

that is not my goal). What I want you to do is to consider these questions when trying to decide,

based on your own C++ and GUI experience, whether or not the class (or hierarchy) could be

reused with an appropriate amount of effort in a particular project that requires a GUI interface.

The listed questions are provided for two reasons: 1) to make certain that you don't forget

anything important in your determination of reusability, and 2) to make sure that all my experts

238

are at least thinking generally in the same way, so that results combining your efforts will be

somewhat meaningful.

I estimate the time for this project should take somewhere between 3-5 hours of actual work

time. This could vary depending on how carefully you count comments and semicolons, etc., and

on your level of C++ experience. Remember that I want your best estimate of reusability, in no

more than the amount of time you would spend on a particular class or hierarchy if you were

initially considering its use in a project, that is, an amount of time in which you would determine:

a) the class (or hierarchy) is worth being looked into further, or b) the class (or hierarchy) is not

worthy of being looked at further. You might work from the assumption that you were given

these three different packages as possibilities for using in your project, and that you are to decide

between them. One caveat I might mention is that all of these packages have been reused

somewhat. They are not commercial packages; rather, they are produced by research

organizations (located in different parts of the world!). However, the packages have seen varying

amounts of use.

The organization of the notebook is as follows: there are three sections, one for each C++

GUI package. GINA is first, followed by Watson Xwindows, then finally comes wxWindows.

Each section begins with an index divider that has a green tab with the name of the current C++

GUI package. Within each section: first after the package index divider comes the class hierarchy

listing. Then immediately follow the .h files that contain the class definitions. Each .h file is

separated from another .h file by a piece of colored construction paper--usually yellow, but in

some cases black. Following the .h files comes an index divider that says either GINA .C files,

Watson .cxx file, or wxWindow .cc files, as appropriate for the current section. Within these .cc

files are the member function definitions for all non-inline functions. Each of the code files (.C,

.cxx, or .cc as appropriate) is separated from the other code files by an index divider. The index

dividers contain the names of the code files. Beside each class definition in a .h file, hand-written,

is the name of the corresponding code file (.C, .cxx, or .cc as appropriate) that contains that class

239

definitions' member functions.In the case of wxWindows, some class definitions have code that is

found in multiple .cxx files. In this case the name of each file is written beside the class

definition. Additionally, within the .cxx file, a colored tab with the name of the classes whose

member functions are being defined is stuck on the page at which those member function

definitions begin. Note that this was necessary only for the wx_item.cc and wb_item.cc files. In

the case of the wxWindows package alone, between the class hierarchy at the beginning of the

section, and the following .h files, is a page that contains a mapping from .h files to their

associated .cxx files.

Note that all class definitions and member functions of interest are highlighted.

As you recall, I plan to publish at least two more conference papers, at conferences that

publish proceedings. The name of experts who work on this experiment will appear as co-authors

on these conference papers. Those of you who participated in the original experiment already had

your names appear on an IEEE conference paper. I will keep you informed as to which

conferences I have sent a paper to, and I will send you copies of each paper.

I will be glad to pay any and all postal fees. Just let me know how much.

If you need to get in touch with me with a question, feel free any time. This experiment is

very important to me. My addresses, etc., are included for your convenience. Thank you so much

for your time and effort!

240

Given the following set of reuse views as a guideline, answer the given questionnaires.

Reusability-in-the-Class a view of the class taken alone

Modularity

Cohesion

Coupling

Interface Complexity

Documentation

Simplicity

Size

Complexity

Reusability-in-the-Hierarchy -- a view of a class and its associated direct ancestors

Average Modularity

Average Cohesion

Average Coupling

Average Interface Complexity

Average Documentation

Average Simplicity

Average size

Average complexity

Inheritance Complexity

Reusability-in-the-Original-System -- a view of the usage of a class in the original system, as a

predictor of use in another system

Abstract Data Type Usage

Inheritance Usage

241

Reusability-in-the-Subsystem -- a view of a selected subsystem of classes

Average Modularity

Average Cohesion

Average Coupling

Average Interface

Average Documentation

Average Simplicity

Average size

Average complexity

Maximum Inheritance Complexity

Reusability-in-the-Class - a view of the class taken alone

Modularity -- Those characteristics of the class which provide for high cohesion and

optimum coupling.

Cohesion -- A description of the logical relationship between elements of a class.

Coupling -- A description of the relationship of this class with other software entities

(classes, functions, etc.)

Interface Complexity -- The complexity of the interface to a class--the ease of

understanding the interface.

Documentation -- Those attributes of a class which provide explanation of the

functionality and implementation of the class.

Simplicity -- Those attributes of the class which provide for the definition and

implementation of the class in the most non-complex and understandable manner

Size -- The size of the class relates to simplicity in that the larger the class the less

simple the class.

Complexity -- The complexity of the class relates to simplicity in that the more

complex the class, the less simple the class.

242

Note: Normally a call to an inherited member function would not be counted against a class

(would be "good" coupling as opposed to "bad" coupling). Calls to the member functions of

classes not in the class' direct inheritance hierarchy (not an ancestor class) would be considered

part of coupling ("bad" coupling). Calls to standalone functions would be considered part of

coupling ("bad" coupling). The use of other classes as abstract data types within the current class

would be considered part of coupling ("bad" coupling).

Note: The above criterion definitions were adapted from Boeing/RADC criterion definitions into

definitions that would apply to object-oriented code. If you need a further description of the above

criteria, you can refer to the Appendix.

243

Appendix

From Bowen, T.P., Wigle, G.B., and Tsai, J.T., Specification of Software Quality Attributes,

Software Quality Specification Guidebook, Boeing Aerospace Company, RADC-TR-85-37, Vol.

II (of three):

Modularity -- Those characteristics of software which provide a structure of highly cohesive

components with optimum coupling. (pp. 3-12)

Simplicity -- Those characteristics of software which provide for definition and implementation of

functions in the most noncomplex and understandable manner. (pp. 3-12)

Self-descriptiveness -- Those characteristics of software which provide explanation of the

implementation of functions. (pp. 3-12)

From Presson, P.E., Tsai, J., Bowen, T.P, Post, J.V., and Schmidt, R., Software Interoperability

and Reusability, Boeing Aerospace Company, RADC-TR-83-1784, Vol. I (of two):

Modular Implementation -- Those attributes of the software that provide a structure of highly

independent modules. (p. 23)

Software that is constructed in a modular fashion will tend to limit the impact of changes

necessary for interoperability, thus making the modifications easier to assess and implement.

(p. 44)

Module coupling -- the level of interdependence between modules within a system. (p. 81)

Modularity -- Software possesses the characteristics of modularity to the extent that a logical

partitioning of software into independent parts, components, and modules has occurred. (p. 93)

244

Modularity is the concept of confining specific design decisions or functions into a distinct

design element which is as independent of other elements as possible. This independence helps to

localize the impact of modifications to within one or a few modules. The advantage of such a

modularly designed system is that modules can be replaced or modified without disturbing system

functions so long as their interface meets the stated requirements. The primary design goal is to

produce a design of the modular structure of the program so that the modules are highly

independent. The parts of a module join forces to perform a single specific well-defined function

and the data should be explicitly passed as parameters or arguments. In other words we want to

maximize the relationships among parts of each module (module strength) and to minimize the

relationships among modules (module coupling). (p. 97)

The Modularity of software is the key factor of module, function, and partial reuse. Since

this type of reuse entails interfacing of the existing software with new software, the modularity of

the existing software will determine the cost of reusing the software. (p. 101)

Simplicity -- If the design structure of the software system is simple, it will be easier for the

software engineer to understand and thus easier to modify. (p. 45)

Simplicity -- Software possesses the characteristics of simplicity to the extent that it lacks

complexity in organization, language, and implementation techniques and is constructured in the

most understandable manner. (p. 94)

Simplicity -- The concept of simplicity implies that the software is lacking in complexity. The

more basic techniques, structures, etc., are used, the simpler the software will tend to be. The

quantitative counts (number of operators, operands, nested control structures, nested data

structures, executable statements, statement labels, decision points, parameters, etc.) will

245

determine to a great extent how simple or complex the source code is. Simplicity, in both design

and implementation, will tend to make programs simpler, easily understandable, and easily

modifiable. (p. 97)

The Simplicity and System Clarity are the important characteristics of software

comprehensibility. In the module, function or partial reuse of software, how simple and clear the

software is will determine the costs to reuse the software. (p. 101)

Self-Descriptiveness -- The quantity and quality of comments in the source code and the level of

the language will directly affect the ability of the software engineer to comprehend the software

design well enough to implement the modifications necessary for interoperability.

Self-descriptiveness -- Software possesses the characteristics of self-descriptiveness to the extent

that it contains information regarding its objectives, assumptions, constraints, inputs, processing,

outputs, components, etc. (p. 94)

Self-descriptiveness -- The concept of self-descriptiveness implies that the software contains

enough information for the reader to determine or verify its objectives, assumptions, constraints,

inputs, processing, outputs, components, etc. This quality is very important in being able to

understand the software. (p. 98)

The Self-Descriptiveness is very important in being able to understand the software. For the

module, function, or partial reuse of the software, there is a necessity of completely understanding

the software. (p. 101)

Interface complexity -- The ease of understanding module interfaces, in terms of the data affected.

(p. 81)

Reusability of software requires that the software be understandable, flexible, modifiable,

adaptable, applicable, and accessible. Simplicity, system clarity, and self-descriptiveness criteria

246

will enhance the understandability. Generality, machine and software system independences,

application independence and modularity will improve the flexibility, modifiability, and

adaptability. Well-structured documentation and no-control access will improve the accessibility.

(p. 5)

From Bowen, T.P., Wigle, G.B., and Tsai, J.T. Specification of Software Quality

Attributes: Software Quality Evaluation Guidebook, RADC-TR-85-37, Vol. III (of three), Feb.

1985:

Modularity -- Those characteristics of software which provide a structure of highly cohesive

components with optimum coupling. (pp. 3-14)

Self-descriptiveness -- Those characteristics of software which provide explanation of the

implementation of functions. (pp. 3-14)

Simplicity -- Those characteristics of software which provide for definition and implementation of

functions in the most noncomplex and understandable manner. (pp. 3-14)

Cohesion Value: The type of relationship that exists among the elements of each software

entity. There are seven types of cohesion (pp. A-180-A-181):

1) coincidental: No meaningful relationships among the elements of an entity. Difficult to

describe the module's function(s).

2) logical: Entity (at each invocation) one of a class of related functions (e.g., "edit all data").

Entity performs more than one function.

3) classical: Entity performs one of a class of functions that are related in time (program

procedure). Entity performs more than one function.

4) procedural: Entity performs more than one function, where the functions are related with

respect to the procedure of the problem (Problem procedure).

5) Communicational: Entity has procedural strength; in addition, all of the elements

"communicate" with one another (e.g. reference same data or pass data among themselves). All

functions use the same data.

247

6) Informational: Entity performs multiple functions where the functions (entry points in the unit)

deal with a single data structure. Physical packaging together of two or more entities having

functional strength. All functions use the same data.

7) Functional: All entity elements are related to the performance of a single function.

Coupling: The type of relationship that exists between two software entities. In achieving a

highly modular design it is essential to minimize the relationships among software entities. The

goal is to design software entities with low coupling. The scale of coupling from worst to best is:

1) Content coupling, 2) Common Coupling, 3) External Coupling, 4) Control Coupling, 5) Stamp

Coupling, and 6) Data Coupling.

1) Content Coupling -- One software entity references the contents of another software entity.

2) Common Coupling -- Software entities reference a shared global data structure.

3) External Coupling -- Software entities reference the same externally declared symbol.

4) Control Coupling -- One software entity passes control elements as arguments to another

software entity.

5) Stamp Coupling -- Two software entities reference the same data structure, which is not global.

6) Data Coupling -- One software entities calls another and the software entities are not coupled

as defined above (in 1 through 5). (pp. A-181-A-182)

248

Reusability-in-the-hierarchy

Uses the same per-class definitions as those shown in the Reusability-in-the-Class view.

However, the values for each criterion should represent an average over all classes in the

hierarchy.

Average Modularity -- Those attributes of the class which provide for high cohesion

and optimum coupling, for all classes in the hierarchy.

Average Cohesion -- A description of the logical relationship between elements of

a class, for all classes in the hierarchy.

Average Coupling -- A description of the relationship of this class with other

software entities (classes, functions, etc.) for all classes in the hierarchy.

Average Interface Complexity -- The complexity of the interface to a class for all

classes in the hierarchy.

Average Documentation -- Those attributes of a class which provide explanation of

the functionality and implementation of the class, for all classes in the hierarchy.

Average Simplicity --Those attributes of the class which provide for the definition

and implementation of the class in the most non-complex and understandable manner,

for all classes in the hierarchy.

Average Size -- The size of the class relates to simplicity in that the larger the class

the less simple the class. Determined for all classes in the hierarchy.

249

Average Complexity -- The complexity of the class relates to simplicity in that the

more complex the class, the less simple the class. Determined for all classes in the

hierarchy.

Additionally, it provides:

Inheritance Complexity -- Those attributes of a class which relate to complexity

derived from the fact that the class exists in an inheritance hierarchy.

250

Reusability-in-the-Class Questionnaire

MODULARITY

Cohesiveness:

CH1) How big is the class in terms of number of attributes and number of methods? (a large class

is less likely to be cohesive)

number of attributes: .

number of methods: .

CH2) Do the methods in the class use disjoint sets of attributes (do there exist methods that have

no attributes in common with other methods -- this could be a hint that the class should be broken

into two or more classes)?

of disjoint sets of methods: .

CH3) Are the methods in the class closely related in functionality?

Very related, somewhat related, not related

(circle one)

CH4) Now, using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for cohesiveness.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

cohesiveness:

251

Please weight the criteria according to their importance to the determination of cohesiveness. The

weights should add up to 100%. For example, you might weight them equally, with CH1 being

33.3%, CH2 33.3%, and CH3 33.3%, if you used no additional criteria. If you don't think a

criterion is useful, weight it at 0%. Remember to weight any additional criteria.

Weights:

CH1: .

CH2: .

CH3: .

other#1: .

other#2: .

Coupling:

CO1) Do any class methods use global data?

number of times global data is used: .

CO2) Does the class have any friend functions or classes?

number of friends: .

CO3) Do the class methods access the attributes of any other class not in the class' direct

hierarchy (list of direct ancestor classes)?

number of times attributes of other classes accessed: .

CO4) Do the class methods access the methods of any other class not in the class' direct hierarchy

(list of direct ancestor classes)?

number of times methods of other classes accessed: .

CO5) Do the class methods access any external-to-the-class (standalone) functions (except for

methods of other classes)?

number of times external functions accessed: .

252

CO6) Are there any variable definitions, either in the class definition, or local to a member

function, that use another class as an abstract data type?

number of abstract data types: .

CO7) Now, using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for coupling.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

coupling:

Please weight the criteria according to their importance to your determination of coupling. The

weights should add up to 100%. For example, you might weight them equally, with CO1 being

16.67%, CO2 16.67%, CO3 16.67%, CO4 16.67%, C05 16.67, and CO6 16.67%, if you used no

additional criteria. If you don't think a criterion is useful, weight it at 0%. Remember to weight

any additional criteria.

Weights:

CO1: .

CO2: .

CO3: .

CO4: .

CO5: .

CO6: .

other #1: .

other #2: .

253

M1) Now, using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for modularity .

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

modularity:

Please weight the criteria according to their importance to your determination of modularity. The

weights should add up to 100%. For example, you might weight them equally, with CH4 being

50%, and CO6 50%, if you used no additional criteria. If you don't think a criterion is useful,

weight it at 0%. Remember to weight any additional criteria.

Weights:

CH4: .

CO7: .

other#1: .

other#2: .

254

INTERFACE

I1) How many public methods are there?

number of public methods: .

I2) How many formal parameters, on the average, do the public method definitions have?

average number of formal parameters in public methods: .

I3) Are the public methods at the appropriate granularity level? That is, do they do too much, not

enough, or too little for the functionality provided by the class? Should some of their required

functionality be moved to an internal private method, then that method be called by the public

method?

good granularity level, fair granularity level, too much in the method, too little in the method

(circle one)

I5) Are the public methods clean and easy to understand?

Very easy to understand, Fairly easy to understand, Somewhat Easy to Understand, Hard to

understand

(circle one)

I6) Now, using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for interface.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

the quality of the interface:

255

Please weight the criteria according to their importance to the determination of the quality of the

interface. The weights should add up to 100%. For example, you might weight them equally,

with I1 being 20%, I2 20%, I3 20%, I4 20%, and I5 20%, if you used no additional criteria. If

you don't think a criterion is useful, weight it at 0%. Remember to weight any additional criteria.

Weights:

I1: .

I2: .

I3: .

I4: .

I5: .

other#1: .

other#2: .

256

DOCUMENTATION

D1) How many comments are there in the class definition?

number of comments: .

D2) How many comments are there in each method, on the average?

average number of comments: .

D3) What percentage of methods have any comments at all?

percentage of commented methods: .

D4) Are the comments in general well-written, understandable, and meaningful?

Excellent, Good, Fair, Poor

(circle one)

D5) Are the identifier names (class names, variable names, method names, etc.) well-chosen,

understandable, and meaningful?

Excellent, Good, Fair, Poor

(circle one)

D6) Now, using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for documentation.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

the quality of the documentation:

257

Please weight the criteria according to their importance to the determination of documentation

quality. The weights should add up to 100%. For example, you might weight them equally, with

D1 being 20%, D2 20%, D3 20%, D4 20%, and D5 20%, if you used no additional criteria. If

you don't think a criterion is useful, weight it at 0%. Remember to weight any additional criteria.

Weights:

D1: .

D2: .

D3: .

D4: .

D5: .

other#1: .

other#2: .

258

SIMPLICITY

Size:

SI1) How big is the class in terms of number of attributes and number of methods?

number of attributes (variables): .

number of methods (member functions): .

SI2) How many lines of executable semicolons are there in the class definition (ignoring

comments, blank lines, etc.)

number of executable semicolons: .

SI3) How many executable semicolons are there, on the average, in the methods?

average number of executable semicolons: .

SI4) How many formal parameters are there in the method definitions, on the average?

average number of formal parameters: .

SI5) Now, using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for size.

Large, medium, small

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

size:

259

Please weight the criteria according to their importance to the determination of size. The weights

should add up to 100%. For example, you might weight them equally, with S1 being 25%, S2

25%, S3 25%, and S4 25%, if you used no additional criteria. If you don't think a criterion is

useful, weight it at 0%. Please remember to weight any additional criteria.

Weights:

SI1: .

SI2: .

SI3: .

SI4: .

other#1: .

other#2: .

Complexity:

C1) How complex is the code in the methods, on the average?

Very complex, Fairly complex, Not complex

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

complexity:

260

Please weight the criteria according to their importance to the determination of complexity. The

weights should add up to 100%. For example, you might weight C1 at 100%, if you used no

additional criteria. If you don't think a criterion is useful, weight it at 0%. Please remember to

weight any additional criteria.

Weights:

C1: .

other#1: .

other#2: .

S1) Now, using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for simplicity .

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

simplicity:

Please weight the criteria according to their importance to the determination of the simplicity. The

weights should add up to 100%. For example, you might weight them equally, with SI5 being

50% and C1 being 50%, if you used no additional criteria. If you don't think a criterion is useful,

weight it at 0%. Please remember to weight any additional criteria.

Weights:

SI5: .

C1: .

other#1: .

other#2: .

261

Reusability-in-the-Class

R1) Now, using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for Reusability-in-the-Class.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

simplicity:

Please weight the criteria according to their importance to the determination of the reusability of

the class. The weights should add up to 100%. For example, you might weight them equally,

with Modularity being 25%, Interface 20%, Documentation 20%, and Simplicity 20%, if you

used no additional criteria. If you don't think a criterion is useful, weight it at 0%. Please

remember to weight any additional criteria.

Weights:

Modularity(M1): .

Interface(I6): .

Documentation(D6): .

Simplicity(S1): .

other#1: .

other#2: .

262

Reusability-in-the-Hierarchy

RH1) Determine average modularity by first looking at average cohesion and average coupling,

then by looking at the modularity values previously determined for each class.

RH1a) Look at the cohesion values for each class in the hierarchy.

CH4: class #1: . class #11: .

class #2: . class #12: .

class #3: . class #13: .

class #4: . class #14: .

class #5: . class #15: .

class #6: . class #16: .

class #7: . class #17: .

class #8: . class #18: .

class #9: . class #19: .

class #10: . class #20: .

Now, rate the hierarchy for average cohesion.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

RH1b) Look at the coupling values for each class in the hierarchy.

CO7: class #1: . class #11: .

class #2: . class #12: .

class #3: . class #13: .

class #4: . class #14: .

class #5: . class #15: .

class #6: . class #16: .

263

class #7: . class #17: .

class #8: . class #18: .

class #9: . class #19: .

class #10: . class #20: .

Now, rate the hierarchy for average coupling.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Finally, look at the modularity values for each class in the hierarchy:

MO1: class #1: . class #11: .

class #2: . class #12: .

class #3: . class #13: .

class #4: . class #14: .

class #5: . class #15: .

class #6: . class #16: .

class #7: . class #17: .

class #8: . class #18: .

class #9: . class #19: .

class #10: . class #20: .

Now, rate the hierarchy for average modularity.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

264

RH2) Look at the interface complexity values for each class in the hierarchy:

I6: class #1: . class #11: .

class #2: . class #12: .

class #3: . class #13: .

class #4: . class #14: .

class #5: . class #15: .

class #6: . class #16: .

class #7: . class #17: .

class #8: . class #18: .

class #9: . class #19: .

class #10: . class #20: .

Now, rate the hierarchy for average interface complexity.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

RH3) Look at the documentation values for each class in the hierarchy:

D6: class #1: . class #11: .

class #2: . class #12: .

class #3: . class #13: .

class #4: . class #14: .

class #5: . class #15: .

class #6: . class #16: .

class #7: . class #17: .

class #8: . class #18: .

class #9: . class #19: .

class #10: . class #20: .

265

Now, rate the hierarchy for average documentation.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

RH4) Determine average simplicity by first looking at average size and average complexity, then

by looking at the simplicity values previously determined for each class.

Look at the size values for each class in the hierarchy:

SI5: class #1: . class #11: .

class #2: . class #12: .

class #3: . class #13: .

class #4: . class #14: .

class #5: . class #15: .

class #6: . class #16: .

class #7: . class #17: .

class #8: . class #18: .

class #9: . class #19: .

class #10: . class #20: .

Now, rate the hierarchy for average size.

Large, medium, small

(circle one)

266

Look at the complexity values for each class in the hierarchy:

C1: class #1: . class #11: .

class #2: . class #12: .

class #3: . class #13: .

class #4: . class #14: .

class #5: . class #15: .

class #6: . class #16: .

class #7: . class #17: .

class #8: . class #18: .

class #9: . class #19: .

class #10: . class #20: .

Now, rate the hierarchy for average complexity.

Very complex, Fairly complex, Not complex

(circle one)

Finally, look at the simplicity values for each class in the hierarchy:

S1: class #1: . class #11: .

class #2: . class #12: .

class #3: . class #13: .

class #4: . class #14: .

class #5: . class #15: .

class #6: . class #16: .

class #7: . class #17: .

class #8: . class #18: .

class #9: . class #19: .

class #10: . class #20: .

267

Now, rate the hierarchy for average simplicity.

Excellent (= 100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

RH5) Look at the depth of the inheritance tree of the class. An excessive depth of inheritance

would tend to mean that the lower classes in the inheritance hierarchy would be quite complex

(since they would inherit all the complexity of their direct ancestor classes).

depth of inheritance tree: .

RH6) Now, using the criteria in the above questions, and any other criteria you think is

appropriate, rate the hierarchy for Reusability-in-the-hierarchy.

Excellent (=100%), Good (= 75%), Fair (= 50%), Poor (= 25%)

(circle one)

Please list and describe all other criteria that you thought was important in your determination of

simplicity:

268

Please weight the criteria according to their importance to the determination of the reusability of

the hierarchy. The weights should add up to 100%. For example, you might weight them equally,

with Average Modularity being 20%, Average Interface 20%, Average Documentation 20%,

Average Simplicity 20%, and Depth of Inheritance Tree 20% if you used no additional criteria. If

you don't think a criterion is useful, weight it at 0%. Please remember to weight any additional

criteria.

Weights:

Average Modularity(RH1)): .

Average Interface(RH2): .

Average Documentation(RH3): .

Average Simplicity(RH4): .

Depth of Inheritance Tree(RH5): .

other#1: .

other#2: .

269

REFERENCES

[1] Abd-El-Hafiz, S.K., Basili, V.R., "A Knowledge-Based Approach to the Analysis of Loops,"

IEEE Transactions on Software Engineering, Vol. 22, No. 5, May, 1996, pp. 339-360.

[2] Abi-Akar, R. An Investigation of Programming Language Mechanisms for Software Reuse,
doctoral dissertation, The University of Alabama in Huntsville, 1992.

[3] Allen, J., Natural Language Understanding, The Benjamin/Cummings Publishing Company,
Redwood City, CA, 1995.

[4] Andersen, P.M., Hayes, P.J., Heuttner, A.K., Schmandt, L.M., and Nirenberg, I.B.,
"Automatic Extraction," Proceedings of the Conference of the Association for Artificial
Intelligence, Philadelphia, PA, 1986, pp. 1089-1093.

[5] ANSI X3H4. (Draft Proposed) American National Standard Information Resource
Dictionary System: Part 1--Core Standard, American National Standards Institute, New York,
1985.

[6] Aristar, A., Dry, H., and Seely, D., Eds., The Linguist List, www.emich.edu/~linguist,
Discussions Number 8.249, 8.135, and 8.66, January, 1997.

[7] Asdjodi-Mohadjer, M., "Evaluation Report for Reusable Software," Prepared by COLSA
Corporation for the U.S. Army Space and Strategic Defense Command, CC-2200-93-054,
September 1993.

[8] Babatz, R., Baecker, A., GINA Manual, Version 2.0, German National Research Institute for
Computer Science, anonymous ftp at ftp.gmd.de, directory gmd/ginaplus, 1991.

[9] Bansiya, J., and Davis, C.G., "An Object-Oriented Design Quality Assessment Model,"
submitted to Metrics '97, to be held in Albuquerque, NM., Nov. 5-7, 1997.

[10] Barnden, J.A., "Semantic Networks," The Handbook of Brain Theory and Neural Networks,
The MIT Press, 1995.

[11] Basili, V.R., Briand, L, and Melo, W.L., "A Validation of Object-Oriented Design Metrics
as Quality Indicators," IEEE Transactions on Software Engineering, Vol. 22, No. 10, October,
1996, pp. 751-761.

270

[12] Belady, L.A., and Lehman, M.M., "A Model of Large Program Development," IBM Systems

Journal, Vol. 15, No. 3, 1976, pp. 225-252.

[13] Bickerton, D. and Bralich, P., Ergo Linguistic Technologies web page, www.ergo-ling.com.

[14] Bieman, J.M., "Deriving Measures of Software Reuse in Object Oriented Systems,"
Technical Report #CS-91-112, Colorado State University, July 1991.

[15] Biggerstaff, T.J., "Human-Oriented Conceptual Abstractions in the Re-engineering of
Software," Proceedings of the Twelfth International Conference on Software Engineering,
March 26-30, 1990, Nice, France, IEEE Computer Society Press, Los Alamitos, CA, 1990, p.
120.

[16] Biggerstaff, T.J., "Design Recovery for Maintenance and Reuse," IEEE Computer, Volume
22, Issue 7, July 1989, pp. 36-49.

[17] Biggerstaff, T.J., and Perlis, A.J., Software Reusability, Vol. II, Concepts and Models, ACM
Press, Addison-Wesley, Reading. Mass., 1989.

[18] Biggerstaff, T.J., and Richter, C., "Reusability Framework, Assessment, and Directions,"
IEEE Software, Vol. 4, No. 2, March, 1987, pp. 41-49.

[19] Biggerstaff, T.J, Hoskins, J., and Webster, D., "DESIRE: A System for Design Recovery,"
MCC Technical Report, STP-081-89, Microelectronics and Computer Technology Corporation,
April, 1989.

[20] Biggerstaff, T.J., Mitbander, B.G, and Webster, D.E, "Program Understanding and the
Concept Assignment Problem," Communications of the ACM, Volume 37, Number 5, May 1994,
pp. 72-82.

[21] Biggerstaff, T.J., Mitbander, B.G., and Webster, D.E., "The Concept Assignment Problem in
Program Understanding," Proceedings of the Fifteenth International Conference on Software
Engineering, May 17-21, 1993, Baltimore, MD, IEEE Computer Society Press, Los Alamitos,
CA, 1993, pp. 482-498.

[22] Booch, G., Object-Oriented Analysis and Design with Applications, Second Edition, The
Benjamin/Cummings Publishing Company, Inc., 1994.

[23] Brooks, R., "Towards a Theory of the Comprehension of Computer Programs,"
International Journal of Man and Machine Studies, Vol. 18, 1983, pp. 543-554.

[24] Caldiera, G., and Basili, V.R., "Identifying and Qualifying Reusable Software Components,"
IEEE Computer, Feb. 1991, pp. 61-70.

271

[25] Cavaliere, M.H., "Reusable Code at the Hartford Insurance Group," Software Reusability,

Vol. II, Applications and Experience, ed. T.J. Biggerstaff and A.J. Perlis. ACM Press,
Addison-Wesley, Reading, Mass., 1989, pp. 47-76.

[26] Chidamber, S.R., and Kemerer, C.F., "A Metrics Suite for Object-Oriented Design," IEEE
Transactions on Software Engineering, Vol. 20, No. 6, June 1994, pp. 476-493.

[27] Chidamber, S.R., and Kemerer, C.F., "Towards a Metrics Suite for Object-Oriented Design,"

Proceedings of the Conference on Object Oriented Programming Systems, Languages, and
Applications (OOPSLA '91), 1991, pp. 97-211.

[28] CLIPS User's Guide, Software Technology Branch, Lyndon B. Johnson Space Center, May
1993.

[29] CLIPS Reference Manual, Volume I, Basic Programming Guide, Software Technology
Branch, Lyndon B. Johnson Space Center, June 1993.

[30] CLIPS Reference Manual, Volume II, Advanced Programming Guide, Software Technology
Branch, Lyndon B. Johnson Space Center, June 1993.

[31] CLIPS Reference Manual, Volume III, Interfaces Guide, Software Technology Branch,
Lyndon B. Johnson Space Center, June 1993.

[32] Collefello, J.S., and Bortman, S., "An Analysis of the Technical Information Necessary to
Perform Effective Software Maintenance," Proceedings of the Phoenix Conference on Computers
and Communications, Scottsdale, AZ, March 1986, pp. 420-424.

[33] Cowie, J., and Lehnert, W., "Information Extraction," Communications of the ACM, Volume
39, Number 1, January 1996, pp. 80-91.

[34] DARPA, Proceedings of the Third Message Understanding Conference (MUC-3), San
Diego, CA, May 21-23, 1991, Morgan Kaufmann, 1991.

[35] DARPA, Proceedings of the Fourth Message Understanding Conference (MUC-4),
McLean, VA, June, 1992, Morgan Kaufmann, San Mateo, CA, 1992.

[36] DeJong, G., "An Overview of the FRUMP System," Strategies for Natural Language
Processing, edited by M. Ringle and W. Lehnert, Lawrence Erlbaum Associates, 1982, pp.
149-176.

[37] Demarco, T., Structured Analysis and System Specifications, Prentice-Hall, 1979.

272

[38] Duncan, R.P., A Presentation Environment for Improving Software Understanding,
Master's Thesis, The University of Alabama in Huntsville, 1991.

[39] Dunn, M.F., and Knight, J.C., "Automating the Detection of Reusable Parts in Existing
Software," Proceedings of the Fifteenth International Conference on Software Engineering,
Baltimore, MD, May 17-21, 1993, IEEE Computer Society Press, Los Alamitos, CA, pp.
381-390.

[40] Etzkorn, L.H., "A Metrics-based Approach to the Automated Identification of
Object-oriented Reusable Components: A Short Overview," OOPSLA '95 Doctoral Symposium,
Austin, TX, October 16-19, 1995.

[41] Etzkorn, L.H., and Davis, C.G. "Automatically Identifying Reusable Components in
Object-Oriented Legacy Code," IEEE Computer, (accepted, to appear October, 1997).

[42] Etzkorn, L.H., and Davis, C.G., "Automated Object-oriented Reusable Component
Identification," Knowledge-Based Systems, Volume 9, Issue 8, Elsevier Publishing, Oxford,
England, Dec. 1996, pp. 517-524.

[43] Etzkorn, L.H., and Davis, C.G., "A Metrics-based Approach to the Automated Identification
of Object-oriented Reusable Components: A Short Overview," OOPSLA '95 poster session,
Austin, TX, October 16, 1995.

[44] Etzkorn, L.H., and Davis, C.G., "Automated Object-oriented Reusable Component
Identification," Second International Symposium on Knowledge Acquisition, Representation and
Processing, Auburn, AL, September 27-30, 1995, later republished in Knowledge-Based
Systems, Elsevier Publishing.

[45] Etzkorn, L.H., and Davis, C.G., "Knowledge-based Object-Oriented Reusable Component
Identification," Proceedings of the Eighth Annual Florida AI Research Symposium, Melbourne
Beach, FL, April 27-29, 1995, pp. 97-101.

[46] Etzkorn, L.H., and Davis, C.G., "A Documentation-related Approach to Object-Oriented
Program Understanding," Proceedings of the IEEE Third Workshop on Program
Comprehension, Washington, D.C., Nov. 14-15, 1994, pp. 39-45.

[47] Etzkorn, L.H., and Davis, C.G., "An Approach to Object-Oriented Program Understanding,"
Technical Report TR-UAH-CS-1995-01, Computer Science Department, The University of
Alabama in Huntsville, Huntsville, AL, Sept. 1995.

[48] Etzkorn, Letha, Davis, Carl, and Li, Wei, "A Practical Look at the Lack of Cohesion in
Methods Metric," Journal of Object-oriented Programming, (accepted, to appear 1998).

273

[49] Etzkorn, Letha, Davis, Carl, and Li, Wei, "A Statistical Comparison of Various Definitions
of the LCOM Metric," Technical Report TR-UAH-CS-1997-02, Computer Science Department,
The University of Alabama in Huntsville, Huntsville, AL, April 1997.

[50] Etzkorn, L.H., Davis, C.G., Bowen, L.L., Etzkorn, D.B., Lewis, L.W., Vinz, B.L., Wolf,
J.C., "A Knowledge-Based Approach to Object-Oriented Legacy Code Reuse," Proceedings of
the Second International Conference on Engineering of Complex Computer Systems, Montreal,
Quebec, Canada, Oct. 21-25, 1996, IEEE Computer Society, Los Alamitos, CA, 1996, pp. 39-45.

[51] Etzkorn, L.H., Davis, C.G., Vinz, B.L., Wolf, R.P., Wolf, J.C., Yun, M.Y., Bowen, L.L.,
Orme, A.M., Lewis, L.W., and Etzkorn, D.B., "An Examination of Object-Oriented Reuse Views

in the PATRicia System," Technical Report TR-UAH-CS-1997-01, Computer Science
Department, The University of Alabama in Huntsville, Huntsville, AL, January 1997.

[52] Fitzpatrick, E., Bachenko, J., and Hindle, D., "The Status of Telegraphic Sublanguages,"

Analyzing Language in Restricted Domains, Grishman, R., and Kittredge, R. Eds., Lawrence
Erlbaum Associates, New Jersey, 1986, pp. 39-51.

[53] Frakes, W., and Nejmeh, B., "Software Reuse Through Information Retrieval," Proceedings

of the Twentieth Annual Hawaii International Conference on System Science,eds. B.D.Shriver
and R.H.Sprague, Jr., Kailua-Kona, Hawaii, IEEE Computer Society, Los Alamitos, CA, 1987,
pp. 530-535.

[54] GPALS Computer Resource Working Group (CRWG) Software Reuse Committee, "GPALS
Software Reuse Strategy," February 1992.

[55] Grishman, R., and Kittredge, R., Eds., Analyzing Language in Restricted Domains,
Lawrence Erlbaum and Associates, New Jersey, 1986.

[56] Halstead, M., Elements of Software Science, North Holland, 1977.

[57] Harandi, M.T., and Ning, J.Q., "PAT: A Knowledge-Based Program Analysis Tool,"
Proceedings of the Conference on Software Maintenance, Scottsdale, AZ, Oct. 24-27, 1988,
IEEE Computer Society Press, Washington, DC, pp. 312-318.

[58] Hitz, M., and Montazeri, B., "Chidamber and Kemerer's Metrics Suite: A Measurement
Theory Perspective," IEEE Transactions on Software Engineering, Vol. 22, No. 4, April 1996,
pp. 267-271.

[59] Hooper, J.W., and Chester, R.O. Software Reuse Guidelines and Methods, Plenum Press,
New York, 1991.

[60] International Mathematics and Scientific Library, Tenth Edition, IMSL, Inc., 1984.

274

[61] Jette, C. and Smith, R. "Examples of Reusability in an Object-Oriented Programming
Environment," Software Reusability, Vol. II, Concepts and Models, eds. T.J. Biggerstaff and A.J.
Perlis, ACM Press, Addison-Wesley, Reading, Mass., 1989, pp. 73-101.

[62] Jones, G., and Prieto-Diaz, R., "Building and Managing Software Libraries," Proceedings of
IEEE COMPSAC, IEEE Computer Society, Los Alamitos, CA, 1988, pp. 228-236.

[63] Kim, Y., and Stohr, E.A., "Software Reuse: Issues and Research Directions," Proceedings of

the Twenty-fifth Hawaii International Conference on System Science, Kauai, Hawaii, Jan. 7-10,
1992, Vol. 4, IEEE Computer Society, Los Alamitos, CA, pp. 612-623.

[64] Kittredge, R., "Variation and Homogeneity of Sublanguages," Sublanguage: Studies of
Language in Restricted Semantic Domains, Eds. Kittredge, R., and Lehrberger, J., Walter de
Gruyter, New York, 1982, pp.107-137.

[65] Kittredge, R., and Lehrberger, J., Sublanguage: Studies of Language in Restricted Semantic

Domains, Walter de Gruyter, New York, 1982.

[66] Korson, T., and McGregor, J., "Understanding Object-Oriented: A Unifying Paradigm,"
Communications of the ACM, Vol. 33, No. 9, pp. 40-60.

[67] Kozaczynski, W., and Ning, J.Q., "Automated Program Understanding by Concept
Recognition," Automated Software Engineering: The International Journal of Automated
Reasoning and Artificial Intelligence in Software Engineering, Vol. 1, Kluwer Academic
Publishers, Boston, MA, 1994, pp. 61-78.

[68] Kozaczynski, W., Ning, J., Engberts, A., "Program Concept Recognition and
Transformation," IEEE Transactions on Software Engineering, Volume 18, Issue 12, 1992, pp.
1065-1075.

[69] Kozaczynski, W., Ning, J., and Engberts, A., "Intelligent Programming Constraint
Maintenance in Software Reengineering," Proceedings of the Fifth International Workshop on
Computer-Aided Software Engineering, Chicago, IL, July 6-10, 1992, IEEE Computer Society
Press, Los Alamitos, CA, 1992, pp. 83-94.

[70] Kozaczynski, W., Ning, J., Sarver, T., "Program Concept Recognition," Proceedings of the
Seventh Knowledge-Based Software Engineering Conference, McLean, VA, Sept. 20-23, 1992,
IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 216-225.

[71] Lehrberger, J., "Sublanguage Analysis," Analyzing Language in Restricted Domains, Eds.
Grishman, R., and Kittredge, R., Lawrence Erlbaum Associates, New Jersey, 1986, pp. 19-38.

275

[72] Lehrberger, J., "Automatic Translation and the Concept of Sublanguage," Sublanguage:

Studies of Language in Restricted Semantic Domains, Eds. Kittredge, R., and Lehrberger, J.,
Walter de Gruyter, New York, 1982, pp. 81-106.

[73] Letovsky, S.I., Plan Analysis of Programs, doctoral dissertation, Yale University, December,
1988.

[74] Li, W., and Henry, S., "Object-oriented Metrics that Predict Maintainability," The Journal of
Systems and Software, Volume 23, Number 2, November 1993, pp. 111-122.

[75] Li, W., and Henry, S., "Maintenance Metrics for the Object-Oriented Paradigm,"
Proceedings of the First International Software Metrics Symposium, Baltimore, MD, May 21-22,
1993, IEEE Computer Society Press, Los Alamitos, CA, pp. 52-60.

[76] Li, W., Henry, S., Kafura, D., and Schulman, R., "Measuring Object-Oriented Design,"
Journal of Object-Oriented Programming, Volume 8, No. 4, July/August 1995, pp. 48-55.

[77] Lieberherr, Karl J., and Holland, Ian, "Assuring Good Style for Object-Oriented Programs,"

IEEE Software, Volume 6, Number 5, September 1989, pp. 38-48.

[78] Lorenz, M., and Kidd, J., Object-Oriented Software Metrics, PTR Prentice-Hall, Englewood
Cliffs, New Jersey, 1994.

[79] Lytinen, S., and Gershman, A., "ATRANS: Automatic Processing of Money Transfer
Messages," Proceedings of the Fifth National Conference of the American Association for
Artificial Intelligence, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 93-99.

[80] McCall, J., Richards, P., and Walters, G., Factors in Software Quality, three volumes, NTIS
AD-A049-014-015-055, November 1977.

[81] McCabe, T., "A Software Complexity Measure," IEEE Transaction on Software

Engineering, Vol. 2, No. 6, December, 1976, pp. 308-320.

[82] Ning, J.Q., A Knowledge Based Approach to Automatic Program Analysis, doctoral
dissertation, University of Illinois at Urbana-Champaign, Urbana, Ill., 1989.

[83] OOPSLA '96 Advance Program, Eleventh Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA '96), San Jose, CA, Oct. 6-10,
1996.

[84] OOPSLA '95 Program, Tenth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '95), Austin, TX, Oct 16-19, 1995.

276

[85] Oskarsson, O., "Reusability of Modules with Strictly Local Data and Devices--A Case
Study," Software Reusability, Vol. II, Concepts and Models, Eds. T.J. Biggerstaff and A.J.
Perlis, ACM Press, Addison-Wesley, Reading. Mass., 1989, pp. 143-155.

[86] Ostertag, E.J., and Hendler, J.A. "Computing Similarity in a Reuse Library System: An
AI-based Approach," Technical Report, UMIACS-TR-91-10, CS-TR-2593, Institute for Advanced
Computer Studies, and the Department of Computer Science, the University of Maryland at
College Park, January 1991.

[87] Ostertag, E.J., and Hendler, J.A. "An AI-based Reuse System," Technical Report,

UMIACS-TR-89-16, CS-TR-2197, Institute for Advanced Computer Studies, and the Department
of Computer Science, the University of Maryland at College Park, February, 1989.

[88] PAT - Parallelization Tool, Georgia Institute of Technology, available via anonymous ftp to
ftp.cc.gatech.edu, in directory /pub/people/pat/p2.c++/pat.tar

[89] PCMETRIC Manual, SET Laboratories, Mulino, OR, 1994.

[90] Poulin, J., and Caruso, J., "A Reuse Metrics and Return on Investment Model," Proceedings
of the 2nd International Workshop on Software Reusability, Lucca, Italy, March 24-26, 1993,
pp. 75-81.

[91] Pressman, R.S., Software Engineering: A Practitioner's Approach, McGraw-Hill, 1992.

[92] Presson, P.E., Tsai, T., Bowen, T.P., Post, J.U., and Schmidt, R., "Software Interoperability
and Reusability Guidelines for Software Quality Measurement," RADC-TR-83-174, Volume 2,

Final Technical Report, Boeing Aerospace Company, Rome Air Development Center, Air Force
Systems Command, Griffiths Air Force Base, NY, 1983.

[93] Prieto-Diaz, R., and Freeman, P., "Classifying Software for Reusability," IEEE Software,
Vol.4, No. 1, Jan. 1987, pp. 6-16.

[94] Rajaraman, C., and Lyu, M., "Reliability and Maintainability Software Coupling Metrics in
C++ Programs," Proceedings of the Third International Symposium on Software Reliability

Engineering, Oct. 7-10, 1992, pp. 303-311.

[95] Rich, C., and Waters, R.C. "The Programmer's Apprentice: A Research Overview," IEEE
Computer, Volume 21, Issue 11, November, 1988, pp. 12-25.

[96] Rich, C., and Wills, L.M. "Recognizing a Program's Design: A Graph-Parsing Approach,"
IEEE Software, Jan. 1990, pp. 82-89.

[97] Rich, E., and Knight, K., Artificial Intelligence, 2nd Ed., McGraw-Hill, New York, 1991.

[98] Rombach, H.D., and Ulery, B.T., "Improving Software Maintenance Through

277

Measurement," Proceedings of the IEEE, volume 77, no.4, April 1989, pp. 581-595.

[99] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented
Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[100] Selby, Richard, "Quantitative Studies of Software Reuse," Software Reusability, Vol. II,

Concepts and Models, Eds. T.J. Biggerstaff and A.J. Perlis, ACM Press, Addison-Wesley,
Reading. Mass., 1989, pp. 213-233.

[101] Sleator, D., and Temperley, D., "Parsing English with a Link Grammar," Carnegie Mellon
School of Computer Science, CMU-CS-91-196, October 1991, available at
www.cs.cmu.edu/~sleator, click on link grammar.

[102] Smart, J., wxWindows Users Manual, Version 1.60, Artificial Intelligence Applications
Institute, University of Edinburgh, Scotland, UK, http://www.aiai.ed.ac.uk/~jacs/wx, 1994.

[103] Sowa, J. Ed., Principles of Semantic Networks: Explorations in the Representation of

Knowledge, Morgan Kauffman Publishers, San Mateo, CA, 1991.

[104] Sowa, J.F., Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1984.

[105] Swisek, S.E., and Mikkelson, K.W., Report on the U.S. Software Industry Trends,
performed by Economists, Inc., for the Business Software Alliance,
www.bsa.org/info/economicsreport/page1.html.

[106] Tarumi, H., Agusa, K., and Ohno, Y., "A Programming Environment Supporting Reuse of
Object-Oriented Software," Proceedings of the Tenth International Conference on Software
Engineering, Singapore, April, 1988, IEEE Computer Society Press, Los Alamitos, CA, 1988,
pp. 265-273.

[107] Tegarden, D., and Sheetz, S., "Effectiveness of Traditional Software Metrics for
Object-Oriented Systems," Proceedings of the Hawaii International Conference on System
Science, Volume 4, IEEE Computer Society press, Los Alamitos, CA, USA, 1992, pp. 359-368.

[108] Velardi, P., Pazienza, M.T., and De' Giovanetti, M., "Conceptual Graphs for the Analysis
and Generation of Sentences," IBM Journal of Research and Development, Vol. 32, No. 2,
March, 1988, pp. 251-267.

[109] Vogt, F., "Formal Concept Analysis as a Means for Analyzing and Exploring Data,"
Computer Science Department Technical Seminar, The University of Alabama in Huntsville,
Computer Science Department, March 19, 1997.

[110] Waters, R.C., "A Method for Analyzing Loop Programs," IEEE Transactions on Software

278

Engineering, Vol. SE-5, No. 3, May, 1979, pp. 97-106.

[111] Watson, M., Portable GUI Development with C++, McGraw-Hill, 1993.

[112] Weiskamp, K., and Flamig, B., The Complete C++ Primer, Academic Press, Cambridge,
MA, 1992.

[113] Winograd, T., Language as a Cognitive Process, Volume I: Syntax, Addison-Wesley,
1983.

[114] Yourdon, E.N., and Constantine, L.L, Structured Design, Yourdon Press, 1978.

[115] Zarri, G.P., "Automatic Representation of the Semantic Relationship Corresponding to a
French Surface Expression," Proceedings of the Conference on Applied Natural Language

Processing, Santa Monica, CA, 1983, pp. 143-147.

