
Vol.:(0123456789)

Information Retrieval Journal (2023) 26:4
https://doi.org/10.1007/s10791-023-09423-4

1 3

Temporal information retrieval using bitwise operators

Prasanna Koirala1 · Ramazan Aygun2 · Tathagata Mukherjee3 · Haeyong Chung3

Received: 22 June 2023 / Accepted: 6 September 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
The plethora of available and stored temporal data necessitated the development of effec-
tive algorithms for information retrieval. The previous research on temporal information
retrieval predominantly focused on the correctness of the retrieval results and supported
wider types of temporal operators for retrieval. Many of these algorithmic approaches are
based on high-level data structures and libraries supported by high-level programming lan-
guages, thus limiting the running time performance of these approaches. In this paper, we
develop querying and information retrieval for temporal queries based on Allen’s interval
algebra that provides a calculus for temporal reasoning by defining thirteen basic relations
between two intervals. To increase the retrieval performance, we propose using bitmaps
and bitwise operations to identify all of Allen’s thirteen relations between any two events
across the entirety of the data where events are represented as bitmaps. The indexes in the
bitmap represent various time instances in the data, and the values 1 and 0 correspond to
the presence and absence of an event. Using bitwise operators such as AND, OR, and bit-
shifts, in our compressed representation of the events, we establish expressions for each of
Allen’s relations. Our experiments show that, for two events with roughly 5 × 106 intervals
in each, the bitwise operation-based methods are almost 42 times faster than conventional
interval-based linear lookups and almost 21 times faster than conventional pattern-finding
parallel techniques inherently available.

Keywords Temporal querying · Allen’s relations · Bitwise operations

 * Ramazan Aygun
 raygun@kennesaw.edu

 Prasanna Koirala
 pkoiralap@gmail.com

 Tathagata Mukherjee
 tm0130@uah.edu

 Haeyong Chung
 hc0021@uah.edu

1 Vanderbilt University, Nashville, TN 37235-0001, USA
2 Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA
3 Department of Computer Science, University of Alabama in Huntsville, Huntsville, AL 35899,

USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-023-09423-4&domain=pdf

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 2 of 28

1 Introduction

In the era of Big Data, real-time retrieval of relevant information with precision is one
of the key technical issues of having a huge volume of data such as images (Duan et al.,
2015). Temporal data analysis has various applications such as information retrieval
(Shrestha et al., 2019a), querying video data (Bettaiah and Aygun, 2015; Aygun and Bet-
taiah, 2017), finding temporal patterns (CoVID-19 Rogers et al., 2022a), cheat detection
(Rogers et al., 2022b, 2023a), and temporal deduplication (Rogers et al., 2023b). A number
of querying techniques, such as keyword-based, pattern-based, and natural language-based
techniques, are available for information retrieval (Baeza-Yates and Ribeiro-Neto, 1999).
Keyword-based queries are popular as they are intuitive and easy to process (Baeza-Yates
and Ribeiro-Neto, 1999; Google, 2021). However, keyword-based queries are not suitable
for obtaining temporal relations from the data. For example, the user might remember a
particular sequence of events in a movie and might want to use the same information for
querying. Hence, a more specific and concise form of querying is required.

Two common ways of processing temporal data include i) mapping the data to a
graph and applying temporal operators and ii) representing events as intervals on a time-
line. Allen’s interval algebra (Allen, 1983) is a calculus for temporal reasoning that was
introduced by James F. Allen in 1983, and timeline-based approaches can easily benefit
from this algebra. The calculus defines thirteen basic relations between any two intervals
(Fig. 1). Here, an interval can be defined as a period of time for which an event occurs.
An event can then also be defined as a set of such intervals. Allen’s algebra is profoundly
used in various fields including but not limited to information retrieval (Shrestha et al.,
2019b), pattern detection (Li et al., 2011), spatial reasoning (Renz, 2001), task scheduling
(Mudrova and Hawes, 2015), and smart home management (Chuckravanen et al., 2017).
While indexing data based on key values enables retrieval of specific instances as quickly
as possible, such indexing methods are not typically efficient for range queries or complex
queries. It is essential that the indexing structure is versatile enough to support a variety
of temporal querying operators. Otherwise, temporal operators must be designed in a way
that they can leverage the indexing structure. Moreover, traditional indexing structures may
not leverage the underlying hardware configurations if the temporal query operators are not
designed according to low level operations. A proper indexing structure that leverages the
low level operations by bridging the gap between design patterns and hardware architecture
could alleviate temporal querying.

Gap between hardware architectures, software design patterns, and algorithmic
approaches. For efficient execution of temporal queries, their implementation should con-
sider how the proposed querying method could leverage underlying hardware architectures.
Nevertheless, there is a gap between hardware architectures and software design patterns
that can worsen the performance of systems. Hence, it is usually recommended to utilize
native libraries and data structures rather than implementing custom data structures unless
needed since these native libraries and operations are already optimized for the underlying
hardware system. However, this does not reduce the gap between the algorithmic approach
between the implementation level and the hardware level.

Bitmap indexing to reduce the gap. To address this problem, we propose developing
bitmap indexing to improve the performance of temporal querying using a bitmap type of
indexing. The indexes in the bitmap represent various time instances in the data, and the

Information Retrieval Journal (2023) 26:4

1 3

Page 3 of 28 4

values 1 and 0 correspond to the presence and absence of an event respectively. Bitmap
indexing has been touted as a promising approach for processing complex ad-hoc queries in
read-mostly environments (Chan et al., 1998). In addition, bitmap-based operations can be
heavily parallelized (Sinha et al., 2006), resulting in efficient processing of large datasets.
Furthermore, bitmaps can also represent temporal data (Shrestha et al., 2019b) for informa-
tion retrieval purposes (mostly read-only). Hence, leveraging bitmaps for the extraction of
events and especially for extracting the temporal relations between these events in temporal
data can be immensely beneficial.

In this paper, we propose an unorthodox method for temporal information retrieval
using bitwise operations based on all thirteen Allen’s temporal relationships using bitmap
type of indexing. After comparing the performance of our method with the traditional
way of searching these relationships using available libraries, video data is considered as
a sample application of temporal querying in this paper with faces in videos as events. The
events are pair-wise compressed so that the continuous absence or presence of these events
is compressed into a single point. The compression technique enables to look for similar
patterns across multiple events. Finally, we apply various bitwise operations to these com-
pressed event pairs to obtain Allen’s relations. Using bitwise operations such as AND, OR,

Fig. 1 Allen’s interval algebra

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 4 of 28

and shift operations in our compressed representation of the events, we establish expres-
sions for each of Allen’s relations. Our experiments show that, for two events with roughly
5 × 106 intervals in each, the bitwise operations are almost 42 times faster than conven-
tional interval-based linear lookups and almost 21 times faster than pattern-finding parallel
techniques inherently available. This also allows deployment in low-level systems, such as
embedded systems, to execute queries at a minimal cost and efficiently.

Our contributions can be summarized as follows:

• Representing all thirteen Allen’s interval relationships using bitwise operators and
• Improved performance of temporal querying using bitwise operators.

This paper is organized as follows. The following section discusses the current state of the
art regarding Allen’s relations and some background on temporal bitmaps, temporal index-
ing, and event-matrix. Section 3 covers compression and Allen’s relations using bitwise
operations on the compressed form. Section 4 provides how we analyze the correctness of
results. Section 5 explains the experimental results that provide the performance on search-
ing Allen’s relations. Finally, the last section concludes our paper.

2 Related work

An event is defined as the presence of an entity or occurrence in data. For instance, detect-
ing people’s faces in a video or a person’s voice in an audio recording can be considered as
sample events. Since events have a duration, they are typically defined as sets of intervals,
where an interval i is represented as (s(i), e(i)) with s(i) and e(i) being the start and end of
the interval, respectively. For example, the event (10, 20) starts at time 10 and ends at time
20. Many studies rely on this standard representation of events as the foundation of their
research (Allen, 1983; Georgala et al., 2016; Nebel and Bürckert, 1995; Patel et al., 2008;
Li et al., 2011). As an event is a set of intervals, multiple interval pairs must be considered
from events to identify Allen’s relations between any two events. One method to accom-
plish this is by performing an exhaustive comparison between intervals of the events. For
two events e and t, the exhaustive comparison technique compares every interval in event
e with every interval in t, resulting in a time complexity of O(|e| × |t|) , where |e| and |t|

Fig. 2 Bitmap index table for
appearance of actors in movies
where 1 indicates the appearance

Information Retrieval Journal (2023) 26:4

1 3

Page 5 of 28 4

represent the number of intervals in events e and t, respectively. Alternatively, it can be
represented with a time complexity of O(n2) , where n is the maximum value of |e| and |t|.

Bitmap indexing is a method that employs bitmaps to represent data efficiently for que-
rying and processing purposes. An example of this can be seen in Fig. 2, which displays
a sample bitmap index for actor/actress-movie appearances. However, the sparsity of the
bitmap table increases with the size of the data as it uses one bit for each distinct value.
Consequently, encoding and compression techniques (Stockinger and Wu, 2007; Chan
et al., 1998) are utilized to decrease the size of the bitmaps, as sparse tables require more
storage. Temporal bitmap indexing is a specialized form of bitmap indexing, where col-
umns represent different time instances in chronological order and rows represent various
events that occur in the data. The final output of temporal bitmap indexing is referred to as
an event-time matrix or simply an event-matrix in this paper, as shown in Fig. 3. Recently,
Shrestha et al. (2019b, 2019a) proposed representing events using bitmaps or even matrix
representations (Zhang and Zhang, 1999), as depicted in Fig. 3. For this paper, we consider
this bitmap representation.

Extracting events (such as objects and people) from temporal data (such as videos or
audio) presents a significant challenge. Nevertheless, past research studies have attempted
to tackle this problem (Nadimi and Bhanu, 2004; Kang et al., 2016; Wang et al., 2014). For
instance, Nadimi and Bhanu (2004) detect moving objects in a video by utilizing spatio-
temporal albedo tests and dichromatic reflection models. In contrast, Kang et al. (2016)
propose a framework to identify objects in video data using Convolution Neural Networks
(CNNs). Similarly, Wang et al. (2014) use Support Vector Machines (SVM) and Dynamic
Programming (DP) to identify human actions such as walking, running, or performing a
pull-up. In this paper, we only consider the faces of individuals in video data as events,
and we utilize an open-source Python library called Face Recognition (Geitgey, 2018)
to extract faces from the videos. We should note that the expressions provided to realize
Allen’s temporal relations are generalizable and not restricted to faces in videos.

Georgala et al. (2016) demonstrated that Allen’s temporal relations can be represented
using only eight atomic relations. They proposed an algorithm calculating Allen’s relations
between any two events in O(nlogn) time complexity. Still, the algorithm is designed to
work with the conventional representation of events. Papadias et al. (2001) proposed using
binary encoding of a temporal object with respect to an interval that could be split for

Fig. 3 Event matrix for events
occurring at specific time
instances

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 6 of 28

further intervals to increase resolution leading to additional relationships. An interval splits
time into 5 segments including the start and end point of the interval. Their method does
not leverage bitwise binary encoding, but they rather focus on the window of bits to pro-
cess. Wattamwar and Ghosh (2008) extend this logic for fuzzy relationships. Zhang and
Zhang (1999) took a different approach by representing an interval with five values and
all possible relationships between two intervals as a 5 × 5 matrix. However, since multiple
intervals represent an event, calculating all relations between any two events across the
entire dataset is still computationally intensive. Shrestha et al. (2019b, 2019a) introduced
bitwise operations-based video querying and identified four basic relationships between
events: co-appearance, next-appearance, prior appearance, and eventual appearance,
which they used to define Allen’s thirteen relations. However, those four relations do not
fully capture all thirteen relations, and the approach does not account for cases when the
same event appears multiple times in the temporal data. For example, the same event can
co-exist with an event and precede another type of the same event at a later time in real-
world temporal data. Naik et al. (2008, 2012) developed a semantic sequence state graph
to respond queries based on the sequential ordering of events. On the other hand, Jain and
Aygun (2008, 2009) use SQL pattern matching to retrieve video clips for temporal ordering
queries.

Various techniques of bitmap compression have been discussed in the literature (Chen
et al. (2015)). However, these techniques do not take into consideration the possible tempo-
ral relationship between other bitmap values. For our implementation, we use a compres-
sion technique that performs pairwise compression of events.

3 Method

Initially, the temporal data is analyzed to identify events, which is then utilized to create an
event matrix. This event matrix serves the purpose of tracking whether a particular event is
transpiring at a given moment or not. Next, the event matrix is subjected to pairwise com-
pression of events and saved in the cache to be used later. Finally, the compressed repre-
sentation of the events is subjected to bitwise operations to derive Allen’s interval relation-
ships. Assume that video V is represented as a sequence of n frames, V =< f1, f2,… , fn > .
An event e occurring in a frame is represented as e(f), with a value of 1 denoting its pres-
ence and a value of 0 indicating its absence. Let Fi represent the event occurrence vector
for all events in fi , where Fj

i
 denotes the occurrence of event ej in fi . Similarly, Ej denotes

the vector (array) for the presence or absence of event ej in each frame. In the event matrix,
E corresponds to rows, whereas F represents columns. Moreover, our method utilizes
aligned patterns in two different event sequences Ei and Ej , and uses pi and pj to denote
patterns for events ei and ej respectively.

3.1 Compression algorithm

Our focus is on monitoring the occurrence of events, which entails detecting changes in the
bit values of the event arrays (i.e., rows of the event matrix). Specifically, we are interested
in the transition from presence to absence or vice versa of any given event. Our algorithm

Information Retrieval Journal (2023) 26:4

1 3

Page 7 of 28 4

then compresses the continuous presence or absence of both events into a singular point
(i.e., column). Figure 4 provides a visual representation of the compression algorithm. As
depicted in the figure, since F0 = F1 , these event vectors are compressed into a single vec-
tor. The same holds for F2 = F3 , F4 = F5 = F6 , and F7 = F8.

Without compression, computing certain Allen’s relations such as equals, overlaps, or
during in Allen’s relations can be challenging to perform in a single step using bitwise
operations. This challenge arises from the difficulty in distinguishing between event arrays
that contain the long continuous presence of events. However, when the bit array is rep-
resented in a compressed form, all continuous presences and absences are collected into
a single point. This simplifies the process of applying bitwise operations to these arrays.
For instance, in Fig. 4, e2 starts (with) e1 at f2 . In the uncompressed representation, deter-
mining up to which frame both events are present requires some calculations. However, in
the compressed representation, we can easily look for the aligned pattern p1 = [0;1;1] and
p2 = [0;1;0] since the first 1 value in the compressed representation compresses the con-
tinuous presence of 1 s in both event arrays.

If only the start time of bit changes is recorded, it may not be possible to maintain the
end index when the bit arrays end with a continuous sequence of 1 s. To handle boundary
cases when calculating Allen’s relations using bitwise operations, we introduce a 0 value at
both the beginning and end of compressed events. This can be observed in Fig. 4. The first
added 0 corresponds to an index of −1 , and the last added 0 corresponds to the end of the
bitstreams.

Fig. 4 An example of compression with Index generation

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 8 of 28

The compression algorithm is presented in Algorithm 1. The output variables, R
(compressed vector) and I (index vector), are initialized with 0 s. To determine con-
tinuous presence or absence, the condition specified in line 7 of the algorithm is used.
The algorithm continues to loop through the bit arrays until a change in the previous
state is detected. At each change, the algorithm adds the starting index and the values
at the point of change to I and R, respectively. Once all the events have been looped
through, the algorithm appends zero values to R and the last index to I. This is neces-
sary to handle the boundary case and make the compressed representation consistent.

The compression algorithm has a linear time complexity, and recalculation is
avoided by storing the compressed results. This allows for immediate access to the
compressed forms of event pairs without the need to repeatedly recalculate them. How-
ever, since compression requires two event arrays at once, the system needs to perform
compression for every possible event pair in the data.

3.2 Bitwise operations for Allen’s relations

The bitmap representation of events enables the performance of bitwise operations
on them. In this section, we will present expressions based on bit operations that are
involved in determining the various Allen’s relations. Table 1 defines the symbols used
throughout this section.

Information Retrieval Journal (2023) 26:4

1 3

Page 9 of 28 4

3.2.1 Equals (X = Y)

In the case of an "equals" relationship between two events, the compressed aligned pattern
vectors should be pi = pj = [0 1 0] . To obtain the final result, we need to identify all occur-
rences of this pattern in the event vectors. This reduces the problem to a pattern-finding task
in the bitstreams. For this specific pattern, we need to identify all positions where both events
have a non-occurrence, i.e., a 0 value. To achieve this, we use an intermediate array Z obtained
by applying the (not(X | Y)) operation. Next, we need to identify places in the event vectors
where there is an occurrence or a 1 value that lies between two non-occurrences on either side
([0 1 0] pattern). We achieve this by performing a bitwise AND operation on the arrays X, Y,
�⃗Z , and �⃖Z , where �⃗Z and �⃖Z are obtained by shifting the intermediate Z vector to the right and to
the left, respectively. Figure 5 provides an example of how the "equals" operation works. The
expression for finding "equals" is as follows:

where Z is not (X|Y)

(1)Equals(X,Y) = X & Y & �⃗Z & �⃖Z

Table 1 Symbols used for
bitwise operations

Symbol Meaning

X, Y Compressed event arrays
x, y Patterns in the event arrays
�⃖Z Left shift operation on Z

�⃗Z Right shift operation Z

 & Bitwise AND
| Bitwise OR

Fig. 5 Example for Equals operation

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 10 of 28

3.2.2 Before (X < Y)

While determining ’before’ relations, it is important to note that there could be many cases
of ’before’ relations. For instance, let us consider two event vectors X and Y:

X ← 0 1 0 1 0 0

Y ← 0 0 0 0 0 1

In this example, event in X appears before event in Y at positions 1 and 3. Rather than
focusing on every possible before-appearance, we focus on immediate before-appearances.
For this, we need to search for two patterns in the event arrays.

The first pattern pair is px = [1 0 _] and py = [_ 0 1] where “_” represents a wildcard.
Therefore, our objective is to find the instance of event X happening, then followed by the
absence of both events and finally followed by the occurrence of event Y. This technique is
effective because consecutive disappearances of both events are compressed into a single
"0" value in the middle. The subsequent expression is used to identify this pattern (P1).

The second pattern to look for is x = [1 0] and y = [0 1] . This looks for locations where
event X’s occurrence is followed immediately by event Y’s occurrence. Since this query
does not involve wildcards, we find locations where "X & not Y" is followed by "Y & not
X". The expression used to find this pattern(P2) is as follows:

In this paper, we only examine before-appearances in the event vectors if the numerical
representation of event vector X is greater than the numerical representation of event vec-
tor Y. This makes sure that X precedes Y. Otherwise, there could exist patterns having both
Y precedes X, and X precedes Y. This is how we interpret ’before’ relation in this paper. It
is important to note that the original Allen’s interval relations are established on pairwise
intervals.

Lastly, we employ the disjunction (OR) operation on the values P1 and P2 acquired
from Eqs. 2 and 3, respectively, to obtain the ultimate expression for Allen’s "before" rela-
tion. The expression for the ’before’ relation is presented next, followed by Fig. 6, which
provides a visual explanation of the relationship.

3.2.3 Overlaps (X o Y)

Overlaps relation is equivalent to finding the aligned pattern px = [1 1 0] and py = [0 1 1]
(i.e., X and not Y) followed by (X and Y) and then by (not X and Y). Although the same
expressions are used by the meets relation as well, there is a key difference between these
relations. The main difference is that the overlapping segment should be an interval (not a
single instant). Since the compressed representation maintains intervals, if results obtained
from the conjunction (AND) of the mentioned expressions yield a compressed entry (an
interval) instead of a single entry in the bit arrays, then it can be considered as overlaps.

To identify whether a point in the compressed representation of an event is an interval or
a single entry, we define a new function called CON. This function takes in a sorted array of

(2)P1(X,Y) = X &
�⃖⃖�Y & (not(�⃖X | �⃖Y))

(3)P2(X, Y) = (X & not Y) & �⃖�������������������(Y & not X)

(4)Before(X, Y) = If X > Y then P1(X, Y) | P2(X, Y)

Information Retrieval Journal (2023) 26:4

1 3

Page 11 of 28 4

integers as input and returns a bit array of length equal to that of the input. The bit array will
have a 1 value for consecutive values in the input array and a 0 value otherwise. This function
operates on a sorted array of integers as input and produces a bit array of equal length. The
resulting bit array will contain a 1 value for every pair of consecutive values in the input array,
and a 0 value for every non-consecutive pair. For instance, consider the following example of
the CON function:

X ← [0, 1, 2, 5, 10, 11, 12]
CON(X) → [1, 1, 0, 0, 1, 1, 0]
With this function, determining whether an entry is a compressed interval or singular

instant is straightforward. By examining the index array generated by our compression algo-
rithm and comparing consecutive values, we can easily identify a singular instant by observ-
ing that its corresponding index array value in CON(Index) is equal to 1. In other words, for
a single instant, the corresponding entry in CON(Index) will be a 1 value. Here, Index is the
index array.

Since the expressions utilized for both meets and overlaps are identical, we can create a uni-
fied expression to ascertain whether either relationship exists between events. This function,
which we shall refer to as OverlapsOrMeets, accepts the event vectors as input and returns 1
at the locations where intervals either overlap or meet. Its expression is presented as follows:

(5)OverlapsOrMeets(X, Y) = (X & Y) & ��������������������⃗(X & not Y) & �⃖�������������������(not X & Y)

Fig. 6 Example for before operation

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 12 of 28

Using the function CON and OverlapsOrMeets defined above, we then present the expres-
sion for the overlaps relation next with an example in Fig. 7.

where Index is the index array from the compression algorithm.

3.2.4 Meets (X m Y)

The meets relation is very similar to overlaps. The main difference is that the overlapping
segment should be an instant (a single point or entry). Using the definition of functions
CON and OverlapsOrMeets discussed in the previous section, we define the meets relation
next with an example in Fig. 8.

where Index is the index array from the compression algorithm.

3.2.5 Starts (X s Y)

Starts relation requires a pattern search for px = [0 1 0] and py = [0 1 1] . Hence, a
search of (not X and not Y) followed by (X and Y) and then by (not X and Y) yields a

(6)Overlaps(X, Y) = OverlapsOrMeets(X, Y) & not CON(Index)

(7)Meets(X, Y) ← OverlapsOrMeets(X, Y) & CON(Index)

Fig. 7 Example for overlaps operation

Information Retrieval Journal (2023) 26:4

1 3

Page 13 of 28 4

starts relation. Figure 9 presents an example for the starts relation. The expression for
this relation is as follows.

3.2.6 During (X d Y)

During relation is a pattern search for px = [0 1 0] and py = [1 1 1] . Hence, the result-
ing expression looks for (not X and Y) on both sides of (X and Y). Figure 10 presents
an example of applying bitwise operations for determining during relation. The expres-
sion is as follows.

where Z = not X & Y.

(8)Result = (X and Y) & ���������������������������⃗(not X & not Y) & �⃖�������������������(not X & Y)

(9)Result = X & Y & �⃖Z & �⃗Z

Fig. 8 Example for meets operation

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 14 of 28

Fig. 9 Example for starts operation

Fig. 10 Example for during operation

Information Retrieval Journal (2023) 26:4

1 3

Page 15 of 28 4

3.2.7 Finishes (X f Y)

X finishes Y is similar to the starts relation. Here, the resulting expression looks for pattern
px = [0 1 0] and py = [1 1 0]. Hence the resulting expression searches for (not X and Y),
(X and Y), and (not X and not Y) in both the event arrays. Figure 11 presents an example
of applying bitwise operations for determining finishes relation.

4 Validation of expressions

Rather than following a formal proof, we will use a brute-force technique to validate the
expressions in the previous section. We generate ground truth from interval-based rep-
resentations by identifying Allen’s relations. Then we compare relations determined by
our method with the ground truth. To accomplish this, a function called ValidateAllens is
developed to compare the results obtained from bitwise operations with the traditional defi-
nitions of Allen’s relations based on intervals. The pseudocode of Function CheckAllAllens
is presented in Algorithm 2.

(10)Result = (X and Y) & �⃖��������������������������(not X & not Y) & ��������������������⃗(not X & Y)

Fig. 11 Example for finishes operation

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 16 of 28

In Algorithm 2, the input S comprises all possible bit arrays of length n,
where each element in S denotes an event vector. For instance, when n = 2 ,
S = [[0, 0], [0, 1], [1, 0], [1, 1]] . The algorithm iterates through every feasible pair of
events from the collection S by using nested loops to go through all possible pairs of event
vectors. The variables A and B represent potential pairs of event arrays.

After obtaining the pair of events, the algorithm converts them to the conventional inter-
val-based representation of events. This is done by using the function toIntervals, which
accepts a bit array event as input and returns its conventional representation in the form of
intervals. This conversion is necessary because the algorithm needs to establish a ground
truth for validation.

Next, the algorithm produces Allen’s relations using event arrays represented conven-
tionally. This is accomplished by the FindAllenRels function, which is shown in line 7 of
Algorithm 2. Given a pair of events represented conventionally, this function generates

Information Retrieval Journal (2023) 26:4

1 3

Page 17 of 28 4

all Allen’s relations that exist between them. Now that the algorithm has established a
ground truth for comparison, it can proceed to apply the bitwise operations described in
this paper to validate our method. Since our technique relies on compressed events, the
validation algorithm compresses the two-bit arrays A and B using the compress func-
tion (Line 10), which returns the compressed representation of the event arrays, along
with the index array. The index array creates a mapping between the values in the com-
pressed events and the actual indices of those same values in the uncompressed events.

Once compressed events are obtained, the algorithm then generates all Allen’s rela-
tions present between the events using the function FindAllenRelsCompressed. It takes
two compressed event arrays as input and provides every Allen’s relation. The values
obtained from this function can then be compared with the ground truth obtained from
line 7. However, the conventional representation based output AllenRi and and the com-
pressed output AllenRc are not directly comparable. Hence the algorithm converts the
compressed output to conventional representation. This is done using the function toInt-
ervalFromCompressed as seen in Lines 11 - 15 of the algorithm.

ValidatelAllens function only returns True if all pairs of event arrays yield the same
result for both conventional definitions and the presented bitwise expressions based on
definitions. CheckAllAllens function is further explained using an example as follows.
Assume that the value of n is 8. Hence, there exist 256 uncompressed event arrays in S.
Firstly, consider the following uncompressed event arrays A and B as an example.

A = [1 , 1 , 0 , 1 , 0 , 0 , 1 , 0]
B = [1 , 1 , 0 , 1 , 0 , 1 , 1 , 1]

Then, the conventional representations (intervals) for event arrays A and B are gener-
ated as follows:

A i = [[0 , 1] , [3 , 3] , [6 , 6]]
B i = [[0 , 1] , [3 , 3] , [5 , 7]]

The Allen’s relations based on the conventional presentation are computed as follows:

The compressed representation and indices of event arrays a and b are calculated as:

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 18 of 28

The bitwise operations determine Allen’s relations and their positions as follows:

Finally, when our method is applied to compressed data by mapping results to the con-
ventional form, the following Allen’s relations are obtained:

In the sample run shown above, it can be seen that AllenRi = AllenRci . We ran the func-
tion ValidateAllens for S with different n values where 1 ≤ n ≤ 16 and found that the func-
tion returns a True value for every case. Hence, we conclude that our expressions for iden-
tifying Allen’s relations are correct.

5 Experiments and results

In this section, we explain the experiments that were conducted to show the performance
of our approach. We explain the compression factors, the comparison of the performance
with respect to an interval-based approach, and the application to a real scenario. We have
run our experiments on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 CPU, 16 GB
2400 MHz DDR4 RAM, and Intel UHD Graphics 630 1536 MB. To measure the per-
formance of our method, we first evaluated our approach on simulated data with varying

Information Retrieval Journal (2023) 26:4

1 3

Page 19 of 28 4

probabilities of events. Later we tested our method on a real dataset. For simulated data, we
generated a random bitstream of 1 s and 0 s of varying lengths with a variable probability
of their appearance. This was done because it is easier to show the performance gain in our
method as compared to other methods.

5.1 Compression analysis

To begin with the experiments, we generated random bit arrays with varying lengths,
where the probability of a 0 appearing in the array is 0.95. This sparsity of the event matrix
stimulates a real-world scenario. The algorithms were evaluated on a range of values of
n, where 0 ⩽ n ⩽ N , with N = 108 . The results are shown in Fig. 12, which depicts the
compression time as the array size increases. The algorithm operates in linear time, with a
complexity of O(n), and can be optimized using ahead-of-time computations. Notably, this
operation only needs to be performed once, and the results can be cached for future use.

As explained in Sect. 3.1, compression needs to be performed for every pair of events
in the event matrix. When there are ‘n’ events in the matrix, this requires C(n, 2) compres-
sion. Figure 13 illustrates the size comparison between event arrays and pairwise com-
pressed arrays as the number of events increases. The figure displays several plots for dif-
ferent probabilities. It is evident from the figure that memory usage grows quadratically
(O(n2)). However, it is worth noting that when the event probability increases significantly,
compression size will eventually decrease as there will be more common 1 s in the bit
arrays. This can be seen in Fig. 14.

5.2 Comparison of methods on Allen’s ’Equals’ Relation

A question that may emerge is whether our technique can enhance the retrieval perfor-
mance, or if there exist alternative approaches for processing bit array representations. In
order to illustrate the comparative effectiveness of our method, we will evaluate it against

Fig. 12 Compression time vs array length

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 20 of 28

Fig. 13 Total array size for pair-wise storage of compressed arrays for an increasing number of events in the
event matrix

Fig. 14 Total memory consumption for pair-wise storage of compressed arrays for the varying probability
of occurrence

Information Retrieval Journal (2023) 26:4

1 3

Page 21 of 28 4

three alternative approaches for the ’Equals’ relation: (i) a conventional representation
based on intervals, (ii) linear lookup using pattern matching, and (iii) vectorization with
NumPy in Python. It should be noted that we have opted to use Python for the purposes of
our experimentation.

5.2.1 Brief description of alternate approaches

Conventional Representation. The conventional representation just needs to check the
equality of the intervals. Hence, a linear search between intervals can be conducted and
further optimized if needed when the intervals are sorted based on their start times.

Linear Lookup using Pattern Match. “Equals” relation can be found by matching a cer-
tain pattern in the event bitmaps. Basically, we need to check for the patterns px = [0 1 0]
and py = [0 1 0] as we linearly scan through the compressed event arrays.

Lookup using Vectorization. We have also conducted an analysis of the performance of
pattern lookup using NumPy. By leveraging NumPy’s vectorization capabilities, we could
improve the retrieval performance. Additionally, this analysis serves to demonstrate that
the performance gain we achieve with our proposed bitwise operations is not solely due to
NumPy’s vectorization. The method, searchPatternNumpy, presented in Algorithm 3, ini-
tially creates lists with a length equal to that of the pattern by applying a windowing tech-
nique to the arrays. For example, given E1 = [1, 0, 0, 1, 0] and pattern = [0, 1, 0] , all subar-
rays of length 3 are created from the E1 array, i.e. [1, 0, 0], [0, 0, 1] , and [0, 1, 0] , with
the variable inds at line 4 holding the indexes used to create these arrays. The algorithm
then proceeds to compare each of these subarrays to the pattern, returning only those that
completely match the sequence. This process is applied to both event arrays, with a bitwise
AND operation subsequently being performed to determine the locations where both event
arrays contain the sequence. To ensure the resultant array maintains its length, an excess of
(pattern.size − 1) 0 s are added to the bitwise AND result, which is then right-shifted once
to return true at the location of the 1’s.

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 22 of 28

Fig. 15 Comparison between Conventional, Linear Lookup, NumPy Based Lookup, and Bitwise methods
over growing value of array size

Information Retrieval Journal (2023) 26:4

1 3

Page 23 of 28 4

5.2.2 Comparison of approaches

Figure 15 shows the comparison between the four mentioned methods including ours.
When the array size is very small, all methods outperform the vectorized (NumPy) method,
as there are few events to search for, as expected. Nonetheless, as the bit array size grows,
the vectorization and bitwise operations methods become more efficient.

To confirm that the difference in speed is not solely due to NumPy’s vectorization, we
expanded the array size and evaluated the performance of both vectorized and bitwise
operations-based methods. The comparison of the methods is presented in Fig. 16. The
results demonstrate that our bitwise operations method surpasses the vectorized lookup
approach by a significant margin, indicating that our technique’s speed is not solely attrib-
utable to vectorization.

 To present the actual runtime of our methods, we conducted an experiment using two
uncompressed event arrays, each with a length of 108 . The probability of an event occurring

Fig. 16 Comparison between the proposed Bitwise operations (blue) and vectorized lookup (orange) meth-
ods over growing value of array size (Color figure online)

Table 2 Comparison of
Allen’s Equals relation using
Conventional Representation,
Linear Pattern Lookup,
Vectorization Lookup, and the
proposed Bitwise Operations

Method Time(s)

Conventional 3.06
Pattern lookup 6.375
Vectorization 1.552
Proposed bitwise 0.073

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 24 of 28

was set as 0.95, resulting in approximately 56 intervals in each event. We computed the
Allen’s equals relation using all these methods mentioned earlier and recorded their respec-
tive timing information in Table 2. The results indicate that the proposed bitwise opera-
tions method outperforms the conventional representation method by almost 42 times and
vectorized lookup by nearly 21 times.

5.3 Sample evaluation for a real world scenario

In this paper, we consider videos as temporal data and identify faces present in the vid-
eos as events in the data. To detect faces, we utilized an open-source Python library
called Face Recognition (Geitgey, 2018), which, in turn, utilizes one of the pre-trained
network libraries called Dlib (King, 2009) for face extraction and comparison. The
accuracy of our entire system relies heavily on the quality of event extraction, which is
the detection of faces in this case. To obtain the clustered face embeddings and generate
the event matrix, the video is scanned.

We have used multiple video clips from the famous sitcom comedy series named
Friends. Each video was three minutes in length, and we identified the appearance of six
individuals as events: Monica, Ross, Chandler, Phoebe, Joey, and Rachel. The following
operations were performed on each three-minute video clip with six identified individu-
als as events:

1. The generation of an event matrix using faces as events took an average of 1 min and
57 s per video.

Table 3 Timing information of
Allen’s Relations

Allen’s Relation Time Taken (�s)

Equals 14.35
Before 28.47
Meets 9.54
Overlaps 8.46
Starts 8.24
During 13.06
Finishes 7.74

Fig. 17 Frames showing the location where Monica (on the left) starts Chandler (on the right)

Fig. 18 Frames showing the location where Monica (on the left) appears during Phoebe (on the right)

Information Retrieval Journal (2023) 26:4

1 3

Page 25 of 28 4

2. Pairwise compression of every pair of events required an average of 33 milliseconds per
video.

3. The calculation of all thirteen relations for each pair of events required an average of
0.83 milliseconds per video. The average time taken for each operation is summarized
in Table 3.

Next, we provide two sample queries and their results.
Query 1: Find all locations in the video where Monica starts Chandler.
The query had a total runtime of 11 μs , with 9 μs spent on query time and 2 μs spent

on indexing time. A sample result from the query is illustrated in Fig. 17, which shows
Monica (on the left) and Chandler (on the right) appearing simultaneously. By the
fourth frame, Monica is already unidentifiable, and as a result, the algorithm returns the
starting time of these frames when Monica is first seen with Chandler.

Query 2: Find all locations in the video where Monica appears during Phoebe.
The query had a total runtime of 14 μs , with 12 μs spent on query time and 2 μs spent

on indexing time. A sample result from the query is presented in Fig. 18. However, we
can see that the algorithm produces an incorrect result in the figure. This is because
Monica’s face is seen from the side and is not recognized by the face recognition algo-
rithm. Thus, the algorithm is only effective when events are extracted accurately from
the video.

5.4 Discussion

If there are n events in the temporal data, then there will be C(n, 2) event pairs that
need to be stored for the video. This is because the compression algorithm presented
only works when two events at once are taken into consideration. Since the compression
algorithm alters the size of the event arrays, running the same query on multiple such
pairs is time-consuming.

We have also assessed the time and space requirements of our proposed system. We
observed a quadratic relationship between the space complexity of the system and the
number of events in the system. However, we observed a significant reduction in the
space requirement for sparse data, as the compression factor was found to be higher for
sparse data.

6 Conclusion

This paper introduces a novel method for querying temporal data by utilizing bit-
wise operators for Allen’s temporal relations. Our approach involves creating an event
matrix and storing it in compressed arrays, which enables the use of bitwise operators
for obtaining the Allen’s temporal relations. The paper also discusses the challenges
and complexities associated with compression and bitwise operations. Additionally, the
study compares the proposed method with alternate methods and demonstrates its supe-
rior performance. Overall, the approach offers a promising solution for efficient query-
ing of temporal data.

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 26 of 28

For future work, we plan to apply our method for ternary relations. If there are n events,
our compression algorithm generates compressed bit representations for every possible
pairwise array leading to generating C(n, 2) compressed bit arrays. One possible way of
extension to ternary relations is by compressing the arrays while considering all three of the
arrays at once. However, that will decrease the compression ratio, and increase the memory
consumption as C(n, 3) events-triplets will have to be calculated, and the compressed event
arrays might not even work for other Allen’s relations mentioned in this paper. Alterna-
tively, we also plan to apply bitwise operations on uncompressed event arrays. This way
we can in parallel compute complex queries involving many events. Furthermore, there are
various interpretations of the "before" relation, and it would be beneficial to examine dif-
ferent representations of this relation for future research.

Author contributions PK worked on this project as his thesis under the guidance of firstly by RA. Dr. Aygun
has provided the research problem and the methodology, and all coding and experiments were conducted by
PK. TM made sure that the work has been thorough and he was PK’s advisor when he finished his defense.
HC provided feedback especially on the usability aspects of the project. All authors reviewed manuscript.

Data availability The validation of expressions has been conducted on the fly. The query results are pro-
vided as sample results based on face detection and recognition in the paper. No further datasets were gener-
ated or analysed during the current study.

Declarations

Conflict of interest The authors have no competing interests as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval This research does not involve human participants and/or animals. Sample results include
clip snaphots from a pular TV series.

References

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11),
832–843.

Aygun, R. S., & Bettaiah, V. (2017). In N. Lee (Ed.), Query-by-Gaming (pp. 1–10). Cham: Springer. https://
doi. org/ 10. 1007/ 978-3- 319- 08234-9_ 100-1

Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Modern Information Retrieval (Vol. 463). New York: ACM
press.

Bettaiah, V., & Aygun, R. S. (2015). Query-by-gaming: Interactive spatio-temporal querying and retrieval
using gaming controller. Journal of Visual Languages & Computing, 29, 63–76.

Chan, C.-Y., & Ioannidis, Y. E. (1998). Bitmap index design and evaluation. In ACM SIGMOD Record (Vol.
27, pp. 355–366). ACM.

Chen, Z., Wen, Y., Cao, J., Zheng, W., Chang, J., Wu, Y., Ma, G., Hakmaoui, M., & Peng, G. (2015). A
survey of bitmap index compression algorithms for big data. Tsinghua Science and Technology, 20(1),
100–115. https:// doi. org/ 10. 1109/ TST. 2015. 70405 19

Chuckravanen, D., Daykin, J., Hunsdale, K., & Seeam, A. (2017). Temporal patterns: Smart-type reasoning
and applications.

Duan, H., Peng, Y., Min, G., Xiang, X., Zhan, W., & Zou, H. (2015). Distributed in-memory vocabulary tree
for real-time retrieval of big data images. Ad Hoc Networks, 35, 137–148. https:// doi. org/ 10. 1016/j.
adhoc. 2015. 05. 006. Special Issue on Big Data Inspired Data Sensing, Processing and Networking
Technologies.

Geitgey, A. (2018). Face Recognition. GitHub.

https://doi.org/10.1007/978-3-319-08234-9_100-1
https://doi.org/10.1007/978-3-319-08234-9_100-1
https://doi.org/10.1109/TST.2015.7040519
https://doi.org/10.1016/j.adhoc.2015.05.006
https://doi.org/10.1016/j.adhoc.2015.05.006

Information Retrieval Journal (2023) 26:4

1 3

Page 27 of 28 4

Georgala, K., Sherif, M. A., & Ngomo, A.-C. N. (2016). An efficient approach for the generation of allen
relations. In Proceedings of the Twenty-Second European Conference on Artificial Intelligence.
ECAI’16 (pp. 948–956). IOS Press, NLD. https:// doi. org/ 10. 3233/ 978-1- 61499- 672-9- 948.

Google: Year in Search 2020. https:// trends. google. com (2021)
Jain, V., & Aygun, R. (2008). Smart: A grammar-based semantic video modeling and representation. In

IEEE SoutheastCon, 2008, 247–251. https:// doi. org/ 10. 1109/ SECON. 2008. 44942 94
Jain, V., & Aygün, R. S. (2009). Spatio-temporal querying of video content using sql for quantizable video

databases. Journal of Multimedia, 4, 215–227.
Kang, K., Ouyang, W., Li, H., & Wang, X. (2016). Object detection from video tubelets with convolutional

neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(pp. 817–825).

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10(Jul),
1755–1758.

Li, M., Mani, M., Rundensteiner, E.A., & Lin, T. (2011). Complex event pattern detection over streams
with interval-based temporal semantics. In Proceedings of the 5th ACM International Conference on
Distributed Event-Based System. DEBS ’11, pp. 291–302. Association for Computing Machinery, New
York, NY, USA. https:// doi. org/ 10. 1145/ 20022 59. 20022 97

Mudrova, L., & Hawes, N. (2015). Task scheduling for mobile robots using interval algebra. In 2015 IEEE
International Conference on Robotics and Automation (ICRA) (pp. 383–388). https:// doi. org/ 10. 1109/
ICRA. 2015. 71390 27

Nadimi, S., & Bhanu, B. (2004). Physical models for moving shadow and object detection in video. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(8), 1079–1087.

Naik, M., Jain, V., & Aygun, R. S. (2008). S3g: A semantic sequence state graph for indexing spatio-tem-
poral data - a tennis video database application. In 2008 IEEE International Conference on Semantic
Computing (pp. 66–73). https:// doi. org/ 10. 1109/ ICSC. 2008. 77.

Naik, M. M., Sigdel, M., & Aygun, R. S. (2012). Spatio-temporal querying recurrent multimedia databases
using a semantic sequence state graph. Multimedia Systems, 18(3), 263–281. https:// doi. org/ 10. 1007/
s00530- 011- 0255-8

Nebel, B., & Bürckert, H.-J. (1995). Reasoning about temporal relations: A maximal tractable subclass of
allen’s interval algebra. Journal of the ACM, 42(1), 43–66. https:// doi. org/ 10. 1145/ 200836. 200848

Papadias, D., Mamoulis, N., & Delis, V. (2001). Approximate spatio-temporal retrieval. ACM Transactions
of Information System, 19(1), 53–96. https:// doi. org/ 10. 1145/ 366836. 366874

Patel, D., Hsu, W., & Lee, M. L. (2008). Mining relationships among interval-based events for classifica-
tion. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
(pp. 393–404).

Renz, J. (2001). A spatial odyssey of the interval algebra: 1. directed intervals. In IJCAI (pp. 51–56).
Citeseer.

Rogers, J., Aygun, R., Etzkorn, L. (2022). Identifying variability in us covid-19 response through temporal
partial ordering detection. In 2022 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM) (pp. 2266–2273). IEEE.

Rogers, J., Aygun, R., Etzkorn, L.: Cheat detection through temporal inference of constrained orders for
subsequences. In 2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE) (pp. 45–52). IEEE (2022)

Rogers, J., Etzkorn, L., & Aygun, R. (2023). Confidence based cheat detection through constrained order
inference of temporal sequences. International Journal of Semantic Computing.

Rogers, J., Etzkorn, L., & Aygun, R. (2023). Temporaldedup: Domain-independent deduplication of redun-
dant and errant temporal data. International Journal of Semantic Computing.

Shrestha, B., Chung, H., & Aygun, R. (2019). Temporal querying of faces in videos using bitmap index.
In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 36–41.
https:// doi. org/ 10. 1109/ MIPR. 2019. 00015

Shrestha, B., Chung, H., & Aygün, R. S. (2019). Facetimemap: Multi-level bitmap index for temporal que-
rying of faces in videos. International Journal of Multimedia Data Engineering and Management
(IJMDEM), 10(2), 37–59.

Sinha, R.R., Mitra, S., & Winslett, M. (2006). Bitmap indexes for large scientific data sets: a case study. In
Proceedings 20th IEEE International Parallel Distributed Processing Symposium (p. 10). https:// doi.
org/ 10. 1109/ IPDPS. 2006. 16393 04

Stockinger, K., & Wu, K. (2007). Bitmap indices for data warehouses. In Data Warehouses and OLAP:
Concepts, Architectures and Solutions (pp. 157–178). IGI Global.

Wang, L., Qiao, Y., & Tang, X. (2014).. Video action detection with relational dynamic-poselets. In Euro-
pean Conference on Computer Vision (pp. 565–580). Springer.

https://doi.org/10.3233/978-1-61499-672-9-948
https://trends.google.com
https://doi.org/10.1109/SECON.2008.4494294
https://doi.org/10.1145/2002259.2002297
https://doi.org/10.1109/ICRA.2015.7139027
https://doi.org/10.1109/ICRA.2015.7139027
https://doi.org/10.1109/ICSC.2008.77
https://doi.org/10.1007/s00530-011-0255-8
https://doi.org/10.1007/s00530-011-0255-8
https://doi.org/10.1145/200836.200848
https://doi.org/10.1145/366836.366874
https://doi.org/10.1109/MIPR.2019.00015
https://doi.org/10.1109/IPDPS.2006.1639304
https://doi.org/10.1109/IPDPS.2006.1639304

 Information Retrieval Journal (2023) 26:4

1 3

 4 Page 28 of 28

Wattamwar, S. S., & Ghosh, H. (2008). Spatio-temporal query for multimedia databases. In Proceedings of
the 2nd ACM Workshop on Multimedia Semantics. MS ’08 (pp. 48–55). Association for Computing
Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 14606 76. 14606 86.

Zhang, S., & Zhang, C. (1999). Imc: A method for interval calculus in matrix. Knowledge and Information
Systems, 1(2), 257–268.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1145/1460676.1460686

	Temporal information retrieval using bitwise operators
	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Compression algorithm
	3.2 Bitwise operations for Allen’s relations
	3.2.1 Equals
	3.2.2 Before
	3.2.3 Overlaps
	3.2.4 Meets
	3.2.5 Starts
	3.2.6 During
	3.2.7 Finishes

	4 Validation of expressions
	5 Experiments and results
	5.1 Compression analysis
	5.2 Comparison of methods on Allen’s ’Equals’ Relation
	5.2.1 Brief description of alternate approaches
	5.2.2 Comparison of approaches

	5.3 Sample evaluation for a real world scenario
	5.4 Discussion

	6 Conclusion
	References

