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Abstract
The plethora of available and stored temporal data necessitated the development of effec-
tive algorithms for information retrieval. The previous research on temporal information 
retrieval predominantly focused on the correctness of the retrieval results and supported 
wider types of temporal operators for retrieval. Many of these algorithmic approaches are 
based on high-level data structures and libraries supported by high-level programming lan-
guages, thus limiting the running time performance of these approaches. In this paper, we 
develop querying and information retrieval for temporal queries based on Allen’s interval 
algebra that provides a calculus for temporal reasoning by defining thirteen basic relations 
between two intervals. To increase the retrieval performance, we propose using bitmaps 
and bitwise operations to identify all of Allen’s thirteen relations between any two events 
across the entirety of the data where events are represented as bitmaps. The indexes in the 
bitmap represent various time instances in the data, and the values 1 and 0 correspond to 
the presence and absence of an event. Using bitwise operators such as AND, OR, and bit-
shifts, in our compressed representation of the events, we establish expressions for each of 
Allen’s relations. Our experiments show that, for two events with roughly 5 × 106 intervals 
in each, the bitwise operation-based methods are almost 42 times faster than conventional 
interval-based linear lookups and almost 21 times faster than conventional pattern-finding 
parallel techniques inherently available.
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1  Introduction

In the era of Big Data, real-time retrieval of relevant information with precision is one 
of the key technical issues of having a huge volume of data such as images (Duan et al., 
2015). Temporal data analysis has various applications such as information retrieval 
(Shrestha et al., 2019a), querying video data (Bettaiah and Aygun, 2015; Aygun and Bet-
taiah, 2017), finding temporal patterns (CoVID-19 Rogers et al., 2022a), cheat detection 
(Rogers et al., 2022b, 2023a), and temporal deduplication (Rogers et al., 2023b). A number 
of querying techniques, such as keyword-based, pattern-based, and natural language-based 
techniques, are available for information retrieval (Baeza-Yates and Ribeiro-Neto, 1999). 
Keyword-based queries are popular as they are intuitive and easy to process (Baeza-Yates 
and Ribeiro-Neto, 1999; Google, 2021). However, keyword-based queries are not suitable 
for obtaining temporal relations from the data. For example, the user might remember a 
particular sequence of events in a movie and might want to use the same information for 
querying. Hence, a more specific and concise form of querying is required.

Two common ways of processing temporal data include i) mapping the data to a 
graph and applying temporal operators and ii) representing events as intervals on a time-
line. Allen’s interval algebra (Allen, 1983) is a calculus for temporal reasoning that was 
introduced by James F. Allen in 1983, and timeline-based approaches can easily benefit 
from this algebra. The calculus defines thirteen basic relations between any two intervals 
(Fig. 1). Here, an interval can be defined as a period of time for which an event occurs. 
An event can then also be defined as a set of such intervals. Allen’s algebra is profoundly 
used in various fields including but not limited to information retrieval (Shrestha et  al., 
2019b), pattern detection (Li et al., 2011), spatial reasoning (Renz, 2001), task scheduling 
(Mudrova and Hawes, 2015), and smart home management (Chuckravanen et al., 2017). 
While indexing data based on key values enables retrieval of specific instances as quickly 
as possible, such indexing methods are not typically efficient for range queries or complex 
queries. It is essential that the indexing structure is versatile enough to support a variety 
of temporal querying operators. Otherwise, temporal operators must be designed in a way 
that they can leverage the indexing structure. Moreover, traditional indexing structures may 
not leverage the underlying hardware configurations if the temporal query operators are not 
designed according to low level operations. A proper indexing structure that leverages the 
low level operations by bridging the gap between design patterns and hardware architecture 
could alleviate temporal querying.

Gap between hardware architectures, software design patterns, and algorithmic 
approaches. For efficient execution of temporal queries, their implementation should con-
sider how the proposed querying method could leverage underlying hardware architectures. 
Nevertheless, there is a gap between hardware architectures and software design patterns 
that can worsen the performance of systems. Hence, it is usually recommended to utilize 
native libraries and data structures rather than implementing custom data structures unless 
needed since these native libraries and operations are already optimized for the underlying 
hardware system. However, this does not reduce the gap between the algorithmic approach 
between the implementation level and the hardware level.

Bitmap indexing to reduce the gap. To address this problem, we propose developing 
bitmap indexing to improve the performance of temporal querying using a bitmap type of 
indexing. The indexes in the bitmap represent various time instances in the data, and the 
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values 1 and 0 correspond to the presence and absence of an event respectively. Bitmap 
indexing has been touted as a promising approach for processing complex ad-hoc queries in 
read-mostly environments (Chan et al., 1998). In addition, bitmap-based operations can be 
heavily parallelized (Sinha et al., 2006), resulting in efficient processing of large datasets. 
Furthermore, bitmaps can also represent temporal data (Shrestha et al., 2019b) for informa-
tion retrieval purposes (mostly read-only). Hence, leveraging bitmaps for the extraction of 
events and especially for extracting the temporal relations between these events in temporal 
data can be immensely beneficial.

In this paper, we propose an unorthodox method for temporal information retrieval 
using bitwise operations based on all thirteen Allen’s temporal relationships using bitmap 
type of indexing. After comparing the performance of our method with the traditional 
way of searching these relationships using available libraries, video data is considered as 
a sample application of temporal querying in this paper with faces in videos as events. The 
events are pair-wise compressed so that the continuous absence or presence of these events 
is compressed into a single point. The compression technique enables to look for similar 
patterns across multiple events. Finally, we apply various bitwise operations to these com-
pressed event pairs to obtain Allen’s relations. Using bitwise operations such as AND, OR, 

Fig. 1   Allen’s interval algebra
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and shift operations in our compressed representation of the events, we establish expres-
sions for each of Allen’s relations. Our experiments show that, for two events with roughly 
5 × 106 intervals in each, the bitwise operations are almost 42 times faster than conven-
tional interval-based linear lookups and almost 21 times faster than pattern-finding parallel 
techniques inherently available. This also allows deployment in low-level systems, such as 
embedded systems, to execute queries at a minimal cost and efficiently.

Our contributions can be summarized as follows:

•	 Representing all thirteen Allen’s interval relationships using bitwise operators and
•	 Improved performance of temporal querying using bitwise operators.

This paper is organized as follows. The following section discusses the current state of the 
art regarding Allen’s relations and some background on temporal bitmaps, temporal index-
ing, and event-matrix. Section  3 covers compression and Allen’s relations using bitwise 
operations on the compressed form. Section 4 provides how we analyze the correctness of 
results. Section 5 explains the experimental results that provide the performance on search-
ing Allen’s relations. Finally, the last section concludes our paper.

2 � Related work

An event is defined as the presence of an entity or occurrence in data. For instance, detect-
ing people’s faces in a video or a person’s voice in an audio recording can be considered as 
sample events. Since events have a duration, they are typically defined as sets of intervals, 
where an interval i is represented as (s(i), e(i)) with s(i) and e(i) being the start and end of 
the interval, respectively. For example, the event (10, 20) starts at time 10 and ends at time 
20. Many studies rely on this standard representation of events as the foundation of their 
research (Allen, 1983; Georgala et al., 2016; Nebel and Bürckert, 1995; Patel et al., 2008; 
Li et al., 2011). As an event is a set of intervals, multiple interval pairs must be considered 
from events to identify Allen’s relations between any two events. One method to accom-
plish this is by performing an exhaustive comparison between intervals of the events. For 
two events e and t, the exhaustive comparison technique compares every interval in event 
e with every interval in t, resulting in a time complexity of O(|e| × |t|) , where |e| and |t| 

Fig. 2   Bitmap index table for 
appearance of actors in movies 
where 1 indicates the appearance
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represent the number of intervals in events e and t, respectively. Alternatively, it can be 
represented with a time complexity of O(n2) , where n is the maximum value of |e| and |t|.

Bitmap indexing is a method that employs bitmaps to represent data efficiently for que-
rying and processing purposes. An example of this can be seen in Fig. 2, which displays 
a sample bitmap index for actor/actress-movie appearances. However, the sparsity of the 
bitmap table increases with the size of the data as it uses one bit for each distinct value. 
Consequently, encoding and compression techniques (Stockinger and Wu, 2007; Chan 
et al., 1998) are utilized to decrease the size of the bitmaps, as sparse tables require more 
storage. Temporal bitmap indexing is a specialized form of bitmap indexing, where col-
umns represent different time instances in chronological order and rows represent various 
events that occur in the data. The final output of temporal bitmap indexing is referred to as 
an event-time matrix or simply an event-matrix in this paper, as shown in Fig. 3. Recently, 
Shrestha et al. (2019b, 2019a) proposed representing events using bitmaps or even matrix 
representations (Zhang and Zhang, 1999), as depicted in Fig. 3. For this paper, we consider 
this bitmap representation.

Extracting events (such as objects and people) from temporal data (such as videos or 
audio) presents a significant challenge. Nevertheless, past research studies have attempted 
to tackle this problem (Nadimi and Bhanu, 2004; Kang et al., 2016; Wang et al., 2014). For 
instance, Nadimi and Bhanu (2004) detect moving objects in a video by utilizing spatio-
temporal albedo tests and dichromatic reflection models. In contrast, Kang et  al. (2016) 
propose a framework to identify objects in video data using Convolution Neural Networks 
(CNNs). Similarly, Wang et al. (2014) use Support Vector Machines (SVM) and Dynamic 
Programming (DP) to identify human actions such as walking, running, or performing a 
pull-up. In this paper, we only consider the faces of individuals in video data as events, 
and we utilize an open-source Python library called Face Recognition (Geitgey, 2018) 
to extract faces from the videos. We should note that the expressions provided to realize 
Allen’s temporal relations are generalizable and not restricted to faces in videos.

Georgala et al. (2016) demonstrated that Allen’s temporal relations can be represented 
using only eight atomic relations. They proposed an algorithm calculating Allen’s relations 
between any two events in O(nlogn) time complexity. Still, the algorithm is designed to 
work with the conventional representation of events. Papadias et al. (2001) proposed using 
binary encoding of a temporal object with respect to an interval that could be split for 

Fig. 3   Event matrix for events 
occurring at specific time 
instances
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further intervals to increase resolution leading to additional relationships. An interval splits 
time into 5 segments including the start and end point of the interval. Their method does 
not leverage bitwise binary encoding, but they rather focus on the window of bits to pro-
cess. Wattamwar and Ghosh (2008) extend this logic for fuzzy relationships. Zhang and 
Zhang (1999) took a different approach by representing an interval with five values and 
all possible relationships between two intervals as a 5 × 5 matrix. However, since multiple 
intervals represent an event, calculating all relations between any two events across the 
entire dataset is still computationally intensive. Shrestha et al. (2019b, 2019a) introduced 
bitwise operations-based video querying and identified four basic relationships between 
events: co-appearance, next-appearance, prior appearance, and eventual appearance, 
which they used to define Allen’s thirteen relations. However, those four relations do not 
fully capture all thirteen relations, and the approach does not account for cases when the 
same event appears multiple times in the temporal data. For example, the same event can 
co-exist with an event and precede another type of the same event at a later time in real-
world temporal data. Naik et al. (2008, 2012) developed a semantic sequence state graph 
to respond queries based on the sequential ordering of events. On the other hand, Jain and 
Aygun (2008, 2009) use SQL pattern matching to retrieve video clips for temporal ordering 
queries.

Various techniques of bitmap compression have been discussed in the literature (Chen 
et al. (2015)). However, these techniques do not take into consideration the possible tempo-
ral relationship between other bitmap values. For our implementation, we use a compres-
sion technique that performs pairwise compression of events.

3 � Method

Initially, the temporal data is analyzed to identify events, which is then utilized to create an 
event matrix. This event matrix serves the purpose of tracking whether a particular event is 
transpiring at a given moment or not. Next, the event matrix is subjected to pairwise com-
pression of events and saved in the cache to be used later. Finally, the compressed repre-
sentation of the events is subjected to bitwise operations to derive Allen’s interval relation-
ships. Assume that video V is represented as a sequence of n frames, V =< f1, f2,… , fn > . 
An event e occurring in a frame is represented as e(f), with a value of 1 denoting its pres-
ence and a value of 0 indicating its absence. Let Fi represent the event occurrence vector 
for all events in fi , where Fj

i
 denotes the occurrence of event ej in fi . Similarly, Ej denotes 

the vector (array) for the presence or absence of event ej in each frame. In the event matrix, 
E corresponds to rows, whereas F represents columns. Moreover, our method utilizes 
aligned patterns in two different event sequences Ei and Ej , and uses pi and pj to denote 
patterns for events ei and ej respectively.

3.1 � Compression algorithm

Our focus is on monitoring the occurrence of events, which entails detecting changes in the 
bit values of the event arrays (i.e., rows of the event matrix). Specifically, we are interested 
in the transition from presence to absence or vice versa of any given event. Our algorithm 
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then compresses the continuous presence or absence of both events into a singular point 
(i.e., column). Figure 4 provides a visual representation of the compression algorithm. As 
depicted in the figure, since F0 = F1 , these event vectors are compressed into a single vec-
tor. The same holds for F2 = F3 , F4 = F5 = F6 , and F7 = F8.

Without compression, computing certain Allen’s relations such as equals, overlaps, or 
during in Allen’s relations can be challenging to perform in a single step using bitwise 
operations. This challenge arises from the difficulty in distinguishing between event arrays 
that contain the long continuous presence of events. However, when the bit array is rep-
resented in a compressed form, all continuous presences and absences are collected into 
a single point. This simplifies the process of applying bitwise operations to these arrays. 
For instance, in Fig. 4, e2 starts (with) e1 at f2 . In the uncompressed representation, deter-
mining up to which frame both events are present requires some calculations. However, in 
the compressed representation, we can easily look for the aligned pattern p1 = [0;1;1] and 
p2 = [0;1;0] since the first 1 value in the compressed representation compresses the con-
tinuous presence of 1 s in both event arrays.

If only the start time of bit changes is recorded, it may not be possible to maintain the 
end index when the bit arrays end with a continuous sequence of 1 s. To handle boundary 
cases when calculating Allen’s relations using bitwise operations, we introduce a 0 value at 
both the beginning and end of compressed events. This can be observed in Fig. 4. The first 
added 0 corresponds to an index of −1 , and the last added 0 corresponds to the end of the 
bitstreams.

Fig. 4   An example of compression with Index generation
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The compression algorithm is presented in Algorithm  1. The output variables, R 
(compressed vector) and I (index vector), are initialized with 0  s. To determine con-
tinuous presence or absence, the condition specified in line 7 of the algorithm is used. 
The algorithm continues to loop through the bit arrays until a change in the previous 
state is detected. At each change, the algorithm adds the starting index and the values 
at the point of change to I and R, respectively. Once all the events have been looped 
through, the algorithm appends zero values to R and the last index to I. This is neces-
sary to handle the boundary case and make the compressed representation consistent.

The compression algorithm has a linear time complexity, and recalculation is 
avoided by storing the compressed results. This allows for immediate access to the 
compressed forms of event pairs without the need to repeatedly recalculate them. How-
ever, since compression requires two event arrays at once, the system needs to perform 
compression for every possible event pair in the data.

3.2 � Bitwise operations for Allen’s relations

The bitmap representation of events enables the performance of bitwise operations 
on them. In this section, we will present expressions based on bit operations that are 
involved in determining the various Allen’s relations. Table 1 defines the symbols used 
throughout this section.
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3.2.1 � Equals (X = Y )

In the case of an "equals" relationship between two events, the compressed aligned pattern 
vectors should be pi = pj = [0 1 0] . To obtain the final result, we need to identify all occur-
rences of this pattern in the event vectors. This reduces the problem to a pattern-finding task 
in the bitstreams. For this specific pattern, we need to identify all positions where both events 
have a non-occurrence, i.e., a 0 value. To achieve this, we use an intermediate array Z obtained 
by applying the (not(X | Y)) operation. Next, we need to identify places in the event vectors 
where there is an occurrence or a 1 value that lies between two non-occurrences on either side 
( [0 1 0 ] pattern). We achieve this by performing a bitwise AND operation on the arrays X, Y, 
�⃗Z , and �⃖Z , where �⃗Z and �⃖Z are obtained by shifting the intermediate Z vector to the right and to 
the left, respectively. Figure 5 provides an example of how the "equals" operation works. The 
expression for finding "equals" is as follows:

where Z is not (X|Y)

(1)Equals(X,Y) = X & Y & �⃗Z & �⃖Z

Table 1   Symbols used for 
bitwise operations

Symbol Meaning

X, Y Compressed event arrays
x, y Patterns in the event arrays
�⃖Z Left shift operation on Z

�⃗Z Right shift operation Z

 & Bitwise AND
| Bitwise OR

Fig. 5   Example for Equals operation
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3.2.2 � Before (X < Y )

While determining ’before’ relations, it is important to note that there could be many cases 
of ’before’ relations. For instance, let us consider two event vectors X and Y:

X ← 0 1 0 1 0 0

Y ← 0 0 0 0 0 1

In this example, event in X appears before event in Y at positions 1 and 3. Rather than 
focusing on every possible before-appearance, we focus on immediate before-appearances. 
For this, we need to search for two patterns in the event arrays.

The first pattern pair is px = [1 0 _] and py = [_ 0 1] where “_” represents a wildcard. 
Therefore, our objective is to find the instance of event X happening, then followed by the 
absence of both events and finally followed by the occurrence of event Y. This technique is 
effective because consecutive disappearances of both events are compressed into a single 
"0" value in the middle. The subsequent expression is used to identify this pattern (P1).

The second pattern to look for is x = [1 0] and y = [0 1] . This looks for locations where 
event X’s occurrence is followed immediately by event Y’s occurrence. Since this query 
does not involve wildcards, we find locations where "X & not Y" is followed by "Y & not 
X". The expression used to find this pattern(P2) is as follows:

In this paper, we only examine before-appearances in the event vectors if the numerical 
representation of event vector X is greater than the numerical representation of event vec-
tor Y. This makes sure that X precedes Y. Otherwise, there could exist patterns having both 
Y precedes X, and X precedes Y. This is how we interpret ’before’ relation in this paper. It 
is important to note that the original Allen’s interval relations are established on pairwise 
intervals.

Lastly, we employ the disjunction (OR) operation on the values P1 and P2 acquired 
from Eqs. 2 and 3, respectively, to obtain the ultimate expression for Allen’s "before" rela-
tion. The expression for the ’before’ relation is presented next, followed by Fig. 6, which 
provides a visual explanation of the relationship.

3.2.3 � Overlaps (X o Y )

Overlaps relation is equivalent to finding the aligned pattern px = [1 1 0] and py = [0 1 1] 
(i.e., X and not Y) followed by (X and Y) and then by (not X and Y). Although the same 
expressions are used by the meets relation as well, there is a key difference between these 
relations. The main difference is that the overlapping segment should be an interval (not a 
single instant). Since the compressed representation maintains intervals, if results obtained 
from the conjunction (AND) of the mentioned expressions yield a compressed entry (an 
interval) instead of a single entry in the bit arrays, then it can be considered as overlaps.

To identify whether a point in the compressed representation of an event is an interval or 
a single entry, we define a new function called CON. This function takes in a sorted array of 

(2)P1(X,Y) = X &
�⃖⃖�Y & (not( �⃖X | �⃖Y))

(3)P2(X, Y) = (X & not Y) & �⃖�������������������(Y & not X)

(4)Before(X, Y) = If X > Y then P1(X, Y) | P2(X, Y)
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integers as input and returns a bit array of length equal to that of the input. The bit array will 
have a 1 value for consecutive values in the input array and a 0 value otherwise. This function 
operates on a sorted array of integers as input and produces a bit array of equal length. The 
resulting bit array will contain a 1 value for every pair of consecutive values in the input array, 
and a 0 value for every non-consecutive pair. For instance, consider the following example of 
the CON function:

X ← [0, 1, 2, 5, 10, 11, 12]
CON(X) → [1, 1, 0, 0, 1, 1, 0]
With this function, determining whether an entry is a compressed interval or singular 

instant is straightforward. By examining the index array generated by our compression algo-
rithm and comparing consecutive values, we can easily identify a singular instant by observ-
ing that its corresponding index array value in CON(Index) is equal to 1. In other words, for 
a single instant, the corresponding entry in CON(Index) will be a 1 value. Here, Index is the 
index array.

Since the expressions utilized for both meets and overlaps are identical, we can create a uni-
fied expression to ascertain whether either relationship exists between events. This function, 
which we shall refer to as OverlapsOrMeets, accepts the event vectors as input and returns 1 
at the locations where intervals either overlap or meet. Its expression is presented as follows:

(5)OverlapsOrMeets(X, Y) = (X & Y) & ��������������������⃗(X & not Y) & �⃖�������������������(not X & Y)

Fig. 6   Example for before operation
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Using the function CON and OverlapsOrMeets defined above, we then present the expres-
sion for the overlaps relation next with an example in Fig. 7.

where Index is the index array from the compression algorithm.

3.2.4 � Meets (X m Y )

The meets relation is very similar to overlaps. The main difference is that the overlapping 
segment should be an instant (a single point or entry). Using the definition of functions 
CON and OverlapsOrMeets discussed in the previous section, we define the meets relation 
next with an example in Fig. 8.

where Index is the index array from the compression algorithm.

3.2.5 � Starts (X s Y )

Starts relation requires a pattern search for px = [0 1 0] and py = [0 1 1] . Hence, a 
search of (not X and not Y) followed by (X and Y) and then by (not X and Y) yields a 

(6)Overlaps(X, Y) = OverlapsOrMeets(X, Y) & not CON(Index)

(7)Meets(X, Y) ← OverlapsOrMeets(X, Y) & CON(Index)

Fig. 7   Example for overlaps operation
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starts relation. Figure 9 presents an example for the starts relation. The expression for 
this relation is as follows.

3.2.6 � During (X d Y )

During relation is a pattern search for px = [0 1 0] and py = [1 1 1] . Hence, the result-
ing expression looks for (not X and Y) on both sides of (X and Y). Figure 10 presents 
an example of applying bitwise operations for determining during relation. The expres-
sion is as follows.

where Z = not X & Y.

(8)Result = (X and Y) & ���������������������������⃗(not X & not Y) & �⃖�������������������(not X & Y)

(9)Result = X & Y & �⃖Z & �⃗Z

Fig. 8   Example for meets operation
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Fig. 9   Example for starts operation

Fig. 10   Example for during operation
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3.2.7 � Finishes (X f Y )

X finishes Y is similar to the starts relation. Here, the resulting expression looks for pattern 
px = [0 1 0] and py = [1 1 0 ]. Hence the resulting expression searches for (not X and Y), 
(X and Y), and (not X and not Y) in both the event arrays. Figure 11 presents an example 
of applying bitwise operations for determining finishes relation.

4 � Validation of expressions

Rather than following a formal proof, we will use a brute-force technique to validate the 
expressions in the previous section. We generate ground truth from interval-based rep-
resentations by identifying Allen’s relations. Then we compare relations determined by 
our method with the ground truth. To accomplish this, a function called ValidateAllens is 
developed to compare the results obtained from bitwise operations with the traditional defi-
nitions of Allen’s relations based on intervals. The pseudocode of Function CheckAllAllens 
is presented in Algorithm 2.

(10)Result = (X and Y) & �⃖��������������������������(not X & not Y) & ��������������������⃗(not X & Y)

Fig. 11   Example for finishes operation
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In Algorithm  2, the input S comprises all possible bit arrays of length n, 
where each element in S denotes an event vector. For instance, when n = 2 , 
S = [ [0, 0], [0, 1], [1, 0], [1, 1] ] . The algorithm iterates through every feasible pair of 
events from the collection S by using nested loops to go through all possible pairs of event 
vectors. The variables A and B represent potential pairs of event arrays.

After obtaining the pair of events, the algorithm converts them to the conventional inter-
val-based representation of events. This is done by using the function toIntervals, which 
accepts a bit array event as input and returns its conventional representation in the form of 
intervals. This conversion is necessary because the algorithm needs to establish a ground 
truth for validation.

Next, the algorithm produces Allen’s relations using event arrays represented conven-
tionally. This is accomplished by the FindAllenRels function, which is shown in line 7 of 
Algorithm 2. Given a pair of events represented conventionally, this function generates 
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all Allen’s relations that exist between them. Now that the algorithm has established a 
ground truth for comparison, it can proceed to apply the bitwise operations described in 
this paper to validate our method. Since our technique relies on compressed events, the 
validation algorithm compresses the two-bit arrays A and B using the compress func-
tion (Line 10), which returns the compressed representation of the event arrays, along 
with the index array. The index array creates a mapping between the values in the com-
pressed events and the actual indices of those same values in the uncompressed events.

Once compressed events are obtained, the algorithm then generates all Allen’s rela-
tions present between the events using the function FindAllenRelsCompressed. It takes 
two compressed event arrays as input and provides every Allen’s relation. The values 
obtained from this function can then be compared with the ground truth obtained from 
line 7. However, the conventional representation based output AllenRi and and the com-
pressed output AllenRc are not directly comparable. Hence the algorithm converts the 
compressed output to conventional representation. This is done using the function toInt-
ervalFromCompressed as seen in Lines 11 - 15 of the algorithm.

ValidatelAllens function only returns True if all pairs of event arrays yield the same 
result for both conventional definitions and the presented bitwise expressions based on 
definitions. CheckAllAllens function is further explained using an example as follows. 
Assume that the value of n is 8. Hence, there exist 256 uncompressed event arrays in S. 
Firstly, consider the following uncompressed event arrays A and B as an example.

A = [1 , 1 , 0 , 1 , 0 , 0 , 1 , 0 ]
B = [ 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 ]

Then, the conventional representations (intervals) for event arrays A and B are gener-
ated as follows:

A i = [ [ 0 , 1 ] , [ 3 , 3 ] , [ 6 , 6 ] ]
B i = [ [ 0 , 1 ] , [ 3 , 3 ] , [ 5 , 7 ] ]

The Allen’s relations based on the conventional presentation are computed as follows:

The compressed representation and indices of event arrays a and b are calculated as:
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The bitwise operations determine Allen’s relations and their positions as follows:

Finally, when our method is applied to compressed data by mapping results to the con-
ventional form, the following Allen’s relations are obtained:

In the sample run shown above, it can be seen that AllenRi = AllenRci . We ran the func-
tion ValidateAllens for S with different n values where 1 ≤ n ≤ 16 and found that the func-
tion returns a True value for every case. Hence, we conclude that our expressions for iden-
tifying Allen’s relations are correct.

5 � Experiments and results

In this section, we explain the experiments that were conducted to show the performance 
of our approach. We explain the compression factors, the comparison of the performance 
with respect to an interval-based approach, and the application to a real scenario. We have 
run our experiments on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 CPU, 16 GB 
2400 MHz DDR4 RAM, and Intel UHD Graphics 630 1536 MB. To measure the per-
formance of our method, we first evaluated our approach on simulated data with varying 
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probabilities of events. Later we tested our method on a real dataset. For simulated data, we 
generated a random bitstream of 1 s and 0 s of varying lengths with a variable probability 
of their appearance. This was done because it is easier to show the performance gain in our 
method as compared to other methods.

5.1 � Compression analysis

To begin with the experiments, we generated random bit arrays with varying lengths, 
where the probability of a 0 appearing in the array is 0.95. This sparsity of the event matrix 
stimulates a real-world scenario. The algorithms were evaluated on a range of values of 
n, where 0 ⩽ n ⩽ N , with N = 108 . The results are shown in Fig.  12, which depicts the 
compression time as the array size increases. The algorithm operates in linear time, with a 
complexity of O(n), and can be optimized using ahead-of-time computations. Notably, this 
operation only needs to be performed once, and the results can be cached for future use.

As explained in Sect. 3.1, compression needs to be performed for every pair of events 
in the event matrix. When there are ‘n’ events in the matrix, this requires C(n, 2) compres-
sion. Figure  13 illustrates the size comparison between event arrays and pairwise com-
pressed arrays as the number of events increases. The figure displays several plots for dif-
ferent probabilities. It is evident from the figure that memory usage grows quadratically 
(O(n2)). However, it is worth noting that when the event probability increases significantly, 
compression size will eventually decrease as there will be more common 1  s in the bit 
arrays. This can be seen in Fig. 14.

5.2 � Comparison of methods on Allen’s ’Equals’ Relation

A question that may emerge is whether our technique can enhance the retrieval perfor-
mance, or if there exist alternative approaches for processing bit array representations. In 
order to illustrate the comparative effectiveness of our method, we will evaluate it against 

Fig. 12   Compression time vs array length
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Fig. 13   Total array size for pair-wise storage of compressed arrays for an increasing number of events in the 
event matrix

Fig. 14   Total memory consumption for pair-wise storage of compressed arrays for the varying probability 
of occurrence
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three alternative approaches for the ’Equals’ relation: (i) a conventional representation 
based on intervals, (ii) linear lookup using pattern matching, and (iii) vectorization with 
NumPy in Python. It should be noted that we have opted to use Python for the purposes of 
our experimentation.

5.2.1 � Brief description of alternate approaches

Conventional Representation. The conventional representation just needs to check the 
equality of the intervals. Hence, a linear search between intervals can be conducted and 
further optimized if needed when the intervals are sorted based on their start times.

Linear Lookup using Pattern Match. “Equals” relation can be found by matching a cer-
tain pattern in the event bitmaps. Basically, we need to check for the patterns px = [0 1 0] 
and py = [0 1 0] as we linearly scan through the compressed event arrays.

Lookup using Vectorization. We have also conducted an analysis of the performance of 
pattern lookup using NumPy. By leveraging NumPy’s vectorization capabilities, we could 
improve the retrieval performance. Additionally, this analysis serves to demonstrate that 
the performance gain we achieve with our proposed bitwise operations is not solely due to 
NumPy’s vectorization. The method, searchPatternNumpy, presented in Algorithm 3, ini-
tially creates lists with a length equal to that of the pattern by applying a windowing tech-
nique to the arrays. For example, given E1 = [1, 0, 0, 1, 0] and pattern = [0, 1, 0] , all subar-
rays of length 3 are created from the E1 array, i.e. [1, 0, 0], [0, 0, 1] , and [0, 1, 0] , with 
the variable inds at line 4 holding the indexes used to create these arrays. The algorithm 
then proceeds to compare each of these subarrays to the pattern, returning only those that 
completely match the sequence. This process is applied to both event arrays, with a bitwise 
AND operation subsequently being performed to determine the locations where both event 
arrays contain the sequence. To ensure the resultant array maintains its length, an excess of 
(pattern.size − 1) 0 s are added to the bitwise AND result, which is then right-shifted once 
to return true at the location of the 1’s.
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Fig. 15   Comparison between Conventional, Linear Lookup, NumPy Based Lookup, and Bitwise methods 
over growing value of array size
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5.2.2 � Comparison of approaches

Figure  15 shows the comparison between the four mentioned methods including ours. 
When the array size is very small, all methods outperform the vectorized (NumPy) method, 
as there are few events to search for, as expected. Nonetheless, as the bit array size grows, 
the vectorization and bitwise operations methods become more efficient.

To confirm that the difference in speed is not solely due to NumPy’s vectorization, we 
expanded the array size and evaluated the performance of both vectorized and bitwise 
operations-based methods. The comparison of the methods is presented in Fig.  16. The 
results demonstrate that our bitwise operations method surpasses the vectorized lookup 
approach by a significant margin, indicating that our technique’s speed is not solely attrib-
utable to vectorization.

 To present the actual runtime of our methods, we conducted an experiment using two 
uncompressed event arrays, each with a length of 108 . The probability of an event occurring 

Fig. 16   Comparison between the proposed Bitwise operations (blue) and vectorized lookup (orange) meth-
ods over growing value of array size (Color figure online)

Table 2   Comparison of 
Allen’s Equals relation using 
Conventional Representation, 
Linear Pattern Lookup, 
Vectorization Lookup, and the 
proposed Bitwise Operations

Method Time(s)

Conventional 3.06
Pattern lookup 6.375
Vectorization 1.552
Proposed bitwise 0.073
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was set as 0.95, resulting in approximately 56 intervals in each event. We computed the 
Allen’s equals relation using all these methods mentioned earlier and recorded their respec-
tive timing information in Table 2. The results indicate that the proposed bitwise opera-
tions method outperforms the conventional representation method by almost 42 times and 
vectorized lookup by nearly 21 times.

5.3 � Sample evaluation for a real world scenario

In this paper, we consider videos as temporal data and identify faces present in the vid-
eos as events in the data. To detect faces, we utilized an open-source Python library 
called Face Recognition (Geitgey, 2018), which, in turn, utilizes one of the pre-trained 
network libraries called Dlib (King, 2009) for face extraction and comparison. The 
accuracy of our entire system relies heavily on the quality of event extraction, which is 
the detection of faces in this case. To obtain the clustered face embeddings and generate 
the event matrix, the video is scanned.

We have used multiple video clips from the famous sitcom comedy series named 
Friends. Each video was three minutes in length, and we identified the appearance of six 
individuals as events: Monica, Ross, Chandler, Phoebe, Joey, and Rachel. The following 
operations were performed on each three-minute video clip with six identified individu-
als as events: 

1.	 The generation of an event matrix using faces as events took an average of 1 min and 
57 s per video.

Table 3   Timing information of 
Allen’s Relations

Allen’s Relation Time Taken ( �s)

Equals 14.35
Before 28.47
Meets 9.54
Overlaps 8.46
Starts 8.24
During 13.06
Finishes 7.74

Fig. 17   Frames showing the location where Monica (on the left) starts Chandler (on the right)

Fig. 18   Frames showing the location where Monica (on the left) appears during Phoebe (on the right)
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2.	 Pairwise compression of every pair of events required an average of 33 milliseconds per 
video.

3.	 The calculation of all thirteen relations for each pair of events required an average of 
0.83 milliseconds per video. The average time taken for each operation is summarized 
in Table 3.

Next, we provide two sample queries and their results.
Query 1: Find all locations in the video where Monica starts Chandler.
The query had a total runtime of 11 μs , with 9 μs spent on query time and 2 μs spent 

on indexing time. A sample result from the query is illustrated in Fig. 17, which shows 
Monica (on the left) and Chandler (on the right) appearing simultaneously. By the 
fourth frame, Monica is already unidentifiable, and as a result, the algorithm returns the 
starting time of these frames when Monica is first seen with Chandler.

Query 2: Find all locations in the video where Monica appears during Phoebe.
The query had a total runtime of 14 μs , with 12 μs spent on query time and 2 μs spent 

on indexing time. A sample result from the query is presented in Fig. 18. However, we 
can see that the algorithm produces an incorrect result in the figure. This is because 
Monica’s face is seen from the side and is not recognized by the face recognition algo-
rithm. Thus, the algorithm is only effective when events are extracted accurately from 
the video.

5.4 � Discussion

If there are n events in the temporal data, then there will be C(n,  2) event pairs that 
need to be stored for the video. This is because the compression algorithm presented 
only works when two events at once are taken into consideration. Since the compression 
algorithm alters the size of the event arrays, running the same query on multiple such 
pairs is time-consuming.

We have also assessed the time and space requirements of our proposed system. We 
observed a quadratic relationship between the space complexity of the system and the 
number of events in the system. However, we observed a significant reduction in the 
space requirement for sparse data, as the compression factor was found to be higher for 
sparse data.

6 � Conclusion

This paper introduces a novel method for querying temporal data by utilizing bit-
wise operators for Allen’s temporal relations. Our approach involves creating an event 
matrix and storing it in compressed arrays, which enables the use of bitwise operators 
for obtaining the Allen’s temporal relations. The paper also discusses the challenges 
and complexities associated with compression and bitwise operations. Additionally, the 
study compares the proposed method with alternate methods and demonstrates its supe-
rior performance. Overall, the approach offers a promising solution for efficient query-
ing of temporal data.
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For future work, we plan to apply our method for ternary relations. If there are n events, 
our compression algorithm generates compressed bit representations for every possible 
pairwise array leading to generating C(n, 2) compressed bit arrays. One possible way of 
extension to ternary relations is by compressing the arrays while considering all three of the 
arrays at once. However, that will decrease the compression ratio, and increase the memory 
consumption as C(n, 3) events-triplets will have to be calculated, and the compressed event 
arrays might not even work for other Allen’s relations mentioned in this paper. Alterna-
tively, we also plan to apply bitwise operations on uncompressed event arrays. This way 
we can in parallel compute complex queries involving many events. Furthermore, there are 
various interpretations of the "before" relation, and it would be beneficial to examine dif-
ferent representations of this relation for future research.
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