1158

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

A Survey of Software Frameworks for
Cluster-Based Large High-Resolution Displays

Haeyong Chung, Christopher Andrews, and Chris North

Abstract—Large high-resolution displays (LHRD) enable visualization of extremely large-scale data sets with high resolution,
large physical size, scalable rendering performance, advanced interaction methods, and collaboration. Despite the advantages,
applications for LHRD can be developed only by a select group of researchers and programmers, since its software
implementation requires design and development paradigms different from typical desktop environments. It is critical for
developers to understand and take advantage of appropriate software tools and methods for developing their LHRD
applications. In this paper, we present a survey of the state-of-the-art software frameworks and applications for cluster-based
LHRD, highlighting a three-aspect taxonomy. This survey can aid LHRD application and framework developers in choosing
more suitable development techniques and software environments for new LHRD applications, and guide LHRD researchers to

open needs in LHRD software frameworks.

Index Terms—Large high-resolution display, tiled displays, distributed rendering, parallel rendering, distributed applications, graphics api,
large scale visualization, programming models, input devices and strategies

<+

1 INTRODUCTION
ADVANCES in information and communication technol-
ogies, storage density, and increasingly sophisticated
data acquisition technologies including high-fidelity laser
scanners, satellite imagery, electron microscopes, etc., has
led to an explosion of data. One approach to trying to
make sense of the mountains of data being collected is
visualization. Visualization leverages innate human abili-
ties to illuminate patterns, trends and outliers in the data
and provides easily accessible context to individual data
points. However, the amount of information that can be
simultaneously visualized is limited by the physical con-
straints of the display medium [1]. While aggregation and
interaction can alleviate this problem, alleviation comes
at the cost of reduction in the directness of the mapping
between the visually perceived representations and the
underlying data.

Large high-resolution displays (LHRD) address this
issue by greatly expanding the physical size and the num-
ber of available pixels, enabling the visualization of large
amounts of detailed data. A number of studies have demon-
strated that the use of an LHRD for visualization yields a
number of benefits, including improved user performance,
increased levels of immersion, productivity, memory, and
peripheral awareness in various large scale analysis tasks
(2], [3], [4], [5], [6].

o H. Chung and C. North are with the Department of Computer Science,
Virginia Polytechnic Institute and State University, Blacksburg, VA
24060. E-mail: {chungh, northj@ut.edu.

C. Andrews is with the Department of Computer Science, Middlebury

College, Middlebury, VT 05753. E-mail: candrews@middlebury.edu.

Manuscript received 13 Dec. 2012; revised 10 Nov. 2013; accepted 20 Nov.
2013. Date of publication 22 Dec. 2013; date of current version 27 June 2014.
Recommended for acceptance by].-D. Fekete.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TVCG.2013.272

While there are a number of techniques for constructing
an LHRD system, cluster-based multi-tiled displays provide
the greatest scalability as the number of pixels is not limited
by the performance capabilities of a single machine [7].
However, developing software applications for this type of
system is not easy, given the distributed nature of the envi-
ronment. Special consideration must be given to synchro-
nizing and rendering images seamlessly across the display
tiles, sharing data, maintaining performance given the large
quantity of information being displayed, facilitating user
interaction, etc.

To help developers address some of these issues, numer-
ous software frameworks have been developed to support
cluster-driven LHRD systems since the early 1990s [8]. It is
critical for developers to use and select appropriate devel-
opment tools and techniques for their specific large display
projects, since small developmental choices in LHRD soft-
ware can affect the success of the application directly.

The main purpose of this paper is to survey the available
approaches and frameworks and to aid developers and
researchers involved in the development of LHRD applica-
tions and new toolkits. We explore the state-of-the-art of
software frameworks for LHRD applications, and analyze
various characteristics and developmental features of the
software frameworks.

This paper is organized as follows: cluster-based hard-
ware and software systems for LHRD are briefly dis-
cussed, focusing on different LHRD form factors. We
survey different types of LHRD applications and identify
several requirements in view of their developmental,
performance, and interaction aspects. Next, we analyze
and taxonomize the architectural design space of LHRD
software frameworks. We then review software frame-
works based on their target applications and unique fea-
tures, utilizing a three-aspect taxonomy we constructed.
This work concludes with a discussion and comparison

1077-2626 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS

1159

Fig. 1. Various configurations of cluster based LHRDs: (a) TACC Stallion composed of 75 30-inch LCD displays, (b) EVL/UIC CAVE2 composed of
72 near-seamless LCD panels driven by a 36-node cluster, (c) Stony Brook University Reality Deck composed of 416 LCD displays driven by an 18-
node cluster (© 2013 Arie Kaufman, Stony Brook University), (d) Fraunhofer IGD Heyewall using 48 projectors and 48 nodes, (e) AT&T’s 12 foot
high by 250 foot wide rear-projection wall (© 2013 AT&T), (f) Calit2/UCSD Wave Display shaped like an ocean wave with 35 3D LED-backlit LCD

panels.

of the most common frameworks and open opportunities
for future LHRD frameworks.

2 CLUSTER-BASED LARGE HIGH RESOLUTION
DISPLAYS

Due to the difficulty of constructing large displays, tiled dis-
plays are a common approach to pushing the bounds of
physical size and resolution beyond what is commercially
available. To support this perspective, the individual tiles
are chosen to be as uniform as possible, they are packed
together as tightly as possible to minimize the space
between tiles, and the displayed content is designed to
show contiguous views, creating the illusion of one single,
continuous display space (e.g., Fig. 1).

2.1 Characteristics
There are two main technologies used to provide the indi-
vidual tiles: projectors (e.g., Figs. 1d, and1e) and LCD panels
(e.g., Figs. 1a, 1b, 1c, and 1f). Rear-projection displays have
the advantage that the individual tiles can directly abut or
even overlap, creating a truly seamless display. In addition,
projectors make it easy to create very large physical dis-
plays, and with proper configuration, projected displays can
conform to a variety of surfaces, such as the smooth curve in
Fig. le. LCD panels, on the other hand, offer a higher pixel
density, creating the opportunity to present more detailed
information to users working in close proximity to the dis-
play and provide greater clarity. The panels also tend to be
brighter, and to have greater consistency with respect to
brightness and color than projectors [9] which are subject to
changes in the color temperature of the lamp as it ages.
LCDs also occupy a smaller footprint in the physical space.
The simplest approach to driving a multi-tiled display is
to use a single powerful computer integrated with multiple
graphics cards. Recent advances, such as the AMD Eyefinity
and FirePro graphics cards [10], which allow up to six

monitors to be connected to a single PCle graphics card,
have made this approach even more practical. However,
considerations such as the number of available expansion
slots, the bus capacity, and the number of outputs and their
associated maximum resolutions place hard limits on the
size of the display. To solve these problems, large, multi-tiled
displays are generally driven by a PC cluster. The cluster-
based approach for LHRD enables the following benefits:

Performance and display size scalability. Performance bottle-
necks may place limits on the number of tiles and/or the
size of the display. Cluster-based large displays provide
performance scalability and, nevertheless, support the crea-
tion of much larger displays than the single machine
approach, by distributing the workload across different
nodes in the cluster.

Scalable memory capacity. Cluster-aware applications can
enable the user to take advantage of an extremely large
amount of memory since nearly all of the memory space in
the cluster can be used as a cache [11].

Upgradability and extensibility. The capabilities of the clus-
ter-based display are not fixed by its initial configuration.
Additional rendering and display capacity can be added
later with the addition of new displays and machines. The
system can take advantage of more current technologies,
since the commodity industry regularly releases new and
more powerful devices with decreasing costs. As compared
with special purpose hardware, its compliance with stand-
ards favors software and hardware interoperability [12].

Flexible modularity and adaptability. This type of system
supports flexible modularity, which enables users to cus-
tomize hardware components, display sizes, and input
devices that are better suited to the user’s tasks and environ-
ment where the display will be installed [7].

2.2 Components and Software Frameworks

An LHRD cluster consists of two types of nodes based on
their roles. The first type is the head node, which controls and

1160

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

Fig. 2. LHRD applications. scientific visualization: (a) Large-scale pump data by using particle-based volume rendering (PBVR) [13], (b) Isosurface
visualization of the visible woman data set [14], (c) Whole-brain DTI tractography visualization [15]; information visualization: (d) Space-centric visu-
alization [2], (e) Effective visual correlation analysis in large trajectory-databases [16], (f) Articulate, a system supporting natural language interaction
[17]; immersive visualization: (g) Mercedes-Benz Stuttgart Design Studio Powerwall which allows for 1:1 scale car modeling with tangible interfaces
[18], (h) Exploration of proteins from the protein data bank in 3D in StarCave [19]; imagery and multimedia viewing: (i) Tileviewer showing seven dif-

ferent big images, 200-600M pixel resolution each, and two videos [20].

manages all other nodes by distributing commands and syn-
chronizing events, data, and display outputs, according to
specific LHRD configurations. The second type, display node,
is responsible for driving a single or multiple display tiles
and for rendering frames on the tiles. These nodes must coor-
dinate their outputs, data, and tasks through the network,
creating a large coherent image across multiple display tiles.

The main function of a cluster-based LHRD framework is
to handle the details of synchronizing and distributing the
rendering tasks across these nodes so that the developer (or
the user) can focus on the higher-level functionality of the
application. The framework enables the sections of the large
coherent image to be rendered and displayed on each dis-
play tile in parallel.

When the image requires animation, the frame changes to
each tile are synchronized by the framework across different
nodes and display tiles of an LHRD. However, the amount
of time to render each tile might not be the same in every
node because the computing and data processing times in
each node can be different due to several performance fac-
tors including latency, memory bandwidth, CPU/GPU
speed, etc. In order to achieve synchronization, the head
node blocks the swaps of the front and back frame buffers of
the display nodes until “end of frame” messages have been
received from all display nodes (Figs. 3a and 3b). Once all of
the nodes have sent the message, the head node unlocks the
barrier to swap the frame buffers at the same time by multi-
casting unlock messages to all display nodes.

Most of the software frameworks guarantee the swap
buffer synchronization across multiple display tiles without
any hardware support, since such a software-based
approach is considered to be a more cost-effective solution

and provides flexible and adaptive solutions for specific
LHRD applications and display configurations [21]. How-
ever, for more accurate and rapid frame synchronization,
some of the frameworks (e.g., [22]) support hardware-based
synchronization that provides both swap barrier and video
refresh through direct connections to the graphics cards on
each display node (e.g., Quadro G-Sync graphics cards).

These processes distinguish the LHRD frameworks from
other tools designed to perform general-purpose computing
on clusters.

3 APPLICATIONS AND REQUIREMENTS FOR LHRD

There are a number of different application domains for
LHRDs. The application plays an important role in picking
(or developing) a software framework, as each domain
comes with its own set of requirements and bottlenecks. In
contrast to the previous LHRD application surveys [9], [23],
we focus on the attendant requirements and characteristics
of the primary LHRD application domains in this section.

3.1 Immersive Virtual Environments and Modeling

The 3D virtual environments and modeling applications
allow users to see high-fidelity models or immersive virtual
environments at amplified scales and multiple degrees of
detail through physical navigation. LHRDs offer a compel-
ling alternative to more dedicated systems such as CAVEs
(Figs. 1b and 2h) or head mounted displays, since they typi-
cally offer a greater data density. Some typical applications
include geospatial exploration [24], architecture walk-
throughs [11], [19], and design exploration [25], [18], [26]
such as the 1:1 automotive model (Fig. 2g). The rendering

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS

(a) Distributed Application

Head Node
Head

Application for
Synchronization

—

; Init Config :I

Wait for Frame
—» End from All E
Nodes -

\ Application Specific Information(Sync, Event Messe@k.
)]

a%"

rame Engd

Buffer Swap

Bvent Sync

1161

(b) Distributed Render

Head Node

Application

Renderer

i i N Ao Y e me e i
Rendering Calls, Rendering Data _//

ndering

=1 Begin New
Tmands/gata Frame/
Receive Data
Wait for Frame
End from All
Nodes |e Frame End

r Swap $ync

Application
Process

Rendering
Process

Graphics H/W
and Display

Fig. 3. Examples of two task distribution models for cluster-based LHRD.

and interaction characteristics of these applications tend to
focus on pointing and object manipulation, and rely more
on the exploration of static models than on highly dynamic
views [7]. Because the scene changes between frames are
largely achieved through transformations of the view, the
best performance for these applications is typically achieved
with frameworks that allow the underlying model to remain
resident on the display nodes, since such frameworks can
avoid transmitting a large amount of 3D model and texture
data to display nodes (see Sections 5.2.2 and 8.2).

3.2 Scientific Visualization (SciVis)
The use of LHRDs for scientific visualization is driven by the
need to model complex phenomena. Applications span a
wide variety of scientific and engineering disciplines includ-
ing biomedical science [27], [28], genomics [9], molecular
dynamics [29], geosciences [30], [31], climate and atmo-
sphere [32], [33], space science [34], [35], and building struc-
tures and architectures [36], etc. While some applications use
the display space to layout multiple views [37], [38], the most
common use for the display is to view a single large highly-
detailed visualization. The high pixel count allows the user
to observe detailed connections and interactions without los-
ing the context of the overall structure of the data.

SciVis on LHRD typically focuses on 3D volume render-
ing [39], large point clouds [13] (Fig. 2a), Isosurface [14], [9],

[40] (Fig. 2b), and related techniques for working with three
dimensional structures. The quantity of data from which
these models are derived can also be enormous, requiring
multiple petabytes of information. The data set may easily
exceed the available memory and computing capability of a
single machine. To render these models, it is important to
be able to leverage the full rendering capabilities of the clus-
ter. The software framework underlying the application
should support efficient data and rendering distribution
and out-of-core methods [11]. Also of concern is load bal-
ancing [41], [42] moving rendering tasks to underutilized
nodes in the cluster to achieve maximum performance.

The primary focus of research involving SciVis on LHRD
has been these rendering issues. As a result, interaction has
been typically reduced to a very basic set of navigation tools
for exploring the displayed model. This is what most of the
software frameworks support, but there is clearly more
research that could be done in this area to support more
complex tasks.

3.3 Information Visualization (InfoVis) and Visual
Analytics

Information visualization is characterized by the use of rep-
resentations for more abstract data. While there is some use
of 3D representations, InfoVis applications are more com-
monly two-dimensional. The additional pixels of LHRD are
especially useful for InfoVis where scalability has typically

1162

been limited by the number of pixels available on a conven-
tional display. LHRD applications in InfoVis include geo-
spatial visualization [3], [2] (Fig. 2d), analysis in large
trajectory-databases [16] (Fig. 2e), natural language queries
[17] (Fig. 2f), and sensemaking to large textual data [6].
The representations are built up using simple 2D or 3D
glyphs such as points, lines, images, and text, [43], [16]. The
potential for graphics primitives, such as long lines and
large polygons, spanning multiple tile boundaries is greatly
increased, making it more difficult to distribute the render-
ing tasks.

Unlike the complex and largely static models used for
virtual environments and scientific visualization, InfoVis
applications tend to be more dynamic. While navigation is
still a fundamental task, other tasks such as selection, filter-
ing, and annotation are equally important [44]. There are
some implications for InfoVis on LHRD. Each individual
glyph in the visualization potentially can change based on
the interaction. The changes wrought by interactions can
create significant alterations in the displayed representa-
tions at multiple levels of scale. The dynamic nature of the
displayed objects (or glyphs) leads to significant geometry
updates spanning multiple (if not all) display tiles and
nodes on the LHRD [45], [46].

3.4 Command and Control

The key objective of command and control applications is to
support real-time situational awareness and collaborative
decision making tasks for co-located teams of users. LHRD
command and control systems are used to support a broad
range of fields including military [47], aerospace, telecom-
munications [48], [49], large facility management [50] and
energy deployment and distribution [51]. The information
presented in command and control situations typically con-
sists of multiple windows (Fig. 1le), sometimes exported
from individuals’ computers. Aggregating exported win-
dows for a large display can add an additional challenge for
synchronization, as the disparate applications may be run-
ning at different frame rates [21]. Since users typically sit at
their personal workspaces within the command center,
interaction is achieved by a conventional tethered interface
such as a keyboard and mouse through the user’s own per-
sonal computer rather than with the large display directly.

3.5 Imagery and Multimedia Viewing

Basic image and multimedia viewers are fairly straightfor-
ward uses of large displays. There are two basic use cases
for these kinds of applications. The first is to enable the user
to view large, high-resolution imagery or media at a resolu-
tion that supports the analysis of critical details without los-
ing the overall context of the source material. This approach
is useful for analyzing the imagery produced by satellites
[52], radio telescopes [53], electron microscopes [54], etc.
The second use case is to use the display space to view mul-
tiple images for organization or juxtaposition purposes
(Fig. 2i) [20].

These types of applications need a relatively small num-
ber of polygons and fewer geometry changes to display
images, as the images are treated as atomic units (typically
in the form of textures). However, it is challenging

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

to manage, load, and display a large number of high-
resolution images across the display nodes. Due to the lim-
its on texture size in the main memory and GPU’s texture
memory, huge images generally need to be segmented into
smaller pieces in a preprocess stage, and a collection of the
image pieces can also be pre-generated in different resolu-
tions to accelerate rendering speed [20], [55], [56]. An effi-
cient solution should provide ways of distributing texture
data, minimizing the amount of data that must be handled
by any particular node, and caching it (i.e., out-of-core
approaches such as [57]) to reduce the network traffic.

Video content is more difficult to deal with due to its
dynamic nature. On the other hand, truly high-resolution
video content is fairly rare, so the problem is generally one
of streaming conventionally sized content to the appropri-
ate tiles or intelligently scaling it across the tiled display
[58]. There are a number of video streaming approaches
and applications for cluster-based LHRDs [59], [60], as well
as some frameworks which support streaming media [61],
[62], [63] (see Sections 8.1.2, 8.3.4, and 8.4.2).

4 THREE FACETS OF THE TAXONOMY

There are many ways for the frameworks to address the
requirements and characteristics of the LHRD applications,
in addition to other functionalities to consider. To attempt
to classify the various approaches, we propose a faceted tax-
onomy. A single taxonomy is insufficient to fully describe
LHRD software frameworks, since the frameworks are typi-
cally composed of a set of different functionalities. Each
facet represents a different aspect of the frameworks. On
the basis of our application survey, we identified three main
facets for the taxonomy:

Task Distribution Models. The rendering performance in
the LHRD cluster is influenced by certain architectural fac-
tors and network utilization significantly. These include
parallelizing, load-balancing, and distributing application
and rendering tasks across nodes in the cluster. This facet
examines how each framework distributes responsibility,
and has the greatest impact on the overall performance of
the application (Section 5).

Input Handling Models. The Windows, Icons, Menus,
and a Pointer (WIMP) interaction model may not be well
supported by the LHRD. Important concerns are, which
interaction techniques are supported, where events are
being generated and collected (e.g., can individual nodes
generate interaction events or is one machine handling
all input?), and what information is propagated to the
nodes (Section 6).

Programming Models. While technical aspects play a large
role in determining the performance of the application, it is
also important to consider the development process as well.
Since cluster-based LHRDs are not numerous, there are
very few developers dedicated to developing LHRD appli-
cations. Thus, we must consider the overhead imposed on
the developer by the framework. For example, some frame-
works require the developer to follow a particular pattern
or structure, which may, or may not, be used in other
domains (Section 7).

Table 1 summarizes the advantages/disadvantages of
each model within all three facets of the taxonomy.

1163

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS
TABLE 1
Comparison within Three Facets of the Taxonomy
Three Facet Taxonomy Pros Cons
Distributed - Reduce network traffic among the nodes. - Relatively poor utilization of the distributed resources of a cluster
Application - Utilize data from local memory or storages avoiding sending a for performance scalability and data management.
large amount of information. - Require handling synchronizations of nondeterministic
Task - Can add and remove display nodes dynamically during runtime. applications that use random number generators.
Distribution Distributed - Can support rendering scalability by dividing the rendering task - High network traffic between the nodes.
Models Renderer and data into small parts and executing them in parallel on nodes - Single head node performs the bulk of the computation.
- Facilitate the management of extremely large rendering data.
- Minimal computational requirements for the display nodes.
Centralized - A head node handles all events for user input so that it can reduce |- If multiple input devices are tightly coupled to each display node
Event Handling | the workload for display nodes. (e.g., touch interfaces, cameras, etc.), this model may requires
Input - Distributing events is simple and uni-directional from the event additional programming for the devices.
Handling server to the other nodes.
Models Distributed - Spreading input devices across the cluster increases the number of |- More sophisticated ways to synchronize and share input events
Event Handling |resources available to manage them. require complexity in the framework.
- Spread computational tasks such as raw input data into higher-
level information across the cluster.
Non-invasive - Transparently support existing graphics APIs of single - No control over the parallel portion of the application.
workstations. - Do not support all features of the original graphics APIs.
- Developers can focus on the application logic, without significant |- The potential of a disconnect between the expected behavior of a
Programming concern about the nature of the cluster system and tiled display. function and the behavior implemented in the framework.
Models Minor - Support minimal control over the distributed graphics system - Limited control over the parallel portion of the application.
Code - Minimize the degree to which developers need to learn about low-
Modification level cluster systems and parallel rendering.
Structurally - Programmers have finer control and utilization of distributed - Typically require programmers to restructure their graphics code
Invasive graphics hardware and input devices. with multiple callback functions.
- Require understanding the physical and logical components of the
cluster system.
- Porting existing code to the cluster-based LHRD may be difficult.

5 TAsSK DISTRIBUTION MODELS

Broadly speaking, all graphics intensive programs follow
the same basic pattern. The application logic transforms the
model into graphics primitives, usually some form of point
or vertex data. These primitives are assembled into basic
geometry, which is scaled and clipped against the display
viewport. This is followed by the rendering process, which
performs depth tests and assigns colors to pixels in the fra-
mebuffer. When the framebuffer is ready, a “buffer swap”
is performed, and the contents are displayed on the screen.
Then, inputs are processed, potentially changing the model
and the cycle repeats.

With a conventional display, most of this process is
performed on the local graphics card. However, on a
cluster-based LHRD, at some point in this process infor-
mation needs to be distributed to the networked nodes.
One of the most important issues is how rendering tasks
are distributed across the nodes and how each node
retains the data.

We can classify Task distribution models based on the
point within the rendering process at which data is shared
among the nodes in the cluster. Thus, the question is about
which tasks are performed on each LHRD node and which
information is communicated. There have been several
other proposed classifications based on the distribution of
responsibility, most notably Chen et al. [64] and Staadt et al.
[45]. Other classifications were also used [7], [62], [29], [65],
[66], and [67]. However, most of these use terminology that
is removed from the actual task being performed, leading to
less descriptive, and in some cases contradictory labels for
another classification.

We propose two categories: distributed application, and dis-
tributed renderer. In the first, network communication is pri-
marily concerned with duplicating the application state
between nodes, while in the later, actual rendering directives

(graphics primitives, geometry, scene graph or even raw pix-
els) are communicated across the network.

5.1 Distributed Application

In this model, identical application instances are run on
each node of the cluster using different configuration
parameters to determine which tile(s) it is responsible for
(Fig. 3a) (see Sections 8.3.1,8.3.2,8.3.3,8.3.4,8.3.7,8.4.2, and
8.4.5). While a fully decentralized architecture is possible,
this approach usually makes use of a head node which
serves as the controller of the entire display (e.g., Fig. 3a).
The main duty of the head node is to broadcast any infor-
mation necessary to keep the system state identical across
all of the nodes (i.e., synchronization). This includes any
system input, including user interactions, as well as lower-
level sources of the application state, such as timer informa-
tion and random number generation.

The primary advantage of this model is that it has fairly
small network bandwidth requirements, since only the
user’s input events and important application state informa-
tion need to be propagated across all nodes to synchronize
the distributed applications.

The intelligence of both the application and the soft-
ware framework can significantly affect the performance
characteristics of this approach. Since every node runs
the same application, the naive approach would be for
each node to attempt to render the entire scene, relying
purely on the viewport clipping to reduce the amount of
geometric information actually rendered and displayed.
Thus, this model can be improved through support for
object culling in the framework [68], or by intelligent
processing at the application level to avoid considering
objects that will not be displayed by this node. Of
course, this later approach puts a greater burden on the
application developer, and there is the potential that

1164

determining which objects are displayed by this node is
more computationally expensive than simply rendering
everything.

This model has some downsides in terms of utilization of
the computational resources, performance scalability, and
data management. First, since the full application and data
may be maintained and executed in every node, this repeats
the same, potentially expensive, computations on every
node. So CPU performance has the potential to become a
bottleneck. Similarly, if each node is working indepen-
dently, memory contents may be duplicated in every node,
removing any benefit of the large amount of memory pro-
vided by the cluster as a whole. In addition, data manage-
ment is a key issue. Each node may maintain a copy of the
entire data set, or there may be a centralized shared data-
base accessible to all of the nodes, which would cause addi-
tional network traffic.

5.2 Distributed Renderer

The distributed renderer approach separates the rendering
tasks from the core application (Fig. 3b [22]). Here, the head
node performs all of the application level logic. The display
nodes are responsible for handling graphics operations.
This puts the bulk of the computation on the head node,
which must take care of executing the application, handling
input events, sending and splitting rendering tasks, and
synchronizing frames. There is a spectrum of approaches
that fall into this category, determined by where the divi-
sion between the head node and the display node is made.
Communication between nodes can be in the form of
graphics directives, graphics primitives, geometry, or even
actual pixels.

To better separate the application logic from the distribu-
tion of the rendering tasks, many frameworks also provide
an intermediary process that handles the configuration and
resource management for the cluster [69], [22] (see Sections
8.1.3 and 8.4.1). This shields the application from details of
the cluster structure. The application sends rendering com-
mands to the intermediary process, which performs the dis-
tribution and synchronization.

In contrast to the distributed application model, the
actual application can be completely unaware of the
cluster, potentially making development easier. In addi-
tion, the processes running on the rendering nodes (i.e.,
display nodes) can be completely removed from the
application logic, and can be generalized and thus pro-
vided entirely by the framework (e.g., Fig. 3b). A key
advantage here is that the computational requirements
for the display nodes in the cluster are minimal. Pro-
vided they have good graphics capabilities, the nodes
can otherwise have mediocre specifications with respect
to CPU speed, memory, and disk capacity. However, the
main disadvantage of this approach is the high network
bandwidth requirements caused by the large amount of
graphics information that must be communicated to the
display nodes.

Based on how calls from the head node cause render-
ing on each display node, we can further classify this
model into two rendering styles: Immediate rendering and
Retained rendering.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

Fig. 4. Sort-first (left) and sort-last (right) on a four-tile display. The color
indicates how the rendering was divided between the four nodes.

5.2.1 Immediate and Parallel Rendering

The distributed renderer supports immediate rendering,
where the head node issues graphics commands that directly
affect the current scene to be displayed (see Sections 8.1.1,
8.1.2,8.1.3,8.1.4, 8.3.6, 8.4.1, and 8.4.3). An important attri-
bute of frameworks that follow this approach is the type of
rendering information sent to the rendering nodes. The most
straightforward method for immediate rendering is to send
all of the graphics information (whether commands, primi-
tives, or pixels) from the head node to all of the display
nodes, and let each display node determine the portion of
the view for which it is responsible. This approach leads to
very high network usage. Frameworks that implement this
approach will frequently make use of broadcast or multicast
communication in an attempt to cut down on the network
traffic [70], but the low-level information sent out from the
head node still results in problems with network latency.
Another issue is that there is a great deal of duplication of
effort among the rendering nodes as each node will ulti-
mately render the same objects in an attempt to determine if
they fall within the clipping region [45].

This model allows for the use of parallel rendering algo-
rithms instead which first divides the rendering problem
into smaller pieces, so that each display node deals with a
separate smaller piece of the content [42], [71] (see Sections
8.1.3, 8.2.1, 84.1, 84.3, and 8.4.4). The most common
approach is an algorithm called sort-first (or screen-based
decomposition) [72]. This algorithm sorts graphics primitives
based on each display tile’s viewport. It divides the entire
scene into disjointed tiles (based on the display tiles of an
LHRD) and each display node then renders only the
graphics primitives that lie within its view space (Fig. 4left).
While this approach requires the head node to perform
more work, it reduces the network bandwidth require-
ments, and simplifies the work performed by each of the
rendering nodes.

Another approach to parallel rendering is the sort-last
(or model-based decomposition) algorithm [72]. This algo-
rithm divides the model up into similarly sized pieces
and distributes them to arbitrarily selected display nodes
(Fig. 4right). Since rendering tasks can be evenly distrib-
uted across the display nodes, sort-last can provide bet-
ter processor load balancing than sort-first among the
display nodes and thus result in more consistent perfor-
mance. However, since each node renders an arbitrary
fragment of the scene or model, the rendering results

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS

must be collected and composited at the display nodes
before they can be displayed. The I/O overheads of this
composition processing in the sort-last approach are lim-
iting factors for dynamic visualization on the cluster-
based LHRD [12], [73]. When it is used for tiled display
setups, sort-last is typically used for static visualization
of highly complex models on LHRD rather than for gen-
eral dynamic visualizations [74]. Samanta et al. [75] have
proposed combining sort-last and sort-first to increase
rendering performance but this approach is not yet
directly implemented by any general LHRD frameworks.

5.2.2 Retained Rendering

To further reduce network traffic during distributed render-
ing, the rendering nodes can reuse information from previ-
ous frames rather than completely refresh at every update
[45], [76] (see Sections 8.2.1,8.2.2,8.2.3,8.2.4,8.2.5,8.3.4, and
8.4.4). Since the primary bottleneck is the communication
channel between the head node and display nodes, the
issued high-level graphics commands and data can be
stored on the display nodes for later use, without resending
unchanged data from the head node.

Several LHRD frameworks support retained rendering at
this level. On one hand, Scene graphs enable retained render-
ing at a higher level. Scene graphs are most useful for mod-
els that remain coherent (i.e., they are static, or move in
well-defined ways). As such, changes across updates will
be relatively small (e.g., color changes, view changes, or
transformation). Every display node maintains a copy of the
entire scene graph and associated graphics primitives. The
head node tracks changes of the scene graph to ensure con-
sistency in distributed nodes and broadcasts these changes
to every display node. Then, each display node traverses
and updates its local scene graph accordingly and performs
the rendering tasks on the tiled display. Once the display
nodes retain the scene graph, the head node needs to com-
municate only change sets to the display nodes. Of course,
if the interaction involves complex geometry changes, the
overall visualization performance will be significantly
degraded due to the overhead of traversing and updating
the scene graphs in each display node (see Section 8.2).

On the other hand, Allard and Raffin proposed a shader-
based protocol for retained rendering [40] as another
approach to transmit changes between each frame on
LHRD. Graphics shaders replace the fixed functionality of
the traditional graphics pipeline with programmable units.
In the context of cluster-based LHRDs, instead of continu-
ally sending attribute data (such as color and geometry), the
head node can send simple updated parameters between
frames and let the shader on the display nodes handle the
rendering procedurally (see Section 8.4.4).

6 USER INTERACTION AND INPUT HANDLING

Due to the physical size of LHRDs, conventional tethered
user interfaces, such as keyboards and mice, may limit
physical navigation [3] even if they are placed on a mobile
platform. In addition, LHRDs are frequently used as collab-
orative multi-user environments. As such, there is much
interest in alternative input devices and multimodal interfa-
ces (e.g., [77], [78], [79]). Some common devices include:

1165

e Tracking systems (e.g., infrared/magnetic marker
tracking system) [77], [79], [80]

e Analog devices (e.g., analog joystick and sensors
such as accelerometers and gyroscopes) [77], [81]

e Digital devices (e.g., gamepad, touch overlay, pen,
etc.) [82], [83], [84]

e Camera/Computer Vision based approaches (e.g.,
gesture based interaction) [85]

e Multiple display surfaces (e.g., personal displays,
smartphones, and tablets) [78], [86]

These input devices are often combined to create new
interaction techniques or virtual input devices (see Sec-
tion 8.3.4) and integrated interactive workspaces [87]. A com-
plete survey of interaction techniques is beyond the scope of
the software framework (for more detailed surveys of
LHRD interaction techniques, see [88], [89]). Instead, we will
limit our focus to the capabilities of the software frameworks
for supporting interaction. We divide the process into two
parts: the process of acquiring the raw inputs from multiple
potentially-distributed input devices, and the process of han-
dling the input events to change application state.

6.1 Input Acquisition

Most of the frameworks we discuss in this survey leave the
problem of input completely in the hands of the developer,
although some frameworks provide facilities for acquiring
input events through specialized input servers.

Standard event acquisition. The simplest model makes
use of a conventional event handling loop that accepts
input directly from the OS (see Sections 8.1.1, 8.1.3, 8.2.1,
8.3.7, 8.4.1, and 8.4.5). This allows the application to
make use of standard input devices that are physically
connected to the head node through I/O ports such as
serial or USB ports. For example, developers using Chro-
mium [69] and OpenSG [90], write conventional desktop
applications with standard event handling, and they dis-
tribute the rendering data after the application state has
already been changed by input events.

Ad-hoc acquisition. Novel LHRD interactions are increas-
ingly based on wireless and mobile input devices with vari-
ous types of input information. One of the primary
challenges of developing with novel input devices is that
there is limited support at the OS level for transporting
inputs across systems and transforming inputs into mean-
ingful interaction events. A typical approach is to build on
top of toolkits, such as TUIO [91], ICON [92], Squidy [93],
VRPN [94], Opentracker [95], and kivy [96], which provide
an abstraction layer between the raw input and the desired
interaction events. These toolkits enable communication
between input devices and the head node application
through various communication protocols for interactions,
such as TUIO messages [91] and OpenSound Control (OSC)
[97] over the wireless network.

Input server. Some frameworks include their own input
server to support a wide range of input devices and their
functionalities [98], [99], [63], [86], [87] (see Sections 8.3.4,
8.3.6, and 8.4.2). In general, these input servers are responsi-
ble for simultaneously connecting with multiple input devi-
ces, gathering input from the devices, and delivering it to
the application. The input server creates a form of input

1166

device transparency, where the application is shielded from
details about where the device is located and, in some cases,
the actual nature of the device itself. These can be config-
ured to abstract the inputs from these devices directly into
higher-level tasks such as navigation, transformation, and
selection. For example, the jBricks Input Server (jBIS) han-
dles input distribution and manages user interaction
through OSC [100]. Syzygy’s input server facilitates the
combination of input data from multiple devices to form an
integrated input device (see Section 8.3.4) [62]. CaveLib
[101] supports a more specialized input server for trackers
only, which broadcasts tracker position information to the
application. In the case of the distributed application frame-
works, such as VR Juggler [98] and CGLX [63], the input
server can also gather input from applications running on
the display nodes, which can be useful if, for example, the
tiles are also touch surfaces (see Section 8.4.2). In distributed
renderer frameworks, Equalizer [22] is a special case of this,
in that it provides facilities to gather input events from the
distributed renderers (i.e., display nodes).

6.2 Input Handling Models

Once the input events are acquired, the next question is
where the actual handling of the events takes place. There
are two ways to handle the input events in the LHRD clus-
ter. These approaches are closely related to the task distribu-
tion models (Section 5).

Centralized event handling. The frameworks based on
this approach provide a centralized event loop (see Sec-
tions 8.1.1, 8.1.3, 8.1.4, 8.2.1, and 8.3.6), and the head node is
solely responsible for receiving and handling input events
for update. The head node receives all events from input
devices or input servers, updates the application state
accordingly, and then distributes the updated state or ren-
dering information to the display nodes.

Distributed event handling. The frameworks based on this
approach forward the input events out to the display nodes
where the events are processed (see Sections 8.3.1, 8.3.2,
8.4.2, and 8.4.5). Depending on the amount of event trans-
formation in the input servers, the information distributed
consists of either raw input data or application relevant
events, such as navigation commands. Each display node is
then responsible for updating its own internal system and
application states.

7 PROGRAMMING MODELS

Our third comparative dimension, the programming model,
is indicative of how a framework is used to create a visuali-
zation application on a cluster-based LHRD. Frameworks
typically build on existing standard graphics APlIs, such as
OpenGL, but modify the APIs and/or add functions to sup-
port cluster-based LHRD capabilities.

The primary issue is the degree of invasiveness of the
framework into the graphics API; that is, how much
does the framework API affect the application code from
an otherwise standard graphics application. From an
application developer’s point of view, this is an issue
of usability of the API and generality of the resulting
applications, versus specificity and power. At a high
level, we distinguish three basic LHRD programming

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

models based on how these frameworks support the
existing graphics APIs, ranging from transparently non-
invasive to structurally invasive.

7.1 Non-Invasive

The non-invasive programming model seeks to support the
existing graphics APIs transparently to extend them with-
out modification [102], [103] (see Sections 8.1.3, 8.1.4, 8.2.2,
8.2.3, 8.2.4, and 8.3.3). Programmers can develop an LHRD
application using the original graphics libraries designed
for conventional desktop hardware, such as OpenGL, OSG,
or Open Inventor, without modification or additional paral-
lelization functions. Thus, new LHRD applications can be
created without learning a new API for the cluster-based
LHRD. Developers can focus on the application logic, with-
out significant concern about the nature of the cluster sys-
tem and displays. This lowers the barrier to the
development of LHRD applications. Also, existing applica-
tions can be immediately ported to LHRD systems, and in
some cases can be run without recompiling.

Programmers typically need only to create a configura-
tion file for their specific LHRD system, which describes
every hardware element associated with the given cluster-
based LHRD system. Once the configuration is specified,
the framework automatically handles the deployment
and parallelization of the application according to the
configuration.

7.2 Minor Code Modification

Software frameworks supporting this type of programming
model still allow the developer to work primarily with con-
ventional toolkits, such as OpenGL or one of the scene
graph implementations, but require part of the code to be
purpose written to the LHRD environment (see Sections
8.1.2, 835, 83.6, 83.7, 842, 8.4.3, 8.4.4, and 8.4.5). There-
fore, this provides the developer with a minimal control
over the synchronization or view-related portions of the
LHRD application while minimizing the degree to which
the developer needs to be acquainted with knowledge about
low-level cluster systems and parallel rendering.

There are two common types of minor code modifica-
tions required by LHRD frameworks: (1) adding setup
code [61] (see Sections 8.1.2 and 8.3.7), and (2) adding or
replacing some extended functions with additional func-
tionality [104], [105], [63] (see Sections 8.4.2 and 8.4.5).
First, programmers may add a few lines of application
initialization code related to display configuration
parameters for the display cluster (e.g., viewing and
windowing parameters). Second, programmers may add
or replace specific view-related functions for tiled dis-
plays, which are used in conjunction with the existing
APIL In an LHRD application, a single view needs to be
subdivided into several independent tiles. Hence, view
related functions in the original code might need to be
replaced with new functions in the framework that are
re-implemented for the cluster-based LHRD. This modifi-
cation is very simple, and typically requires pro-
grammers to add new prefixes to some of the function
names, accepting the same function parameters as the
originals (see Section 8.4.2).

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS

7.3 Structurally Invasive

The final model involves frameworks that are novel or more
specific to an application itself. While frameworks in this
category may not be written specifically for LHRDs and are
still designed to use existing graphics APIs, they provide
their own library that is not found in any other tool or devel-
opment environment [98], [106], [99], [107] (see Sections
8.2.1,8.2.5,8.3.1,8.3.2,8.3.4, and 8.4.1). This gives the appli-
cation developers the freedom to implement features not
supported by conventional graphics APIs, but does so at the
cost of generality.

This programming model provides programmers with
abstractions of various physical and logical entities and
functionalities of the cluster-based multi-display systems,
such as cluster nodes, displays, input devices, graphics
cards, windows, synchronization, etc. [22]. Thus, pro-
grammers have finer control over and utilization of distrib-
uted graphics hardware and input devices. However, in
contrast to the previous two models, this requires pro-
grammers to be more aware of physical and logical compo-
nents of cluster-based rendering systems.

The frameworks with this programming model typi-
cally require programmers to restructure their graphics
code based on multiple callback functions that are
invoked by the frameworks. To develop an LHRD appli-
cation, programmers override or “fill in the blanks” of
the predefined callback methods similar to the callback
functions in GLUT. For example, like glutDisplayFunc(),
the rendering routines are passed as display callback
functions that are called by the framework according to
the display loop in the rendering process. The contents
of these rendering routines in the application code can
be written with conventional graphics APIs.

8 LHRD SoFTWARE FRAMEWORKS

In this section, we review a number of currently available
software frameworks and toolkits for LHRDs. These
frameworks have originated from a variety of communi-
ties with a number of different target applications, and
thus demonstrate a fairly diverse set of characteristics. All
of the frameworks we discuss, however, have either been
adapted or developed to support cluster-based, multi-tiled
displays.

We organize these LHRD frameworks primarily based
on the target applications, and discuss each framework in
the context of our faceted taxonomy. Our survey places
more weight on the frameworks which have been published
and have been actively used for developing various applica-
tions on cluster-based LHRDs. We checked the presence
and usage of mailing lists and related internet forums for
each framework as well as applications written with the
framework. For an overall comparison of all of the frame-
works we discuss, see the comparison matrix (Table 2).

8.1 Transparent Frameworks for Legacy
Applications

The primary goal of these frameworks is essentially to hide
most, if not all, evidence that the application is running on a
cluster-based display from the developer. These solutions

play the role of middleware, application window managers,

1167

or OpenGL drivers, allowing the tool to intercept the ren-
dering process at various stages and to stream the results to
specialized renderers across the cluster. The framework is
employed to run existing applications on the cluster-based
LHRD without modification or recompiling. For application
development, these frameworks focus on the non-invasive
programming model.

These solutions may not always lead to the best perfor-
mance. Because the details of the task and data distribution
model are handled entirely by the framework, the devel-
oper has limited opportunity to optimize the application for
the cluster, for example by finding opportunities to parallel-
ize the application logic, or finding ways to leverage the dis-
tributed memory available in the cluster. Another potential
problem is that these frameworks typically work by replac-
ing and re-implementing existing functionality. While this
feature provides transparency, it opens the possibility for a
potential disconnect between the expected behavior of a
function and the behavior implemented in the framework
(if it has been implemented at all).

8.1.1 DMX

Distributed Multihead X (DMX) leverages the client/server
architecture of X11 to distribute X window information
across the cluster [108]. The user selects a node to act as the
frontend (i.e., the head node), and runs DMX's replacement
X server (Xdmx) on it. DMX accepts X directives and for-
wards them on to the other machines in the cluster. When
coupled with Xinerama [109], it unifies the remote displays
into a single virtual desktop, providing complete transpar-
ency for any X11 application.

While DMX offers great flexibility in the range of applica-
tions it can support, it has significant performance limita-
tions. The X11 protocol consists of very low-level directives
for drawing and placing windows and passing along ren-
dering information. DMX adds significantly to this over-
head and compounds it with increasing network traffic as
the number of back-end servers (i.e., the display nodes)
increases. The system mainly supports 2D-based rendering
and does not provide the opportunity to parallelize either
the application or the rendering tasks. Chromium, which
we will discuss shortly, does provide a DMX extension,
which improves 3D rendering performance by distributing
OpenGL commands to the remote nodes, but the network
bandwidth requirements of DMX still restrict it to relatively
small clusters.

DMX is an attractive solution if the goal is a windowing
environment in which existing X11 applications can be run
without modification. However, as the size of the cluster
and the complexity of the content to be rendered increases,
performance becomes a critical problem.

8.1.2 SAGE

SAGE was developed to integrate multiple visualization
applications into a single LHRD [110], [61]. SAGE has
three components: a window manager called the free
space manager (FSManager), SAGE Receivers that drive
the individual tiles in the display, and an API called
SAGE application interface library (SAIL). To show infor-
mation on the large display, the application generates

1168 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014
TABLE 2
Summary of Cluster-Based LHRD Frameworks
Name & Task Distribution Model Event Handling Model Programming Model Graphics APIs Target Applications
Reference

Transparent Frameworks

Immediate rendering,
Distributing 2D pixels but run
applications on muliplelnodes

Free Space Manager

modification, add setup
routines in OpenGL code

supports OpenGL Wrapper
(resolution limited)

DMX [108] Distributed renderer, Centralized event handling Non-invasive X11/Xlib, 2D graphics and Legacy X11 applications;
Immediate rendering, GUI API Large desktop; Command
Distributing X11 calls centers

SAGE [110] Distributed renderer, Distributed event handling, Non-invasive or minor code No dedicated API, but Heterogeneous collaborative

visualization; remote desktop
and video streaming;
Command centers

Chromium [69]

Distributed renderer,
Immediate rendering,
Distributing OpenGL calls

Centralized event handling
(Input server via CRUT
API)

Non-invasive

OpenGL, 3D graphics API

Legacy OpenGL applications

ClusterGL [113]

Distributed renderer,
Immediate rendering,
Compressed OpenGL calls
through multicast

Centralized event handling

Non-invasive

OpenGL, 3D graphics API

OpenGL applications

Distributed Scene Graph Frameworks

OpenSG [90] Distributed renderer, Retained | Centralized event handling Structurally invasive, create OpenSG, GLUT, 3D graphics | Virtual reality applications
rendering, separate client and server API and visualization
Scene graph codes
Garuda [116] Distributed renderer, Retained | Centralized event handling Non-invasive OpenSceneGraph, 3D Virtual reality applications
rendering, Scene graph graphics AP and visualization
Blue-c Distributed renderer, Retained | unknown Non-invasive OpenGL Performer, 3D Collaborative immersive VR,
Distributed rendering, Scene graph graphics API telepresence, multimedia
Scene Graph
[117]
Open Inventor Distributed renderer, Retained | Centralized event handling Non-invasive Open Inventor, 3D graphics Large scale scientific
Cluster Edition rendering, Scene graph API visualization
165]
AVANGO NG Distributed renderer, Retained | Distributed event handling Structurally invasive OpenSceneGraph with Virtual reality applications
[118] rendering, Python bindings, 3D graphics
Scene graph API

Interactive Application Frameworks

VR Juggler [98]

Distributed application

Distributed event handling,
Input server

Structurally invasive

OpenGL, OpenSG, OpenGL
Performer, OpenSceneGraph,
VTK, 3D graphics API

Virtual reality applications
for HMD, CAVE, Powerwall

CaveLib [101]

Distributed application

Distributed event handling,
Input server (for Trackers)

Structurally invasive

OpenGL, OpenGL Performer

CAVEs, Virtual reality
applications

JINX [120]

Distributed application

Distributed event handling

Non-invasive to X3D, but
need to create X3D loader in
C++

X3D, OpenGL, 3D graphics
API

Virtual reality applications

Syzygy [62]

Distributed application and
Distributed renderer, Scene

graph

Distributed event handling

Structurally invasive

Scene graph, OpenGL, 3D
graphics API

Virtual reality applications ,
multimedia

AmiraVR
Cluster Ver.
[123]

Distributed application

unknown

Minor code modification to
AmiraVR

AmiraVR, OpenGL, Open
Inventor, 3D graphics API

Virtual reality application,
and visualization

jBricks [100]

Distributed renderer,

Centralized event handling,

Minor code modification to
ZVTM, replace camera and
view functions

ZVTM, Java2D, Swing, 2D
graphics API

Information visualization,
user interfaces, interactive
applications

Distributing ZVTM Input server - jBIS
commands
MostPixelEverC Distributed application, Distributed event handling
E [125] Processing renderer

Minor code modification to
Processing codes, add some
functions for configurations

Processing, 2D graphics API
(OpenGL is also partially
supported)

Information visualization,
visual art

Scalable Rendering Frameworks

Equalizer [22]

Distributed renderer,
Immediate rendering

Distributed event handling

Structurally invasive

OpenGL, OpenSceneGraph,
3D graphics API

OpenGL high-performance
visualization

CGLX [63]

Distributed application

Distributed event handling,
Input server

Minor code modification,
replace view functions

OpenGL, GLUT, 3D graphics
API

OpenGL high-performance
visualization, multimedia

Render [40]

rendering,
Shader-based protocol

new functions for Shader
framework

graphics API

Parallel iWalk Distributed renderer, unknown Minor code modification, iWalk, 3D graphics API High-performance large-

[11] Immediate rendering transmitting the viewing scale 3D visualization
parameters and culling

FlowVR Distributed renderer, Retained unknown Minor code modification, OpenGL, FlowVR, 3D Virtual reality and scientific

visualization

MPIglut [105]

Distributed Application

Distributed event handling

Non-invasive, requires
recompiling

OpenGL, 3D graphics API

OpenGL applications

pixel data, which are streamed to the SAGE receivers.
The FSManager coordinates the requests and receivers,
handling placement and updates. A key feature is that,
unlike DMX, SAGE supports applications running on
multiple remote hosts. So, for example, three users could
all be working on individual machines, exporting their
results to the same shared LHRD.

While direct use of SAIL is far from transparent, there is a
collection of tools for SAGE, which makes the environment

easier to use. For instance, it supports an OpenGL wrapper
that allows existing OpenGL applications to be run on the
display with minimal modification. However, the OpenGL
wrapper is limited to the size of the frame buffer on the local
machine, rather than to the size of the LHRD.

As with DMX, SAGE is appropriate for displaying multi-
ple applications or windows of heterogeneous information,
rather than a single large, complex visualization. While the
pixel distribution approach is very generalizable, it is not a

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS

high-performance approach, and offers less opportunity to
leverage the capabilities of the cluster.

8.1.3 Chromium

Chromium [69], based on the earlier WireGL [111], is a
widely used LHRD software framework due to its transpar-
ent OpenGL support. Chromium works by replacing the
OpenGL shared library, so that it can be used by an OpenGL
application without modification. This provides a great deal
of flexibility as any application developed in any language
or graphics API that links against the OpenGL library can
make use of Chromium [112].

In order to execute an OpenGL application on the cluster-
based LHRD, Chromium makes use of four main compo-
nents. The first of these is a configuration server, called the
mothership, which manages information about the configu-
ration of the LHRD. The second is a custom application
loader (crappfaker), which launches the application and
links it to the Chromium library on the head node. The third
component is stream processing unit (SPU), which inter-
cepts and processes the stream of OpenGL calls of an appli-
cation for multiple display tiles and nodes. The most
important SPU for LHRD is tilesort which performs a sort-
first partition of the geometry and passes the OpenGL com-
mand stream to the display nodes. The last is the crServer,
which runs on the display nodes and handles the rendering
with the OpenGL library.

Chromium remains a useful tool for executing OpenGL
applications on LHRDs, and for writing mixed environment
software. However, performance limitations may make this
option insufficient for dynamic, large data visualization on
LHRDs. Chromium’s performance is significantly affected
by the overhead of intercepting rendering commands in the
head node and the related network bandwidth require-
ments due to the large amount of graphics commands and
primitives that must be transmitted for every new frame.
Another problem with Chromium is that it requires an
internal implementation or wrapper for every OpenGL
command that it supports. As such, Chromium has not
maintained feature parity with OpenGL and lacks a number
of modern features including OpenGL shading language
(GLSL) and vertex buffer object (VBO).

8.1.4 ClusterGL

ClusterGL [113] is based on Chromium’s approach, but
includes optimization features to reduce the amount of
network traffic, including multicast, frame differencing
and data compression of the OpenGL command stream.
Their benchmarks show that, for most applications, Clus-
terGL outperforms Chromium which supports unmodi-
fied OpenGL applications. The performance difference
increases with more complex scene geometries and more
display nodes.

8.2 Distributed Scene Graph Frameworks for 3D
Graphics Applications

Scene graphs are used to model and simplify the manage-

ment of 3D models and scenes [114]. Since scene graphs

allow developers to construct complex 3D scenes in logi-

cally easy-to-understand ways, they are thus commonly

1169

used in applications for 3D virtual environments. Scene
graph frameworks lend themselves to the distributed ren-
derer model based on retained rendering. Distributed Scene
graphs can improve performance of LHRD applications in
two important ways. First, network traffic between the head
node and display nodes are significantly reduced because
only change lists need to be communicated after the initial
scene graph and associated graphics data have been distrib-
uted. Second, the display nodes can make better use of the
retained rendering features of their local graphics hardware
and memory.

8.2.1 OpenSG

OpenSG is a distributed scene graph framework for LHRD
clusters and single desktop computers. It manipulates scene
graphs with multiple asynchronous threads [115], [90]. Mul-
tithreading and clustering support distinguishes OpenSG
from a different scene graph framework for single worksta-
tions, OpenSceneGraph (OSG). Each display node main-
tains not only the same copy of a scene graph in its own
data format called FieldContainers but also the binary con-
tent of the Fields. A thread in each display node concur-
rently handles and synchronizes the scene graph according
to the change list of the Fields from the head node. OpenSG
allows the head node to send user-created classes derived
from FieldContainers across the cluster. Also, it enables pro-
grammers to filter specific changes on display nodes.

Extremely dynamic visualization may not be efficient for
OpenSG due to the overhead in synchronization and update
of the distributed scene graph [45]. However, large scene
graph changes can be compressed to reduce network band-
width. OpenSG also supports parallel rendering algorithms
such as sort-first and sort-last. Multicast transmits the
change lists and rendering data across the cluster. OpenSG
is built on top of OpenGL and its API consists of the original
sets of libraries but some of the OpenGL and GLUT func-
tions can be used in developing its applications.

8.2.2 GQGaruda

Garuda builds on top of the OpenSceneGraph toolkit,
enabling users to run legacy OSG applications on clus-
ter-based LHRD without modification [116]. Garuda
relies on a server-push and multicast approach to handle
the distributed scene graphs and dynamic 3D models
across multiple display nodes. Each display node per-
forms view frustum culling using a novel adaptive algo-
rithm [68]. The framework also supports a non-invasive
programming interface which automatically replaces
OSG’s cull, draw, and swap functions.

8.2.3 Blue-c Distributed Scene Graph

Blue-c provides a scene graph interface based on OpenGL
Performer for tiled display environments [117]. The frame-
work employs split scene-graph architecture to minimize
scene graph synchronization overhead. For example, it
divides the scene graph maintained in local display nodes
into the shared and local partitions. The synchronization
service tracks and synchronizes updates of the scene graph
on the shared partition to ensure consistency across nodes.

1170

On the other hand, the local partition is managed and
updated only by the local application at each display node.
Another distinguishing characteristic of this framework is
its ability to manage multimedia directly in the scene graph.

8.2.4 Open Inventor Cluster Edition

This framework emphasizes transparent scalability of exist-
ing Open Inventor applications for LHRD through the dis-
tributed scene graph [65]. To manage large volume data on
each display, the framework supports a middleware called
VolumeViz LDM (large data management). The middle-
ware enables each display node to load only the necessary
part of large data without duplicating the same data across
the nodes. The framework also supports an extension API
for rendering extremely large 3D data.

825 AVANGO NG

AVANGO NG is a distributed scene graph framework
[118] and flexible display configurations for different
types of LHRDs. AVANGO NG uses a scene-graph data
format and distribution approach similar to OpenSG, but
is based on both OpenSceneGraph and Python. Pro-
grammers can develop an entire application in Python
without the need for other programming languages.

8.3 Interactive Application Frameworks

Interactive application frameworks are designed to facilitate
developing interactive applications based on novel interac-
tion techniques and modalities as well as specialized dis-
play systems such as CAVEs and HMDs. They provide a
layer of abstraction over such different types of large dis-
play hardware and versatile input devices. Most of these
LHRD frameworks provide an integrated environment for
advanced input management and configuration, and also
provide custom event handlers that collect event data from
multiple input devices.

8.3.1 VR Juggler

VR Juggler is based on a virtual platform framework [98],
[106]. The virtual platform consists of two main components:
the kernel and the manager, which provide the application
with interfaces to the hardware devices and other graphics
APIs. Every application acts as an application object in the
form of a C++ object. The kernel executes the application
objects and controls the run-time system by brokering com-
munications among the managers. The manager provides
abstractions of multiple input devices, displays, network,
and windowing systems. Programmers access new devices
by simply creating a new manager in the API. Developers
can extend the system during run time, and can make use of
various existing graphics APIs, including OpenGL, OpenSG,
OSG, VTIK [119], etc. The framework also allows developers
to write applications with a set of predefined kernel interface
functions and existing graphics APIs.

VR Juggler achieves a consistent and stable frame rate
[45], since it is not affected by certain performance factors
incurred by other frameworks, such as network traffic and
dividing rendering tasks in the single head node.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

An additional feature of VR Juggler is a GUI-based per-
formance analysis tool, VjControl, for debugging VR Juggler
code. This tool gathers and provides important performance
data such as rendering times, wait time for buffer swaps,
etc. This information can be used to optimize VR Juggler
programs and better understand specific LHRD systems.

8.3.2 Cavelib

CaveLib was originally developed as a dedicated API for
the specialized CAVE system in the early 1990’s [101],
[99], and has since been extended to tiled displays as
well. The application instance runs as a multithreaded
application on each node in which the application tasks
are split into several separate threads. This allows add-
ing or removing display nodes at run-time. It provides a
parallel graphics API for creating immersive and interac-
tive 3D environment applications on LHRDs and allows
users to choose a rendering system such as OpenGL and
OpenGL Performer.

8.3.3 Jinx

Jinx [120] is designed for developing and executing distrib-
uted VR applications based on X3D [121] on LHRDs. The
main goal of JINX is to provide an X3D browser for cluster-
based LHRDs, and a programming interface that hides the
details of the cluster and user interface. Developers can
reuse existing X3D scripts without modification for LHRDs,
and can also use some OpenGL functions.

Jinx adaptively determines the optimized configuration to
execute the X3D script. For example, each node decides the
best way to communicate autonomously with other nodes
based on the system configuration. Also, users can choose
between MPI and sockets for communications among nodes.

8.34 Syzygy

Syzygy [62] is a multi-platform framework for creating 3D
VR applications and other graphical applications such as
tele-collaboration and multimedia. The framework provides
a relatively complex programming interface that requires
users to consider low-level issues of the cluster when devel-
oping an application.

This framework supports both task distribution mod-
els and allows programmers to choose one of the two
models. Syzygy’s processes and configuration informa-
tion are managed by a dedicated distributed OS, Phleet.
The application centralizes and maintains consistent con-
figuration across separate networked nodes in the cluster
by managing the configuration information in a single
networked database. The framework enables the building
of a ‘virtual device’ which is integrated with multiple
physical input devices through an input server support-
ing input data filtering and gathering.

8.3.5 AmiraVR Cluster Version

The amiraVR cluster version is implemented for cluster-
based LHRDs as an extension of amira and amiraVR, which
focuses on 3D graphics applications with Open Inventor
[122], [123]. Each display node runs an instance of amira
with different viewports of the same scene. The framework

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS

focuses on running amiraVR applications with its unique
features such as 3D GUIs on the cluster based LHRD.

8.3.6 jBricks

jBricks is the only Java framework for cluster-based LHRDs
in this survey [100], [87]. In contrast to many of the frame-
works that focus on techniques for parallel rendering of
complex 3D graphics models, jBricks focuses on Java-based
2D graphics rendering supported by ZVTM [124]. The
framework is useful for developing InfoVis applications
supporting a variety of user input devices. By modifying a
few lines of the original ZVTM code written for single desk-
top computers, programmers can develop cluster-based
LHRD applications. The framework directly supports a
variety of 2D graphics objects such as Java2D, Swing widg-
ets, bitmap images and text, with support for advanced
stroke and fill patterns. In addition, developers can use vari-
ous popular Java libraries which are extensions of ZVTM
including, for example, the layout of large networks with
JUNG or GraphViz, OpenStreetMap, etc.

jBricks uses a simple distributed renderer model with
JGroups multicast communication. For input manage-
ment, the jBricks Input Server is developed on top of
multiple Java-based libraries to support various common
and advanced input devices, including tablets, Wii
remotes, VICON motion-trackers, interactive pens, TUIO
[91], etc. This framework is designed to support rapid
testing and prototyping of interaction techniques, 2D
interactive visualization and post-WIMP applications for
cluster-based LHRDs.

8.3.7 MostPixelsEver Cluster Edition (MPECE)

MostPixelsEver Cluster Edition is a library designed for
the Processing environment [125]. The framework is
designed to run Processing applications on cluster based
LHRDs. The use of the library is somewhat invasive,
since it requires the developer to include the library in
the Processing code and to augment the application with
some specialized commands for reading the configura-
tion file and handling communication between the nodes
(The actual communication is fairly transparent). How-
ever, this does not alter the structure of the code, so we
would still label this “minimally invasive.”

8.4 Scalable Rendering Frameworks

A repeating theme in our discussions is how performance
rapidly degrades as the size of the cluster grows or as the
complexity of the scene increases. The frameworks in this
section have been designed to specifically address these per-
formance issues for high-performance visualization applica-
tions. They emphasize scalable rendering performance with
minimal abstraction of the cluster, rather than attempting to
make existing graphics APIs work transparently on the
LHRD. The frameworks support different features for more
precise control over the parallel rendering algorithms and
distributed hardware resources for the LHRD.

8.4.1 Equalizer

Equalizer is an OpenGL parallel rendering system [22]. It
provides an API to create OpenGL multi-pipe applications

171

for cluster-based LHRDs, superseding OpenGL MultiPipe
SDK [107].

It is based on multi-thread processing across cluster
nodes. Two different types of threads are used in the head
and display nodes respectively. In contrast to Chromium
which runs a full application including rendering tasks at
the head node, the rendering component of an Equalizer
application is executed only in the display nodes and all ren-
dering tasks are performed locally to the OpenGL context on
each display node, rather than being driven by the head
node. As a result, it is able to reduce computation steps and
workload in the head node, allowing it to send higher-level
graphics calls thereby reducing network traffic rather than
transmitting low-level graphics commands and primitives.

A dedicated configuration server manages the utilization
and load balancing of distributed hardware resources in the
LHRD cluster. It uses compound trees to configure multiple
graphics resources and improves efficiency in decomposing
rendering tasks across the cluster nodes.

To implement scalable applications with Equalizer’'s API,
developers define callback functions similar to GLUT and
employ sub-classes that present abstractions of physical
and logical entities for rendering, such as the display node,
GPU, window and view. In addition to the parallel pro-
gramming interfaces [126], the framework provides users
with useful libraries including a network library [127] and a
library for multi-threaded programming [128]. Equalizer
also supports up-to-date OpenGL advanced features such
as VBO, GLSL, and CUDA.

8.4.2 Cross-Platform Cluster Graphics Library (CGLX)

The main purpose of Cross-Platform Cluster Graphics
Library is to support high-performance rendering on the
LHRD cluster with a nearly non-invasive OpenGL program-
ming model [63]. Each display node maintains independent
OpenGL contexts, and the nodes communicate through
CGLX'’s own communication layer.

CGLX intercepts and re-implements some view-related
OpenGL functions. Its API is nearly identical to those of
OpenGL and GLUT, replacing only prefixes of some of the
GL/GLU function names (e.g., gluPerspective() function is
replaced with cglXPerspective()).

The framework is able to support multiple CPUs and
multiple displays on a single node through multi-threads.
Since it allows users to configure how a different thread
performs rendering on each display/window in parallel
or in a serial way, users can optimize the visualization
performance based on different display and cluster
configurations.

CGLX provides a unique GUI tool, csconfig, which is con-
nected to each display node. With this tool, users can config-
ure large displays and see a preview of an application, with
different configurations, by virtually adjusting various dis-
play parameters including the size of bezels, the resolution
of displays, and the arrangement of the display array.

The framework can maintain multiple input servers that
are divided into two types (Passive and Active) in order to
support various types of input devices and multi-touch dis-
plays such as tabletops and hand-held displays [129]. This
approach facilitates streaming visualization data to different

1172

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20,

NO.8, AUGUST 2014

Increase network traffic and Head node wor

VR Juggler

Chromium DMX

No Distributed _Distributed Equalizer OpensG
Framework cGLx _, Application Render a P
) 7
Synchronize
application

ate

tlevents
variables

Responsibility

Perform partial
applicatior:Iasks,
manage utili
distributed h

ation of

rdware Perfor
resources applicati
manage| Si
Graph
M\
endering Al
mmands, -
ut events Sceng| Graph
Ba chahges
Nay,; o
" Wigy, Jone
Re . QOpenGL
qUIre Rendering X11
menfo mmands commafds
rform at E
ication aC/) £
, render rany e
lenGL Update and
render local
Scene|Graph X
ender
OpenGL S
Render Xlib

The distribution of Responsibility

Fig. 5. Spectrum of the distribution of responsibility, between the head node and the display nodes, of a cluster-based LHRD application.

display surfaces and connecting or removing input devices
during runtime of an LHRD application [86].

8.4.3 Parallel iWalk

Parallel iWalk [11] is a sort-first based scalable rendering
system for tiled displays. It builds on iWalk, a frame-
work for multi-threaded out-of-core rendering. It is
designed for visualizing extremely large models on clus-
ter-based LHRDs by combining both sort-first and out-
of-core algorithms. The cluster nodes use MPI for startup
and synchronization and they use sockets for other com-
munications. The framework can run the same code as
iWalk, with a few additional functions such as transmit-
ting the viewing parameters from the head node to the
display nodes and culling on each tile.

8.4.4 FlowVR Render

FlowVR is a framework dedicated to large interactive appli-
cations [40]. FlowVR Render is built on top of FlowVR and
supports a sort-first parallel rendering algorithm for
LHRDs. The framework distributes shader information that
specifies graphics objects” visual representations, instead of
relying solely on distributing OpenGL commands or primi-
tives over a network. Thus, it can reduce cluster network
bandwidth and exploits the GPU’s shader capabilities.
Depending on different types of LHRD applications, the
programmer can choose among different distributed ren-
dering strategies according to how the Renderer and Viewer
modules are distributed among cluster nodes. The Renderer

modules accomplish both rendering and displaying on each
display tile, while the Viewer modules are responsible for
creating geometric objects and distributing the shaders to
the Render modules.

8.4.5 MPiglut

MPIglut is designed to run OpenGL/GLUT code on clus-
ter based LHRD using MPI [105]. MPIglut is a dedicated
GLUT library specifically for the LHRD cluster, and
users need to recompile OpenGL code with the library.
Similar to CGLX, MPIglut replaces and re-implements
some of the OpenGL functions, including glutlnit(), and
glViewport(), and nodes in the LHRD cluster internally
communicate through MPI. The head node maintains a
frontend which collects the system and user events from
an OpenGL application, and the framework broadcasts
them through MPI to the display nodes where synchro-
nized OpenGL applications run in parallel.

9 DISCUSSION

In this paper, we surveyed a number of different solutions
for distributing graphics across a large tiled display. While
we discussed the most popular approaches, there are many
more frameworks available. Our goal was to characterize
the techniques in a way that could be applied to other
frameworks. Rather than providing performance measures
for some small number of narrowly defined tasks and select
frameworks, we instead examined the frameworks analyti-
cally, identifying characteristics that can be used to guide

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS

selection and predict performance. Our experience has
shown that the most reliable predictor of performance is the
distribution of responsibility, as summarized in Fig. 5.

All of the frameworks that we examined divide work
between the head node and the display nodes responsible
for driving the displays. The figure helps to capture the gen-
eral continuum of where the different frameworks do their
work. The upper part (green region) of the diagonal is work
done at the head node, while below the line (red region) is
work done in the display nodes. The thickness of the white
line in the diagonal represents the network bandwidth
requirements.

This division plays an important role in system perfor-
mance for two reasons. First, the amount of work done by
the display nodes determines the degree of parallelism sup-
ported by the framework. Second, where the division occurs
affects the network bandwidth requirements. As the head
node assumes more responsibility, the quantity of informa-
tion that must be broadcast increases. This is because the
rendering process is one that transforms high-level informa-
tion into increasingly more detailed structures and com-
mands for displaying representations of that data. The more
of this process that is performed by the head node, the more
detailed is the information that must be communicated to
the display nodes.

Our figure depicts this as a spectrum of responsibility.
On the right side, we have solutions such as DMX and Chro-
mium that perform practically all operations on the head
node, such as running applications, splitting, packaging,
and distributing low-level rendering information.

In the distributed scene graph frameworks like
OpenSG, the head node tracks changes to the scene graph
and distributes these changes to the display nodes. So, the
network usage is reduced in this framework as compared
to other distributed renderer models that transmit the ren-
dering calls or primitives. The display nodes then update
the local scene graph and generate rendering commands
by traversing scene graphs for their associated display
tiles, and the computation load on each display node is
increased.

In contrast to Chromium which still performs rendering
commands (which are intercepted) on the head node,
Equalizer clearly splits rendering tasks from the application
and runs the rendering tasks only on each display node in
parallel with appropriate frustum culling. So it reduces
workload to be done at the head node.

Moving to the left of the diagram, the responsibilities of
the display nodes increases, until we reach solutions like
CGLX and VR Juggler that only communicate events and
synchronization information across the network. This
requires minimal network usage, but applications on each
node need to be deterministic since all nodes must run a
full instance of an application.

While there is no framework that occupies the far left
edge of the spectrum in our diagram, we can imagine cus-
tom solutions that require no head node (and no frame-
work). For example, it would be fairly straightforward to
simply run multiple instances of the same application on all
nodes, with perhaps a command line option to determine
the viewport. If all user interaction performed only local
operations (i.e., highlighting or revealing additional

1173

information), network communication between the nodes
could be eliminated entirely.

It is tempting to read this figure as an absolute guide to
performance, with performance increasing to the left. How-
ever, the reality is more complicated than that. Different
applications have different needs. The complexity of the
rendering, the size of the data, the amount of computation
required, the rendering scalability, and the degree of
dynamics will all be factors determining which solution is
the most appropriate.

We are also of the opinion that the programming
model required by the framework should not be over-
looked. While scene graphs tend to lead to performance
benefits for many rendering tasks, they are certainly not
appropriate for all applications. For example, a scene
graph would be appropriate for the exploration of a
highly complex model where most changes to the view
are mere transformations of the model, but considerably
less appropriate for a force-directed graph layout in
which almost no relationship between objects remains
fixed. It is also important to consider factors like develop-
ment time and familiarity. For instance, on a smaller clus-
ter DMX is a perfectly reasonable solution that allows
existing applications to be run without modification. Sim-
ilarly, Chromium’s performance may lag many of the
other solutions, but it is one of the fastest ways to port
existing OpenGL code or maintain applications intended
for both large and conventionally sized displays. Since
most LHRDs reside in research settings in which develop-
ment time is very large in relation to running time, the
cost of development time cannot be overlooked.

For these reasons, single node architectures are becoming
more popular. As graphics hardware capability continues to
improve, a single computer with multiple graphics cards
can drive many high-resolution display tiles. The advantage
is that standard operating systems, windowing systems,
and applications can be executed without special LHRD
programming APIs. This enables rapid prototyping of new
LHRD applications for researching LHRD user interface
design and usability [130]. Distribution of graphics across
the graphics cards is handled automatically in some cases.
The presence of multiple GPUs can enable fast graphics per-
formance, without the need for multiple CPUs. This also
opens opportunities for new types of software frameworks
designed for single-node multi-GPU systems that support
efficient data distribution across the internal bus, load bal-
ancing of graphics rendering across GPUs, and efficient
management of GPGPU computing for application data
processing [131], [132].

10 CONCLUSION

There is no single approach to tiled rendering that can
be considered the best solution for all applications. Our
goal with this paper is to survey the available options
and to highlight the important dimensions of the devel-
opment space. It is our hope that this work will guide
application developers as they select frameworks to sup-
port their large display applications, as well as inform
researchers in the development of future large tiled dis-
play frameworks.

1174

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

ACKNOWLEDGMENTS

This research was partially supported by grants from US
National Science Foundation (NSF) CNS-1059398, NSF IIS-
1218346, and L-3 STRATIS.

REFERENCES

1]
[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

PJ. Huber, “Huge Data Sets,” Proc. Computational Statistics
(COMPSTAT), pp. 3-13,1994.

B. Yost, Y. Haciahmetoglu, and C. North, “Beyond Visual Acuity:
The Perceptual Scalability of Information Visualizations for
Large Displays,” Proc. ACM SIGCHI Conf. Human Factors in Com-
puting Systems (CHI '07), pp. 101-110, 2007.

R. Ball, C. North, and D.A. Bowman, “Move to Improve: Promot-
ing Physical Navigation to Increase User Performance with
Large Displays,” Proc. ACM SIGCHI Conf. Human Factors in Com-
puting Systems (CHI '07), pp. 191-200, 2007.

X. Bi and R. Balakrishnan, “Comparing Usage of a Large High-
Resolution Display to Single or Dual Desktop Displays for Daily
Work,” Proc. 27th Int’l Conf. Human Factors in Computing Systems,
pp- 1005-1014, 2009.

L. Shupp, C. Andrews, M. Dickey-Kurdziolek, B. Yost, and C.
North, “Shaping the Display of the Future: The Effects of Display
Size and Curvature on User Performance and Insights,” Human-
Computer Interaction, vol. 24, no. 1/2, pp. 230-272, 2009.

C. Andrews, A. Endert, and C. North, “Space to Think: Large
High-Resolution Displays for Sensemaking,” Proc. ACM SIGCHI
Conf. Human Factors in Computing Systems (CHI '10), pp. 191-200,
2010.

B. Schaeffer, “A Software System for Inexpensive VR via
Graphics Clusters,” http:/ /isl.uiuc.edu/Publications /dgdpaper.
pdf, 2000.

G.W. Pieper, T.A. DeFanti, Q. Liu, M. Katz, and P. Papado-
poulos, “Visualizing Science: The OptIPuter Project,” SciDAC
Rev., vol. spring, pp. 32-41, 2009.

G. Wallace et al., “Tools and Applications for Large-Scale Dis-
play Walls,” IEEE Computer Graphics and Applications, vol. 25,
no. 4, pp. 24-33, July / Aug. 2005.

“AMD FirePro™ Professional Graphics,” http://www.amd.
com/firepro3d, AMD, 2012.

W.T. Corréa, J.T. Klosowski, and C.T. Silva, “Out-of-Core Sort-
First Parallel Rendering for Cluster-Based Tiled Displays,” Proc.
Fourth Eurographics Workshop Parallel Graphics and Visualization,
pp- 89-96, 2002.

B. Raffin and L. Soares, “PC Clusters for Virtual Reality,” Proc.
IEEE Virtual Reality Conf. (VR "06), pp. 215-222, 2006.

H. Miyachi, H. Shigeta, K. Kiyokawa, H. Kuwano, N. Sakamoto,
and K. Koyamada, “Parallelization of Particle Based Volume
Rendering on Tiled Display Wall,” Proc. Network-Based Informa-
tion Systems (NBiS), pp. 435-438, 2010.

K. Liet al., “Building and Using a Scalable Display Wall System,”
IEEE Computer Graphics and Applications, vol. 20, no. 4, pp. 29-37,
July/Aug. 2000.

V. Petrovic, J. Fallon, and F. Kuester, “Visualizing Whole-Brain
DTI Tractography with GPU-Based Tuboids and LoD Man-
agement,” IEEE Computer Graphics and Applications, vol. 13, no. 6,
pp. 1488-1495, Nov. /Dec. 2007.

T. Schreck, T. Tekusovd, J. Kohlhammer, and D. Fellner,
“Trajectory-Based Visual Analysis of Large Financial Time Series
Data,” ACM SIGKDD Explorations, vol. 9, no. 2, pp. 30-37, 2007.
Y. Sun, J. Leigh, A. Johnson, and S. Lee, “Articulate: A Semi-
Automated Model for Translating Natural Language Queries
into Meaningful Visualizations,” Proc. 10th Int'l Symp. Smart
Graphics, pp. 184-195, 2010.

Notcot,“Mercedes-Benz Design Studio Powerwall,” http://
www.notcot.com/archives/2010/04/mercedes-benz-design-
studio-po.php, 2010.

T.A. DeFanti et al.,, “The StarCAVE, a Third-Generation CAVE
and Virtual Reality OptIPortal,” Future Generation Computer Sys-
tems, vol. 25, pp. 169-178, 2009.

S.-J. Kim, “The DIVA Architecture and a Global Timestamp-
Based Approach for High-Performance Visualization on Large
Display Walls and Realization of High Quality-of-Service Collab-
oration Environments,” PhD dissertationElectrical and Com-
puter Engineering, UC Irvine, 2006.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Nam, S. Deshpande, V. Vishwanath, B. Jeong, L. Renambot,
and J. Leigh, “Multi-Application Inter-Tile Synchronization on
Ultra-High-Resolution Display Walls,” Proc. ACM SIGMM Conf.
Multimedia Systems, pp. 145-156, 2010.

S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A Scal-
able Parallel Rendering Framework,” IEEE Trans. Visualization
and Computer Graphics, vol. 15, no. 3, pp. 436-452, May/June
2008.

T. Ni, G.S. Schmidt, O.G. Staadt, M.A. Livingston, R. Ball, and R.
May, “A Survey of Large High-Resolution Display Technologies,
Techniques, and Applications,” Proc. IEEE Virtual Reality Conf.
(VR ’06), pp. 223-236, 2006.

A. Forsberg,]. Head, N. Petro, and G. Morgan, “A 3D Geoscience
Data Visualization System for Mars Applied to Undergraduate
Laboratories,” Proc. 38th Lunar and Planetary Inst. Science Conf.,
p- 1297, 2007.

W. Buxton, G. Fitzmaurice, R. Balakrishnan, and G. Kurtenbach,
“Large Displays in Automotive Design,” IEEE Computer
Graphics and Applications, vol. 20, no. 4, pp. 68-75, July/Aug.
2000.

Renault, “Renault Technocentre Celebrates 10th Anniversary,”
http:/ /www.carbodydesign.com/archive/2008/06/17-renault-
technocentre-celebrates-10th-anniversary, 2008.

N. Schwarz, “Distributed Volume Rendering of Very Large Data
on High-Resolution Scalable Displays,” PhD Dissertation, Univ.
of Illinois at Chicago, 2007.

A.L. Spitzer, “HIPerWall Expands 3D Capabilities with New
Software,” http://www.calit2.net/newsroom/article.php?id
= 1406, 2011.

T.v.d. Schaaf, M. Koutek, and H. Bal, “Parallel Particle Render-
ing: a Performance Comparison between Chromium and Aura,”
Proc. Eurographics Symp. Parallel Graphics and Visualization,
pp. 137-144, 2006.

A. Forsberg, Prabhat, G. Haley, A. Bragdon, J. Levy, C. Fassett, D.
Shean, J. Head III, S. Milkovich, and M Duchaineau, “Adviser:
Immersive Field Work for Planetary Geoscientists,” IEEE Com-
puter Graphics and Applications, vol. 26, no. 4, pp. 46-54, July/
Aug. 2006.

A. Johnson, J. Leigh, P. Morin, and P. Van Keken, “GeoWall: Ste-
reoscopic Visualization for Geoscience Research and Education,”
IEEE Computer Graphics and Applications, vol. 26, no. 6, pp. 10-14,
Nov./Dec. 2006.

A. Kolb, M. Lambers, S. Todt, N. Cuntz, and C. Rezk-Salama,
“Immersive Rear Projection on Curved Screens,” Proc. IEEE Vir-
tual Reality Conf. (VR 09), pp. 285-286, 2009.

R. Wilhelmson, P. Baker, R. Stein, and R. Heiland, “Large Tiled
Display Walls and Applications in Meteorology, Oceanography,
and Hydrology,” Proc. 18th Int’l Conf. Interactive Information and
Processing Systems (IIPS '02), pp. 29-30, 2002.

I. James et al., “ADVISER: Immersive Scientific Visualization
Applied to Mars Research and Exploration,” Photogrammetric
Eng. & Remote Sensing, vol. 17, pp. 1219-1225, 2005.

ORNL, “VISUALIZATION: New Ways to Understand the Data,”
ORNL REV., vol. 37, pp. 28-29, 2004.

N. Schwarz and J. Leigh, “Distributed Volume Rendering for
Scalable High-Resolution Display Arrays,” Proc. Fifth Int’l Conf.
Computer Graphics Theory and Applications (GRAPP '10), pp. 211-
218, 2010.

T.A. Sandstrom, C. Henze, and C. Levit, “The Hyperwall,” Proc.
IEEE Coordinated and Multiple Views in Exploratory Visualization,
pp- 124-133, 2003.

J. Leigh et al, “An Experimental OptIPuter Architecture for
Data-Intensive Collaborative Visualization,” Proc. Third Ann.
Workshop Advanced Collaborative Environments, 2003.

N. Schwarz et al., “Vol-a-Tile - A Tool for Interactive Exploration
of Large Volumetric Data on Scalable Tiled Displays,” Proc. IEEE
Visualization (VIS '04), pp. 598-19, 2004.

J. Allard and B. Raffin, “A Shader-Based Parallel Rendering
Framework,” Proc. IEEE Visualization (VIS '05), pp. 127-134,
2005.

F. Erol, S. Eilemann, and R. Pajarola, “Cross-Segment Load Bal-
ancing in Parallel Rendering,” Proc. Eurographics Symp. Parallel
Graphics and Visualization, pp. 41-50, 2011.

R. Samanta, J. Zheng, T. Funkhouser, K. Li, and].P. Singh,
“Load Balancing for Multi-Projector Rendering Systems,”
Proc. SIGGRAPH [Eurographics Workshop Graphics Hardware,
pp. 107-116, 1999.

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

C.c. Zhang, J. Leigh, T.A. Defanti, M. Mazzucco, and R.
Grossman, “TeraScope: Distributed Visual Data Mining of
Terascale Data Sets over Photonic Networks,” Future Genera-
tion Computer Systems, vol. 19, pp. 935-943, 2003.

C. Andrews, A. Endert, B. Yost, and C. North, “Information
Visualization on Large, High-Resolution Displays: Issues, Chal-
lenges, and Opportunities,” Information Visualization, vol. 10,
pp. 341-355, 2011.

O. Staadt, J. Walker, C. Nuber, and B. Hamann, “A Survey
and Performance Analysis of Software Platforms for Interac-
tive Cluster-Based Multi-Screen Rendering,” Proc. Euro-
graphics Workshop Virtual Environments, pp. 261-270, 2003.

E. Shaffer, D.A. Reed, S. Whitmore, and B. Schaeffer, “Virtue:
Performance Visualization of Parallel and Distributed
Applications,” Computer, vol. 32, no. 12, pp. 44-51, Dec. 1999.

R.T. Stevens, “Testing the NORAD Command and Control Sys-
tem,” IEEE Trans. Systems Science and Cybernetics, vol. 4, no. 1,
pp- 47-51, Mar. 1968.

B. Wei, C. Silva, E. Koutsofios, S. Krishnan, and S. North,
“Visualization Research with Large Displays,” IEEE Computer
Graphics and Applications, vol. 20, no. 4, pp. 50-54, July/ Aug. 2000.
AT&T, “Global Network Operations Center,” http://www.att.
com/,2013.

K. Carter, “MCC Undergoes a Makeover - Jefferson Lab’s Accel-
erator Control Room Gets a New Face,” http://www.sura.org/
news/2004/docs/jlab_ot.pdf, 2004.

R.C. Johnson, “Visualization Analytics Writ Large,” http://
www.smartertechnology.com/c/a/Business%20Analytics /
Visualization-Analytics-Writ-Large, 2011.

N.K. Krishnaprasad et al., “JuxtaView - A Tool for Interactive
Visualization of Large Imagery on Scalable Tiled Displays,” Proc.
IEEE Cluster Computing, pp. 411-420, 2004.

P. Adams, “Hubble Images on TACC Tiled Display,” http://
www.vizworld.com/2010/01/tacc-tiled-display, 2010.

R. Singh et al., “Real-Time Multi-Scale Brain Data Acquisition,
Assembly, and Analysis Using an End-to-End OptIPuter,” Future
Generation Computer Systems, vol. 22, pp. 1032-1039, 2006.

S. Yamaoka, K.-U. Doerr, and F. Kuester, “Visualization of
High-Resolution Image Collections on Large Tiled Display
Walls27,” Future Generation Computer Systems, vol. 279, pp. 498-
505, 2011.

D. Svistula, J. Leigh, A. Johnson, and P. Morin, “MagicCarpet: A
High-Resolution Image Viewer for Tiled Displays,” http://
www.evl.uic.edu/cavern/sage/applications.php, 2008.

K. Ponto, K. Doerr, and F. Kuester, “Giga-stack: A Method for
Visualizing Giga-Pixel Layered Imagery on Massively Tiled Dis-
plays,” Future Generation Computer Systems, vol. 26, pp. 693-700,
2010.

H. Chen, G. Wallace, A. Gupta, K. Li, T. Funkhouser, and P.
Cook, “Experiences with Scalability of Display Walls,” Proc.
Immersive Projection Technology (IPT) Workshop, 2002.
Calit2,“Streamer,” http:/ /hiperwall.calit2.uci.edu/?q=node/6,
2007.

D. Kosovic, “MacOSX-Based Video Streamer,” http:/ /www.evl.
uic.edu/cavern/sage/download.php, 2009.

B. Jeong et al., “High-Performance Dynamic Graphics Streaming
for Scalable Adaptive Graphics Environment,” Proc. ACM/IEEE
SuperComputing Conf., pp. 24-24, 2006.

B. Schaeffer and C. Goudeseune, “Syzygy: Native PC Cluster
VR,” Proc. IEEE Virtual Reality (VR '03), pp. 15-22, 2003.

K. Doerr and F. Kuester, “CGLX: A Scalable, High-Performance
Visualization Framework for Networked Display Environ-
ments,” IEEE Trans. Visualization and Computer Graphics, vol. 99,
no. 3, Mar. 2011.

H. Chen, D.W. Clark, Z. Liu, G. Wallace, K. Li, and Y. Chen,
“Software Environments For Cluster-Based Display Systems,”
Proc. First Int'l Symp. Cluster Computing and the Grid, pp. 202-210,
2001.

D. Lichau, M. Heck, and T. Dufour, “Open Inventor and Volume-
Viz LDM Cluster Edition,” http://www.vsg3d.com/open-
inventor/scale-viz, 2005.

G. Humphreys and P. Hanrahan, “A Distributed Graphics Sys-
tem for Large Tiled Displays,” Proc. IEEE Visualization (VIS '99),
pp- 215-223, 1999.

R. Samanta, T. Funkhouser, and K. Li, “Parallel Rendering with
k-Way Replication,” Proc. IEEE Symp. Parallel and Large-Data
Visualization and Graphics, pp. 75-84, 2001.

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

1175

Nirnimesh, P Harish, and P.J., “Narayanan, Culling an Object
Hierarchy to a Frustum Hierarchy,” Proc. Fifth Indian Conf.
Computer Vision, Graphics, and Image Processing, pp. 252-263,
2006.

G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. Kirch-
ner, and J.T. Klosowski, “Chromium: A Stream Processing
Framework for Interactive Rendering on Clusters,” Proc. ACM
SIGGRAPH, pp. 693-712,2002.

S. Thibault, X. Cavin, O. Festor, and E. Fleury, “Unreliable Trans-
port Protocol for Commodity-Based OpenGL Distributed Visual-
ization,” Proc. Workshop Commodity-Based Visualization Clusters,
2002.

B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland, “Scalable Ren-
dering on PC Clusters,” IEEE Computer Graphics and Applications,
vol. 21, no. 4, pp. 62-70, July / Aug. 2001.

S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A Sorting Classi-
fication of Parallel Rendering,” IEEE Computer Graphics and Appli-
cations, vol. 14, no. 4, pp. 23-32, 1994.

X. Cavin, C. Mion, and A. Filbois, “Cots Cluster-Based Sort-Last
Rendering: ~ Performance Evaluation and Pipelined
Implementation,” Proc. IEEE Visualization (VIS '05), pp. 111-118,
2005.

K. Moreland, B. Wylie, and C. Pavlakos, “Sort-Last Parallel Ren-
dering for Viewing Extremely Large Data Sets on Tile Displays,”
Proc. IEEE Symp. Parallel and Large-Data Visualization and
Graphics, pp. 85-92, 2001.

R. Samanta, T. Funkhouser, K. Li, and J.P. Singh, “Hybrid Sort-
First and Sort-Last Parallel Rendering with a Cluster of PCs,”
Proc. ACM SIGGRAPH/EUROGRAPHICS Workshop Graphics
Hardware, pp. 97-108, 2000.

T.v.d. Schaaf, L. Renambot, D. Germans, H. Spoelder, and H. Bal,
“Retained Mode Parallel Rendering for Scalable Tiled Displays,”
Proc. Immersive Projection Technology Workshop, 2002.

M. Nancel,]. Wagner, E. Pietriga, O. Chapuis, and W. Mackay,
“Mid-Air Pan-and-Zoom on Wall-Sized Displays,” Proc. ACM
SIGCHI Conf. Human Factors in Computing Systems (CHI '11),
pp- 177-186, 2011.

Y. Jansen, P. Dragicevic, and].-D. Fekete, “Tangible Remote Con-
trollers for Wall-Size Displays,” Proc. ACM SIGCHI Conf. Human
Factors in Computing Systems (CHI '12), pp. 2865-2874, 2012.

G. Shoemaker, T. Tsukitani, Y. Kitamura, and K.S. Booth, “Body-
Centric Interaction Techniques for Very Large Wall Displays,”
Proc. Sixth Nordic Conf. Human-Computer Interaction: Extending
Boundaries (CHI '10), pp. 463-472, 2010.

C. Rooney and R.A. Ruddle, “A New Method for Interacting
with Multi-Window Applications on Large, High Resolution
Displays,” Proc. Theory and Practice of Computer Graphics, pp. 75-
82,2008.

A. Endert, P. Fiaux, H. Chung, M. Stewart, C. Andrews, and C.
North, “ChairMouse: Leveraging Natural Chair Rotation for
Cursor Navigation on Large, High-Resolution Displays,” Proc.
Ann. Conf. Extended Abstracts on Human Factors in Computing Sys-
tems, pp. 571-580, 2011.

A. Khan, G. Fitzmaurice, D. Almeida, N. Burtnyk, and G.
Kurtenbach, “A Remote Control Interface for Large Dis-
plays,” Proc. ACM 17th Ann. Symp. User Interface Software and
Technology (UIST '04), pp. 127-136, 2004.

F. Guimbretiere, M. Stone, and T. Winograd, “Fluid Interaction
with High-Resolution Wall-Size Displays,” Proc. ACM 14th Ann.
Symp. User Interface Software and Technology (UIST "01), pp. 21-30,
2001.

D. Machaj, C. Andrews, and C. North, “Co-located Many-Player
Gaming on Large High-Resolution Displays,” Proc. Int’l Conf.
Computational. Science and Eng., vol. 4, pp. 697-704, 2009.

D. Stedle, T.-M.S. Hagen, J.M. Bjorndalen, and O.J. Anshus,
“Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized,
High-Resolution Tiled Displays,”]. Virtual Reality and Broadcast-
ing, vol. 5, pp. 1860-2037, 2008.

K. Ponto, K. Doerr, T. Wypych, J. Kooker, and F. Kuester,
“CGLXTouch: A Multi-User Multi-Touch Approach for Ultra-
High-Resolution Collaborative Workspaces,” Future Generation
Computer Systems, vol. 27, pp. 649-656, 2011.

M. Beaudouin-Lafon, S. Huot, M. Nancel, W. Mackay, E.
Pietriga, R. Primet, J. Wagner, O. Chapuis, C. Pillias, J.
Eagan, T. Gjerlufsen, and C. Klokmose, “Multisurface Inter-
action in the WILD Room,” Computer, vol. 45, no. 4,
pp. 48-56, Apr. 2012.

1176

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

[111]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.20, NO.8, AUGUST 2014

T.K. Khan, A. Middel, 1. Scheler, and H. Hagen, “A Survey of
Interaction Techniques and Devices for Large High Resolution
Displays,” Open Access Series in Informatics, vol. 19, pp. 27-35,
2011.

T. Bierz, “Interaction Technologies for Large Displays-An Over-
view,”GI-Edition Lecture Notes in Informatics, pp. 195-204, 2006.

D. Reiners, G. Vofs, and J. Behr, “OpenSG: Basic Concepts,” Proc.
OpenSG Symp., 2002.

M. Kaltenbrunner, T. Bovermann, R. Bencina, and E. Costanza,
“TUIO: A Protocol for Table-Top Tangible User Interfaces,” Proc.
Sixth Int’'l Workshop Gesture in Human-Computer Interaction and
Simulation, 2005.

P. Dragicevic and J.-D. Fekete, “Support for Input Adaptability in
the ICON Toolkit,” Proc. Sixth Int’l Conf. Multimodal Interfaces,
pp. 212-219, 2004.

W.A. Konig, R. Radle, and H. Reiterer, “Squidy: A Zoomable
Design Environment for Natural User Interfaces,” Proc. Extended
Abstracts Human Factors in Computing Systems (CHI '09), pp. 4561-
4566, 2009.

I. Russell, C. Hudson, A. Seeger, H. Weber, J. Juliano, and A.T.
Helser, “VRPN: A Device-Independent, Network-Transparent
VR Peripheral System,” Proc. ACM Symp. Virtual Reality Software
and Technology (VRST '01), pp. 55-61, 2001.

G. Reitmayr and D. Schmalstieg, “Opentracker-An Open Soft-
ware Architecture for Reconfigurable Tracking Based on
XML,” Proc. IEEE Virtual Reality Conf. (VR '01), pp. 285-286,
2001.

M. Virbel, T. Hansen, and O. Lobunets, “Kivy-A Framework for
Rapid Creation of Innovative User Interfaces,” Proc. Mensch &
Computer Workshop, pp. 69-73, 2011.

M. Wright, A. Freed, and A. Momeni, “OpenSound Control:
State of the Art 2003,” Proc. Conf. New Interfaces for Musical
Expression, pp. 153-160, 2003.

A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C.
Cruz-Neira, “VR Juggler: A Virtual Platform for Virtual Reality
Application Development,” Proc. ACM SIGGRAPH ASIA, pp. 89-
96, 2008.

C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti, “Surround-Screen
Projection-Based Virtual Reality: The Design and Implementa-
tion of the CAVE,” Proc. Conf. Computer Graphics and Interactive
Techniques, pp. 135-142,1993.

E. Pietriga, S. Huot, M. Nancel, and R. Primet, “Rapid Develop-
ment of User Interfaces on Cluster-Driven Wall Displays with
jBricks,” Proc. ACM Third SIGCHI Symp. Eng. Interactive Comput-
ing Systems (EICS '11), pp. 185-190, 2011.

M. Szymanski, “CAVELib Support for PC Visualization
Clusters,” Advanced Imaging, vol. 19, pp. 39-44, 2004.

A. Mohr and M. Gleicher, “Non-Invasive, Interactive, Stylized
Rendering,” Proc. Symp. Interactive 3D Graphics, pp. 175-178,
2001.

C. Niederauer, M. Houston, M. Agrawala, and G. Humphreys,
“Non-Invasive Interactive Visualization of Dynamic Architec-
tural Environments,” Proc. Symp. Interactive 3D Graphics, pp. 55-
58, 2003.

H. Igehy, G. Stoll, and P. Hanrahan, “The Design of a Parallel
Graphics Interface,” Proc. Conf. Computer Graphics and Interactive
Techniques, pp. 141-150, 1998.

O.S. Lawlor, M. Page, and J. Genetti, “MPIglut: Powerwall Pro-
gramming Made Easier,” J. WSCG, vol. 16, pp. 130-137, 2008.

J. Allard, V. Gouranton, E. Melin, and B. Raffin, “Parallelizing
Pre-Rendering Computations on a Net Juggler PC Cluster,” Proc.
Symp. Immersive Projection Technology, 2002.

P. Bhaniramka, P.C.D. Robert, and S. Eliemann, “OpenGL Multi-
pipe SDK: A Toolkit for Scalable Parallel Rendering,” Proc. IEEE
Visualization (VIS '05), pp. 119-126, 2005.

K.E. Martin, D.H. Dawes, and R.E. Faith, “Distributed Multihead
X Project,” http:/ /dmx.sourceforge.net, 2003.

M.T. Asmus, “Xinerama,” http://sourceforge.net/projects/
xinerama, 2001.

L. Renambot et al., “Sage: The Scalable Adaptive Graphics Envi-
ronment,” Proc. Fourth Workshop Advanced Collaborative Environ-
ments (WACE), vol. 9, no. 23, pp. 2004-2009, 2004.

G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P.
Hanrahan, “WireGL: a Scalable Graphics System for Clusters,”
Proc. Int'l Conf. Computer Graphics and Interactive Techniques,
pp- 129-140, 2001.

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

K. Moreland and D. Thompson, “From Cluster to Wall with
VTK,” Proc. IEEE Symp. (PVG "03), pp. 25-31, 2003.

B. Neal, P. Hunkin, and A. McGregor, “Distributed OpenGL
Rendering in Network bandwidth Constrained Environ-
ments,” Proc. Eurographics Symp. Parallel Graphics and Visuali-
zation, 2011.

H. Sowizral, “Scene Graphs in the New Millennium,” IEEE Com-
puter Graphics and Applications, vol. 20, no. 1, pp. 56-57, Jan./Feb.
2000.

M. Roth, G. Voss, and D. Reiners, “Multi-Threading and Cluster-
ing for Scene Graph Systems,” Computer & Graphics, vol. 28,
pp. 63-66,2003.

Nirnimesh, P Harish, and P.J. Narayanan, “Garuda: A Scalable
Tiled Display Wall Using Commodity PCs,” IEEE Trans. Visuali-
zation and Computer Graphics, vol. 13, no. 5, pp. 864-877, Sept./
Oct. 2007.

M. Naef, E. Lamboray, O. Staadt, and M. Gross, “The Blue-c Dis-
tributed Scene Graph,” Proc. IEEE Virtual Reality Conf. (VR '03),
pp- 275-276, 2003.

R. Kuck, J. Wind, K. Riege, and M. Bogen, “Improving the
AVANGO VR/AR framework: Lessons learned,” Proc. Workshop
Virtuelle und Erweiterte Realitit, pp. 209-220, 2008.

W.J. Schroeder, L.S. Avila, and W. Hoffman, “Visualizing with
VTK: A Tutorial,” IEEE Computer Graphics & Applications, vol. 20,
no. 5, pp. 20-27, Sept./Oct. 2000.

L.P. Soares and M.K. Zuffo, “JINX: An X3D browser for VR
Immersive Simulation Based on Clusters of Commodity Com-
puters,” Proc. 3D Web Technology, pp. 79-86, 2004.

W.D. Consortium, “X3D,” http://www.web3d.org/x3d, 2005.
TGS and VRCO, “The amiraVR Cluster Version,” ftp://ftp.
tuebingen.mpg.de/pub/kyb/bweber/zib/share/doc/hxtrack-
ing/AmiraVR-cluster.html, 2003.

C.D. Hansen and C.R. Johnson, “Visualization Handbook,” .
Academic Press, 2004.

E. Pietriga, “A Toolkit for Addressing HCI Issues in Visual Lan-
guage Environments,” Proc. IEEE Symp. Visual Languages and
Human-Centric Computing, pp. 145-152, 2005.

B. Westing, H. Nieto, R. Turknett, and K. Gaither,
“MostPixelsEverCE: A Tool for Rapid Development with Distrib-
uted Displays,” Proc. SIGCHI Conf. Human Factors in Computing
Systems Extended Abstracts (CHI '13), 2013.

S. Eilemann, “Sequel: Parallel Programming Interface,” http://
www.equalizergraphics.com/api.html, 2012.

S. Eilemann, “Collage: A Network Library for Building Heterog-
enous, Distributed Applications,” http://www.libcollage.net,
2012.

S. Eilemann, “Lunchbox: A Library for Multi-Threaded Pro-
gramming,” https:/ /github.com/Eyescale/Lunchbox, 2012.

K. Doerr, “Standard Server Types,” http://www.hiperworks.
com/pirdoc/cglx-doc/pirNet/serv_std_types_p.html, 2010.

C. Andrews and C. North, “Analyst’s Workspace: An Embodied
Sensemaking Environment for Large, High Resolution Dis-
plays,” Proc. IEEE Conf. Visual Analytics Science and Technology
(VAST '12), pp. 123-131, 2012.

C. Peng, P. Mi, and Y. Cao, “Load Balanced Parallel GPU Out-of-
Core for Continuous LOD Model Visualization,” Proc. Ultrascale
Visualization Workshop, 2012.

R. Hagan and Y. Cao, “Load Balanced Parallel GPU Out-of-
Core for Continuous LOD Model Visualization,” Proc. Int’l
Conf. Parallel and Distributed Processing Techniques and Applica-
tions, 2011.

Haeyong Chung received the MS degree in
computer and systems engineering at Rensse-
laer Polytechnic Institute and is working toward
the PhD degree in computer science at Virginia
Tech. His current research interests focus on
visual analytics and information visualization on
large high-resolution displays and display
ecologies.

CHUNG ET AL.: A SURVEY OF SOFTWARE FRAMEWORKS FOR CLUSTER-BASED LARGE HIGH-RESOLUTION DISPLAYS 177

Christopher Andrews is a visiting assistant
professor of computer science at Middlebury Col-
lege. His research focuses primarily on improving
communication between human and computer by
leveraging human cognitive and perceptual abili-
ties. His particular interests include visual analyt-
ics, digital art, and CS education.

Chris North is an associate professor of com-
puter science at Virginia Tech. His recent focus
is in visual analytics, information visualization,
HCI, large displays, and evaluation methods.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

