
 Visualizing Branches and Metrics of Version Control Systems
on Mobile Devices

Will Boyd*, Nicholas Diliberti, and Haeyong Chung

Department of Computer Science, University of Alabama in Huntsville

ABSTRACT

In this work, we present the Jenkins Pipeline Visualization. This
mobile data visualization is designed to help developers explore a
set of version control repositories tested by a Continuous
Integration/Continuous Deployment (CI/CD) server and analyze
their build metrics on mobile phones.

Keywords: Mobile visualization, agile development, automated
testing, continuous integration / continuous deployment.

1 INTRODUCTION

Increasingly, agile software projects use Continuous
Integration/Continuous Deployment (CI/CD) practices. CI/CD
platforms such as Jenkins, TeamCity, and Travis monitor version
control platforms, often based on Git. When a developer commits
code to the repository, the CI/CD platform pulls the code from
version control and runs a pipeline—a series of predefined stages
with pass, fail, or partial success states. These pipelines are
configured and by the product’s developers and managers.
Pipeline stages include building binaries, performing unit tests,
uploading build artifacts to a binary repository, and deploying

built products to a staging ground or test system.
After a pipeline is done, developers review results for

debugging purposes and for metrics analysis, employing CI/CD
user interfaces. There are different ‘depths’ or factors for a user
interface to support such tasks. One factor is the technical level of
a user. Developers that write code are very well acquainted with
the low-level details of the code. On the other hand, business
owners may have never written code professionally, or may be
unfamiliar with the product’s technical details. For this reason,
varying levels of information should be presented by a user
interface. In addition, developers can also benefit from high-level
views, for example when in a meeting, or acting as a triage team,
whose job is to decide where to funnel issues, but not actually
solve the issues themselves. Visualizing failure-log information in
multiple views is thus beneficial to every class of user.

The developers of Jenkins, which is one of the most commonly
used CI/CD systems, have invested significant work into their
desktop web interface. However, the interface focuses on showing
textual logs and requires on-hand, technical information to parse.

The Jenkins Pipeline Visualization (JPV) is designed to help
users explore a set of version control repositories tested by a
Jenkins CI/CD server on mobile phones (Figure 1). As mobile
devices become more ubiquitous, developers would be well-
served by a mobile platform that visualizes the status of their
pipelines, especially when monitoring tests remotely. To display
to various mobile screens more efficiently, JPV employs novel
visualization approaches based on animations.

Related work with JPV includes research on visualizations for
code repositories [1, 2]. However, we think that using mobile

a b

c

Success Partial
Failure

Failure Aborted

Radar
Line

Clone
Build
Test

Release

Deploy

Fig. 1. Jenkins pipeline visualization for mobile devices. (a) The Landing view. (b) The Branch view. (c) The branch circle representation.

* wkb0004@uah.edu

devices and visualizations will open up new opportunities in
ubiquitous analysis of version control systems [3, 4, 5]. In contrast
to the prior research that is focused on general visualization
platforms, our work specifically investigates supporting CI/CD
visualization on mobile devices anywhere and anytime.

2 VISUAL REPRESENTATION AND VIEWS

JPV focuses on visualizing multiple branches as a diverse
collection of stages where each branch runs in a uniform and
understandable manner. The system provides two primary
visualizations: a high-level view (the Landing view) of all
pertinent pipelines, and a deep-level view (the Branch view) of a
selected pipeline to give a technical user the information needed
to continue debugging on a desktop system.

Visual Representation for the Branches: The atomic unit of
the JPV application is the branch. In a Jenkins pipeline, each
branch correlates to a branch in the version control system (e.g.
Git). Each branch has a collection of runs, and each run visualizes
the results for a set of user-designed tests.
As shown in Figure 1c, JPV visualizes sets of branches as sets of
concentric rings, each ring representing a test stage in the pipeline.
Rings are colored with the same colors used by Jenkins: green for
success, red for failure, yellow for partial failure, and grey for an
aborted stage. Each stage has a radar line that rotates around the
circle, its speed proportional to the percentage of the build time it
consumed.

Landing View: When users open the app, they are taken to the
Landing view (Figure 1a). Each repository has its branches
visualized in carousel view. Each branch shows its most recent
build, complete with radar line. The user can scroll through the
repositories and branches, then tap on a desired pipeline.

Branch View: By selecting a branch representation in the
Landing view, the user is taken to the Branch view (Figure 1b).
The branch view shows detailed visualization of the selected
branch as a larger half-circle on the side of the screen. Each stage
of the pipeline has a callout with the name, and a link to the
branch results is shown.

To represent branch information, JPV employs animation
features, which have been proven effective in mobile
visualizations. [6]. In addition to radar lines visualizing build
time, the turbulence visualization represents the ratio of failed
builds to total builds. Turbulence is visualized as a simulated body
of water. As a build has more consecutive failures, the water
becomes more turbulent, and as a build has more success, the
water becomes calmer. We use the last five builds to measure the
ratio of failed recent builds to successful recent builds. Thus, the
developers can understand their build status quickly. This view is
shown in Figure 2.

At the bottom of the screen, a historical context for the build is
shown, giving the user a view of the current build, the next build
(forward in time), and the last build (backwards in time).

3 USAGE SCENARIO

To illustrate the potential of JPV in CI/CD practices, we apply it
to hypothetical mobile visualization use case for a software
company. Alice is a developer with a company, while Bob is the
release manager in Alice’s department. Alice is well acquainted
with the inner workings of the product, while Bob is only
generally knowledgeable about the product’s components and
how they connect. The company maximizes its CI/CD use in both
build and releases.

Bob is concerned with the final state of the product. As release
manager, he is responsible for making sure the product is in a
state usable by the customer. When a build fails, turnaround time
is important, especially as they approach release dates. While he is
away from his desk, he needs to monitor the status of the
repositories and immediately assign developers to any emergent
errors. The Landing view in the app provides this high-level data,
so that when a build fails, he can quickly triage the situation.

Alice has meetings and personal errands that call her away from
her desk. However, Alice also commits code and watches the
build system pull her contributions through increasingly larger
builds. While she is away from her desk, she can use the landing
page to watch a change propagate through various pipelines. If the
build fails, she can use the Branch view to investigate it. Here, she
can see both the stage in error and its recent history. This is useful
in meetings with other developers and management where the
readiness or general status of the product is being discussed. The
high-level overview provided by the Landing view, along with the
general overview provided by the Branch view, allows her and
other developers to have informed conversations while phoning in
to meetings or away from their desks in conference rooms.

4 CONCLUSION AND FUTURE WORK

We believe that JPV can empower managers to monitor the state
of their product and developers to chart the course of their builds.
The CI/CD platforms have an unfulfilled need for an application
to aid users in their everyday work activities. JPV can also be
easily generalized to other code repository systems. Future work
should include investigating the visualizations shown here on
different sizes of mobile devices. A future version might also
consider turning the pipeline historical context view into a
scrollable view—by “scrubbing” the pipeline left and right, the
user would move the visible pipeline rendering forwards and
backwards through time.

REFERENCES

[1] J. L. C. Izquierdo, V. Cosentino, B. Rolandi, A. Bergel, and J. Cabot.

GiLA: GitHub label analyzer. In Proc. of IEEE SANER 2015, pp.

479-483, 2015.

[2] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang and S. Liu. Exploring the

Characteristics of Issue-Related Behaviors in GitHub Using

Visualization Techniques. IEEE Access, vol. 6, pp. 24003-24015,

2018.

[3] N. Elmqvist and P. Irani. Ubiquitous analytics: Interacting with big

data anywhere, anytime. Computer, 46(4), pp. 86-89, 2013.

[4] B. Lee, M. Brehmer, P. Isenberg, E. K. Choe, R. Langer, and R.

Dachselt. Data visualization on mobile devices. In Extended Abstract

Proc. of ACM CHI 2018, pp. 1–8, 2018.

[5] B. Watson and V. Setlur. Emerging research in mobile visualization.

In Tutorial Proc. of ACM MobileHCI 2015, pp. 883–887, 2015.

[6] M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. A comparative

evaluation of animation and small multiples for trend visualization

on mobile phones. IEEE Transactions on Visualization and

Computer Graphics, 26(1), pp. 364-374, 2019.

a b cLow Medium High

Fig. 2. Examples of the build turbulence animation: (a) 1/5 of the last
builds failing, (b) 3/5 of the last builds failing, and (c) 5/5 of the last
builds failing. As a build has more consecutive failures, the water
becomes more turbulent.

