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Abstract
In this article, we present GoCrystal, a new visual analytics tool for analysis and visualization of atomic config-
urations and thermodynamic energy models. GoCrystal’s primary objective is to support the visual analytics
tasks for finding and understanding favorable atomic patterns in a lattice using gamification. We believe the
performance of visual analytics tasks can be improved by employing gamification features. Careful research
was conducted in an effort to determine which gamification features would be more applicable for analyzing
and exploring atomic configurations and their associated thermodynamic free energy. In addition, we con-
ducted a user study to determine the effectiveness of GoCrystal and its gamification features in achieving this
goal, comparing with a conventional visual analytics model without gamification as a control group. Finally,
we report the results of the user study and demonstrate the impact that gamification features have on the
performance and time necessary to understand atomic configurations.
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Introduction

The materials-by-design approach is a recent trend in

materials science aiming to design materials with

desired properties based on a predictive model of

material behaviors. In the materials-by-design

approach, atomistic computational simulations are

crucial to understand materials at atomic scales that

are intractable by experimental techniques. In addi-

tion, the combination of atomistic simulations and

data-science techniques, known as materials infor-

matics,1 has led leap-forward advancement in materi-

als-by-design by providing a capability to understand

relationships between material’s atomic structure and

properties.

One of the challenges in the materials-by-design

approach is the difficulty in connecting atomic

arrangements to comprehensive behaviors and proper-

ties of materials. For instance, the most stable struc-

ture of a material corresponds to the atomic

arrangements with the lowest thermodynamic free

energy. However, the lowest energy atomic structure is

often not determined by a simple linear superposition

of short-range atomic orderings that have low

1Department of Computer Science, The University of Alabama in
Huntsville, Huntsville, AL, USA

2Department of Mechanical and Aerospace Engineering, The
University of Alabama in Huntsville, Huntsville, AL, USA

Corresponding author:
Haeyong Chung, Department of Computer Science, The University
of Alabama in Huntsville, Olin B. King Technology (OKT) N341, 301
Sparkman Drive NW, Huntsville, AL 35899, USA.
Email: hchung@cs.uah.edu

uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/1473871617751245
journals.sagepub.com/home/ivi
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1473871620925821&domain=pdf&date_stamp=2020-07-20


interaction energies. Moreover, as the size of the mate-

rial structure becomes larger, it becomes more difficult

for the user to understand how different atomic

arrangements affect the associated interaction energies.

The process of data acquisition, analysis, and decision

making for the atomic arrangement of the desired

materials can also create additional complexities.2

In this article, we present GoCrystal, a visual analy-

tics tool for assisting in identifying representative

atomic orderings (patterns of atomic arrangement in

local areas) and understanding how they interplay to

determine atomic configurations (atomic arrangement

over the entire structure), with its feasibility demon-

stration on a Li-ion battery cathode material system

(Li1þxNiyCo1�x�yO2). GoCrystal is designed to facili-

tate finding stable atomic configurations with mini-

mum thermodynamic energy by directly manipulating

atomic arrangements through visual interfaces. We

believe that visual analytics3 can present a promising

solution for materials-by-design, since it integrates

visual patterns of atomic arrangements with material

properties that can be predicted by computational

analytical methods.

GoCrystal supports a set of gamification features

that are designed to engage and assist users in examin-

ing atomic arrangements and discovering representa-

tive short-range atomic orderings. Gamification is

described as the method of applying game features

and rules in non-game contexts to engage users in sol-

ving problems.4 In GoCrystal, thermodynamic free

energy of a material is modeled as a function of atomic

arrangement and several constraints and conditions

are applied to simulate the natural processes of materi-

als synthesis and fabrication. These simulated con-

straints and conditions are then implemented and

employed as gamification features inspired by Go

and puzzle games. GoCrystal provides multiple game

levels as a gamification feature in which the user

solves different puzzles based on the number of

atoms, lattice sizes, and target thermodynamic free

energy requirements. Each level allows the user to

explore and understand how different arrangements

of atoms will affect local effective interaction energy

as well as global thermodynamic energy. Thus, these

gamification features can empower users to under-

stand how specific patterns in atomic arrangement

interplay to minimize the global free energy towards

a stable material.

To evaluate GoCrystal with our gamification fea-

tures, we conducted a user study in which we com-

pared GoCrystal using our gamification features,

against a visual analytics model without gamification

features, in order to assess the effectiveness and effi-

ciency of our approach in finding atomic configura-

tions. We also investigated the impacts of our

gamification strategies on the discovery task. Based on

our study results, we discuss and explain improve-

ments enabled by GoCrystal and our presented gami-

fication techniques for visual analytics.

Theoretical background

The feasibility of GoCrystal is demonstrated via a

study for the LNC model (Li1þxNiyCo1�x�yO2). The

LNC model has R�3m space group with one Li layer

and one transition metal (TM) layer which are arrayed

periodically, as illustrated in Figure 1. Although the Li

and TM layers are supposed to be separated in ideal

R�3m space group, their intermixing is often observed

in reality. Hence, cationic lattice sites are assumed to

be occupied by any of Li, Ni, or Co.

In this work, the structure of the LNC model is rep-

resented as an atomic configuration in the 2D visual

space (Figure 1(b)). The atomic configuration of the

LNC model consists of two types of layers (TM and

Li), which are repeated along the slanted vertical axis

(lattice vector c in Figure 1 (a)). In GoCrystal, the

atomic arrangement of only one TM-layer is shown

rather than the entire structure of the LNC model, in

order to simplify structures of the atomic configura-

tion. The Li-layer is be assumed to be fully occupied

and thus is hidden. The lattice sites on the shown TM-

layer are allowed to be occupied by Li considering the

possibility of Li-antisite (Li in TM-layer).

Recall that the goal of our 2D representation from a

materials science perspective is to understand the pos-

sible interactions between Li, Ni, and Co and identify

the most favorable patterns—not to investigate all pos-

sible 3D configurations. In particular, the intralayer

interaction between transitional metal ions represents

a key feature in understanding the thermodynamic

and electrochemical performance of NMC-type Li-ion

(a) (b)

Figure 1. (a) The structure of the layered LiMO2 with R�3m
space group. Green, gray, and red circles correspond to Li,
M, and O. (b) Top view of one TM-layer: this view is
represented visually as the layer in GoCrystal.
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battery cathodes. For the layered materials, the 2D

patterns can be repeated (stacked) across the entire

atomic configuration to form a stable 3D atomic con-

figuration. Favorable 2D atomic patterns are repeated

along TM-layer lattice vectors to construct a stable

3D atomic configuration.

The single-layer 2D model can effectively represent

3D atomic configurations through its periodic repeti-

tion along lattice vectors and therefore account for the

comprehensive intralayer atomic interactions.

Accordingly, these 2D representations are broadly

used in materials science publications to show impor-

tant atomic patterns in the layered materials.5–7

GoCrystal also focuses on assisting in predicting

thermodynamic free energy as a function of atomic

configuration. Thermodynamic free energy of a given

atomic configuration was obtained by conducting

first-principles density functional theory (DFT) calcu-

lation, which is the generally agreed de-facto atomistic

simulation method for thermodynamic free energy cal-

culation of battery materials. Vienna Ab-initio

Simulation Package (VASP), a widely used commer-

cial software tool for electronic energy calculations,

was used for DFT calculations. The generalized gradi-

ent approximation with Hubbard U correction

(GGA + U)8 was applied with the Perdew-Burke-

Ernzerhof parametrization,9 as implemented in VASP

in the PAW representation.10 U values of 3.4 and

6.0 eV were chosen for Co and Ni ions, respectively. A

cutoff energy of 520 eV was used and the k-point

mesh was adjusted to ensure convergence of 1 meV/

atom. The volume and shape of the supercell were

allowed to change during the relaxation.

In principle, we need to repeat the DFT calculation

for every possible atomic configuration to obtain the

thermodynamic free energy model of a material:

E sif gð Þ, where si indicates atomic species at lattice

site i (e.g. 3N DFT calculations need to be performed

for N lattice site ternary compounds). However, such

a brute-force approach is practically impossible

because of the exponentially growing numbers of

atomic configurations with the number of lattice sites

and highly expensive computational cost of the DFT

calculation. Instead, we used the cluster expansion

(CE) method. The CE method is an efficient way to

identify the most representative atomic patterns and

the corresponding interaction energy from only a small

amount of data instances using a fitting-prediction

process with the help of data-science techniques, such

as cross-validation and feature reduction. Once

obtained, the E sif gð Þ was used to predict the energy

while the users change the atomic configuration on

their own. Our prior works7,11 provide further infor-

mation on CE.

In GoCrystal, CE was applied for the LNC model

with 24 cation lattice sites in one layer and in total 167

data instances were used during the fitting-prediction

iteration to simplify the task. The resultant thermody-

namic free energy model is loaded as a form of data in

GoCrystal and is used to assist in identifying atomic

orderings and to predict atomic configurations with

minimum thermodynamic energy. The CE model used

in our user study is provided in the Supplementary

material.

Related work

In this section, we review prior efforts in visualization

tools for structural analysis, gamification, and serious

games, and compare them with GoCrystal’s capabil-

ities and features. To be specific, we explore existing

(a) visualization and visual analytics tools used for

analysis of crystal structures, (b) gamification

approaches for non-game systems, and (c) serious

games for understanding and solving scientific

problems.

Visualization and visual analytics for crystal
structures

There exist a wide variety of molecular and structural

analysis tools that can help users to understand, simu-

late, discover, and design new materials.12,13

GoCrystal is closely related to visualization tools for

determining and understanding crystal structures.

These tools focus on visualizing and rendering crystal

structures as resultant data generated with various

computational and simulation software tools, such as

Gaussian and GAMESS. Particularly, Izumi and

Momma14 proposed VENUS (Visualization of

Electron/NUclear densities and Structures), which

consists of five independent visualization tools for

structural analyses. VENUS was specifically designed

to analyze and identify chemical bonds in crystal struc-

tures. To improve the usability and performance of

VENUS for understanding electron densities and crys-

tal structure, Momma and Izumi15 presented VESTA

(Visualization for Electronic and Structural Analysis),

a 3D visualization tool that visualizes electron densi-

ties, wave functions, and electrostatic potentials as

two-colored isosurfaces. The atoms and bonds in the

crystal structures are represented as ball-and-sticks

that are attached to a movable lattice plane, which then

enables users to investigate crystal structures in various

views and with multiple electronic configurations.

CrystalFp (Crystal Fingerprinting) is a project

aimed at solving problems for crystal structures partic-

ularly using visual analytics approaches. CrystalFp

Chung et al. 3



allows users to select and validate crystal structures

produced by the Universal Structure Predictor

Evolutionary Xtallography (USPEX) predictor algo-

rithm. For a large number of crystal structures pro-

duced with USPEX, CrystalFp supports efficient

classification of the crystal structures, as well as helps

users in exploring them by providing flexible visual

exploration methods. CrystalFp allows users to clas-

sify/cluster similar (or different) structures on scatter

plots and identify unique and potentially interesting

structures; accordingly, users can identify or remove

groups of duplicated structures.

In a typical structural analysis process, computa-

tional chemistry software tools produce atomic config-

urations and the aforementioned 3D visualization tools

are then used to analyze and understand the structure-

properties relationships. Updating a crystal structure

was still possible via such computational chemistry soft-

ware. Similar to VESTA or CrystalFp, GoCrystal was

designed to help the user understand crystal structures;

in contrast, however, GoCrystal focuses on simple 2D

visual representations to visualize and identify stable

crystal structures. Moreover, GoCrystal focuses on

understanding thermodynamic free energy as a function

of atomic configuration by varying atomic arrangements

manually.

Gamification for non-gaming applications

Gamification features continue to be adopted by a

wide variety of non-game applications and services as

a way of keeping users more engaged and motivated.

Multiple tools and studies have used gamification to

increase end-user participation, enjoyment, and per-

formance. Kankanhalli et al.17 developed a gamifica-

tion design guide to engage the user and increase work

performance. Domı́nguez et al.18 reported higher

scores and involvement among participants utilizing a

gamified learning system. Similarly, Thom et al.19

investigated the gamification of large multinational

organizations’ social networks, showing that the

removal of gamification features had a negative impact

on participation. Of primary relevance to GoCrystal is

the work of Ahmed and Mueller20 who presented a

gamification method as a paradigm for evaluating

visual analytics tools designed to motivate volunteers

to conduct tasks involving human perception and cog-

nition. While their methodology did employ gamifica-

tion successfully in requiring participants to assess

visual analytical tools, their work was not designed to

investigate the broader aspects of incorporating gamifi-

cation in visual analytics. In contrast, GoCrystal uses

gamification in its actual visual analytics features to

improve the efficiency of the whole analytical process

performed by users.

Diakopoulos et al.21 investigated the effectiveness

of using gamification techniques to enhance interac-

tions with infographics. They presented a gamified

infographic, Salubrious Nation (SN), for the purpose

of exploring US health data. SN includes two game

mechanics: Salubrious Guess (SG) directs users to

make inferences about the relationships between see-

mingly disparate pieces of data and their geographic

location, while Salubrious Eliminate (SE) is a color

matching game inspired by mobile or online matching

games like Bejewled or Snood. GoCrystal is similar to

SG in that users are making assumptions based on

visual patterns. Both GoCrystal and SN also allow

users to discover and throw out outliers, such as a

county that does not share the same statistical patterns

that its neighbors do in SN, or how some arrange-

ments of atoms may not reduce the interaction energy

as much as expected in GoCrystal. However, the goals

of guessing in SG or of eliminating counties in SE are

designed and introduced by the authors of the info-

graphic artificially to demonstrate the effectiveness of

their system, whereas the goal of GoCrystal to perform

the real-world material informatics exercise decided

semi-automatically by an algorithm.

In addition, there has been increasing interest in

the use of gamification for various online services.

Particularly, gamification methods have been used in

online services to help motivate people to achieve

required tasks. This broader incorporation of gamifi-

cation has primarily been inspired by existing game

features such as achievements, badges, trading cards,

and experience levels, which are comfortable and

familiar to users. For example, LinkedIn22 has

employed gamification features as a way to make their

site more user-friendly while setting up new user pro-

files. Particularly, the account setup progress bar that

guides a new user in setting up his or her profile incor-

porates features of gamification. Often, profile

strengths are ranked into categories such as ‘‘weak,’’

‘‘intermediate,’’ or ‘‘strong.’’ As a user adds more and

more required information to their profile, the bar

increases to represent the progress made. The progress

bar not only tracks the user’s advancements but also

has a text field that gives suggestions on how to

improve one’s profile strength. Steam,23 a digital dis-

tribution platform for gaming, also employs several

gamification features across its entire platform to

encourage making purchases within their online store.

Experience points (XP), achievements, levels, and

inventory items are all common methods that games

use to communicate with their audience, and the cus-

tomers may use such common game entities to enjoy

purchasing games.

GoCrsytal extends these existing gamification

approaches to empower visual analytics tasks by
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employing a level system as increasing challenges in

analyzing data, using a performance tracker as an

energy bar, and providing real-time feedback for every

action. In terms of solving scientific problems, we note

that although back-end calculations for determining

the thermodynamic free energy of an atomic config-

uration can be rather complex, users are able to inter-

act with and visualize essential information in a way

that is much simpler in GoCrystal.

Serious games for solving scientific problems

Several recent efforts in the science and engineering

arena have begun employing gaming and gamification

to solve and understand difficult science problems.

Particularly, Foldit24 is a multiplayer online game that

is designed to aid non-scientists in identifying new

protein structures. In Foldit, the players interact

with the protein structure visualizations using

direct-manipulation techniques such as clicking and

dragging. Foldit offers players the opportunity to

simulate protein structures in solving real-world prob-

lems, such as identifying disease-related proteins or

identifying new plant proteins for faster conversion to

biofuels.

Splice25 is a puzzle game in which users manipulate

microbial cells to create a desired structure. This video

game is based on similar game mechanics integrated in

GoCrystal. In this instance, players need to rearrange

groups of microbial cells into each target structure in a

limited number of moves (called ‘‘splices’’). The game

requires the player to rearrange groups of cells by sim-

ply dragging them, but as the levels progress the player

must understand increasingly complex cells to create

target structures. In contrast to GoCrystal, at each

level a target cell structure is created based solely on

the cell positions without considering any other attri-

butes. Each level in Splice provides independent puz-

zles; conversely, GoCrystal’s levels are interrelated for

achieving the overall goal. GoCrystal employs a limita-

tion on resources in addition to the number of steps.

This limitation of resources and optimization with

number of steps encourages critical thinking while the

time mechanic adds pressure.

Hello Quantum is a puzzle game to assist people in

learning the fundamentals of quantum computing and

mechanics through playing a series of puzzles.26 It pro-

vides a basic concept of a qubit, which is the funda-

mental unit of information in quantum computing

corresponding to a bit in classical computing. In addi-

tion, the concepts that the user learns with Hello

Quantum can be tested on the IBM Q Experience, a

web-based platform which permits users to experi-

ment with and program for the prototype quantum

processor.27 Progenitor X is a narrative turn-based

puzzle game designed to help users understand the

basics of stem-cell science;28 it implements game ele-

ments to cultivate and differentiate stem cells, arrange

tissue, and replace organs that have been affected with

a virus. These games allow players to learn more

advanced science concepts and even help them con-

tribute to identifying solutions to real-world problems.

Similar to these serious games, GoCrystal not only

aids users in learning scientific concepts, but also pro-

vides a platform for users who are newer to such scien-

tific concepts to solve an actual problem. The

programmatic deployment of the gamification features

described herein confirm that this approach can help

users and students learn potentially complex material

more effectively if they are engaged and challenged

with various game-like interfaces. We remain inspired

by these games in that they have been proven to help

students better understand and even solve problems in

complex scientific subjects.

Accordingly, we sought to develop GoCrystal as a

visual analytics tool to help users learn the concept of

materials-by-design approach more successfully

through the incorporation of game features. Many of

these features would be familiar to students who have

grown up playing games—and others expand on some

of the features described in this section. We have inte-

grated familiar features—notably, levels, a time bar,

score, steps indicator, high score, energy indicator,

and the progression dynamics features—to engage

users in identifying more stable atomic configurations

and their associated patterns.

Design considerations

GoCrystal focuses on exploring and determining

atomic configurations based on thermodynamic free

energy and allows users to define the types of atoms on

their own. A design goal of GoCrystal is to keep users

engaged in the materials-by-design tasks and involve

them more in exploring and analyzing a large number

of relations among atoms through gamification fea-

tures. To facilitate these goals, we mainly decided to

use the following three design considerations:

D1: Visualize atomic orderings and their
effective interaction energy with simple visual
representation and multiple views

Generally, visualization tools for structural analysis

focus on presenting atomic structures in various 3D

representations; and materials science researchers use

such 3D structure visualizations to verify and check

output data generated by computational tools through

the use of 3D navigation approaches (zooming in/out,
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panning, rotating the models, or changing the view

perspectives). However, it is not easy to use such con-

ventional 3D approaches to understand and identify

stable atomic configurations which have lower thermo-

dynamic free energy, since the task involves consider-

ing various aspects of results obtained from simulation

and computation.

In contrast to existing 3D structural analysis

tools,12,29 GoCrystal can show how pairs or sets of

atoms form different relationships and generate effec-

tive interaction energies through its use of simple 2D

visual representations and interactive charts depicting

their associated energies. Particularly, our 2D repre-

sentation of atoms can simplify an entire atomic struc-

ture of multiple layers with a top-down view that is

able to show a large number of atoms simultaneously.

Although conventional 3D visualizations can generate

deeper insights into the overall atomic configuration

across multiple layers, it inevitably generates occlusion

that requires 3D navigation approaches to decipher.

In addition, inspired by prior work on coordinated

multiple views,30 this visualization approach can also

uncover unforeseen connections in and among those

atomic configurations in terms of their energy on mul-

tiple distinct views with brushing-and-linking.

D2: Interactively change and test atomic
configurations with respect to their associated
thermodynamic energies

In order to understand atomic configurations that

minimize corresponding thermodynamic free energy,

the user needs to examine a combination of diverse

atomic orderings and their associated interaction ener-

gies; particularly, the user should be able to compare

atomic configurations that consist of atomic orderings

by interactively manipulating the arrangements of

atoms in a lattice. The analytic tool associated with

this task should be able to provide a method for keep-

ing track of which selection of atoms would produce

the more desirable results in terms of their interaction

energy and why. In this regard, GoCrystal provides

users with effective visual interfaces to facilitate chang-

ing the atomic arrangements and comparing resultant

energies from these atomic orderings and configura-

tions. Beyond passively inspecting individual structural

models, GoCrystal helps users identify target atomic

configurations by directly changing arrangements of

atoms in the lattice. The user’s input for changing

atomic orderings/configurations should also be

reflected on the corresponding thermodynamic energy

in real time. Specifically, the user can change types of

atoms in the layer in order to examine how certain

changes of atomic arrangement impact local energies

(i.e., interaction energies) based on relationships with

nearby atoms (i.e. atomic ordering), as well as the

overall thermodynamic free energy. To achieve this

goal, GoCrystal also provides visual feedback for

user’s changes in atomic configurations, which enables

the user to see how updated atomic configurations

would affect the associated energies.

D3: Facilitate materials informatics processes
through gamification

The materials science researcher typically needs to

investigate a large number of potential arrangements

of atoms, as well as their corresponding effective inter-

action energies, in order to design materials. Such

design/discovery processes can be tedious and time-

consuming. Moreover, it may be confusing and intimi-

dating for a new user.

Thus, we chose to adopt gamification features to

help keep users interested and motivated in identifying

atomic orderings with lower effective interaction ener-

gies resulting in the stable atomic configuration for a

given lattice. The concept and practice of gamification

are expanding across a variety of application domains.

The key goal of incorporating aspects of gamification

into GoCrystal is to make the visual analytics tasks

more enjoyable so that users will remain engaged in

the task.

The various elements in a game can be divided into

two gamification design elements: game mechanics

and game dynamics.31

� Game mechanics: Mechanics indicate the inputs

and actions afforded to the user, both of which

cause certain outputs or responses to play a game.

One critical piece of any good game design is that

it must contain constraints and conditions, gener-

ally referred to as ‘‘game rules’’ and ‘‘stages’’ for

playing a game. Thus, this design element is

related to a set of game features that specify how

the user plays a game. Specifically, they can be

implemented as a set of the game systems such as

points, limited resources, and attributes assigned

to game characters. In GoCrystal, we integrate a

set of game elements based on game mechanics,

such as time constraints, scoring, levels, level attri-

butes, with the visual analytics process.
� Game dynamics: Dynamics refer to how the

mechanics of a game make gamified activities or

experience enjoyable. In contrast to game

mechanics—which are controlled by the designer—

game dynamics are related to the reactions and

experiences of the user, which vary from person to

person. For instance, game dynamics will feature

6 Information Visualization 00(0)



emergent behaviors and processes such as collabora-

tion, unexpected challenges, and solving processes

that may be unique to every user of GoCrystal. We

exploit game dynamics as a form of user’s discovery/

visual analytics process that arises when a user plays

a collection of our gamified features to solve materi-

als informatics problems. Particularly, GoCrystal

emphasizes ‘‘Progression Dynamics,’’32 which focus

on displaying a player’s level of success. This notion

of progression dynamics also helps users gradually

improve their discovery process through the com-

pletion of ‘‘granular tasks’’ that have been semi-

automatically decided in terms of data size and

attributes.

Based on these two design elements for gamifica-

tion, we implemented gamification features that can

be applied to solve the visual analysis problems for

identifying stable atomic configurations with the low-

est thermodynamic free energy possible (see the

‘‘Gamification features’’ section for details).

Visualization design

GoCrystal supports multiple visualization views for

atomic orderings and their associated effective interac-

tion energies (four bar charts for the effective interaction

energies) (Figure 2(i)). The purpose of these multiple

views is to visualize atomic arrangements and their inter-

action energies in the layer as well as to facilitate identi-

fying and creating stable atomic configurations.

The layer

In the layer (Figure 2(h)), the atoms are represented

visually by circular objects which reside in the lattice

and corresponding interaction energies are also visua-

lized with simple shapes. The layer enables users to

create various atomic orderings, which are the arrange-

ments of atoms in the layer. The arrangement of atoms

in the layer serves to denote different types of energy

relationships with other atoms in terms of different

effective energies among the atoms.

Atoms and lattice. In GoCrystal, atoms are repre-

sented with colored circles that refer to a specific ele-

ment, namely Lithium (green) , Cobalt (blue) ,

and Nickel (red) . Although we selected these three

types of atoms for the feasibility of the system for our

study, these three atoms can be applied to other mate-

rial systems with redefinition of types of atoms depend-

ing on the thermodynamic energy model of the

material systems. The basic color choice for these three

atoms in GoCrystal is based on the color scheme used

(a)

(g)

(b)

(h)

(j)

(k)
(l)

(i)

(c) (d) (e) (f)

Figure 2. GoCrystal, a gamified visual analytics tool for supporting materials-by-design: (a) Level information, (b) Time
counter, (c) Time bar, (d) Score, (e) Steps, (f) High score, (g) Status table, (h) The layer is represented as circular objects
which reside in the lattice, and their corresponding interaction energies with simple shapes, (i) Four bar charts for
effective interaction energies for each type of atomic orderings, (j) Thermodynamic energy indicator for the broader
atomic configuration in the layer, (k) Progression view, and (l) Information box reminds the player of their goal and
provides some technical information.
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in VESTA,15 but if the system were extended to sup-

port a new materials system, we would consider more

intricate color schemes for the atoms. Specifically, we

would select the CPK color convention,33 which can

cover most of the elements in the periodic table and is

categorized according to specific atomic properties.

The basic visual design of the layer was inspired by

Go in which the user places atoms of these different

elements with their own color on the lattice, consider-

ing interaction energy among the atoms in the layer.

Note that the symbols for these atomic elements—‘‘Li’’

(Lithium), ‘‘Co’’ (Cobalt), and ‘‘Ni’’ (Nickel)—are

used to label the center of each circle. These circular

atom shapes can then be arranged in an 8 3 9 lattice

(72-atom cells), forming different ordered arrange-

ments of atoms in a crystalline material.

Initially, all of the 72 lattice sites in the layer are

filled with Lithium (i.e. green circles). The user can

then begin to switch atoms of choice by clicking on

them to create and identify a specific atomic configura-

tion. When a user changes an atom in the layer, the

associated thermodynamic free energy is calculated

accordingly based on all of the atomic arrangements in

the lattice (see the Supplementary material for details).

Atomic orderings and effective interaction energy
patterns. In a crystalline material, a pair/group of

atoms can be arranged, regularly filling in the lattice

sites (atomic ordering). These atomic orderings

then constitute an atomic configuration (Figure 4).

Importantly, different types of atomic orderings produce

effective interaction energies, which partially decide the

thermodynamic free energy of the constructed atomic

configuration in the entire lattice (Figures 4(g) and (h)).

Thus, when a user decides atomic orderings and their

resultant atomic configuration, they should consider

how different arrangements of atoms affect the effective

interaction energy of atomic orderings as well as the

overall free energy from the atomic configuration.

GoCrystal visualizes four different types of effective

interaction energy patterns associated with atomic

orderings. Each of the following patterns can be dis-

played selectively by user, who can choose one or mul-

tiple patterns with the associated checkbox user

interface.

� Short Pattern: The short pattern represents the

effective interaction energy between any two adja-

cent atoms in the lattice. As shown in Figure 3(a),

the interaction energy of the short pattern is repre-

sented with a yellow-colored line connecting with

two adjacent atoms. The width of the line indi-

cates the corresponding level of interaction energy

formed between the adjacent atoms. The wider

the line, the greater the interaction energy between

the two atoms.
� Triangular Pattern: The triangular pattern rep-

resents the interaction energy among three adja-

cent atoms in the lattice. As shown in Figure 3(b),

an interaction energy value generated by three

atoms is represented with a purple-shaded triangu-

lar tile. The corresponding level of energy is indi-

cated with color saturation: the deeper the purple,

the greater the interaction energy among the three

atoms.
� Long Vertical Pattern: The long vertical pattern

is used to visualize the interaction energy value

between the two atoms placed at positions along a

vertical direction (but not adjacent atoms) in the

lattice. As indicated in Figure 3(c) the width of the

green-colored lines connecting two atoms vertically

indicates the amount of effective energy between

the two atoms placed vertically in the lattice, with

wider lines pointing to greater interaction energy.
� Long Diagonal Pattern: The long diagonal pat-

tern represents a value of the effective interaction

energy between two non-adjacent atoms placed

diagonally in the lattice. As depicted in Figure

3(d), the corresponding energy between two atoms

is represented with blue lines of varying widths.

Similar to the other patterns, the width of the blue-

colored lines indicates the amount of the energy

between the atoms.

Bar charts for effective interaction energies

To assist the user in comparing the effective interac-

tion energies produced by different atomic orderings,

GoCrystal provides four bar charts (Figure 2(i)). Each

bar chart presents a different interaction energy in

increasing order, which is associated with an atomic

ordering of different types of atoms. The y-axis of each

chart represents the interaction energy that each

atomic combination produces in electron volt (eV),

while the x-axis represents different ordering patterns

among atoms. Each of the bar charts shows how asso-

ciated effective interaction energies can be varied in

terms of pairs/sets of different types of atoms within

each atomic ordering. Note that the scale of the y-axis

is constant across all the four bar charts to help the

user compare the effect of the four types of atomic

orderings on their corresponding interaction energies.

In addition, all of the four bar charts support brush-

ing-and-linking, whereby the corresponding interac-

tion energy for each atomic ordering pattern in the

lattice can be highlighted in the bar chart (Figure 3);

mouse-hovering on an atomic ordering pattern
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highlights the corresponding bar in the bar chart (in

Figure 3, the red arrows represent mouse-hovering on

the different interaction energy representations).

Gamification features

GoCrystal utilizes basic puzzle game features to solve

the materials-by-design problem that is associated with

each level (see Table 1). Employing aspects of gamifi-

cation into GoCrystal is likely to enhance a user’s

engagement, thus motivating him or her to continue

interacting with the system and working toward a goal.

As we discussed in our design considerations,

GoCrystal’s gamification features are based on two

standard gaming elements: (a) Game Mechanics and

(b) Game Dynamics. In this section, we describe in

detail these gamification features, which encompass

familiar game-inspired elements.

Game mechanics

As we described in the ‘‘Design consideration’’

section, game mechanics refer to defining game sys-

tems and rules. GoCrystal users would encounter

increasingly challenging levels to motivate and encour-

age them to solve more complex problems. Moreover,

each level of GoCrystal has a different target energy, as

well as a constraint on the different number of atoms

that are available. GoCrystal supports the following

gamification features based on game mechanics.

Game goal. A user should identify an atomic config-

uration with minimum interaction energy. Figure 4

shows a workflow of how the user would construct

atomic orderings and atomic configurations using

GoCrystal. A single atomic configuration can be formed

by combining and arranging atomic orderings regularly,

and each atomic ordering can also consist of atomic

orderings in a smaller area. For example, two Ni-Co

patterns (Figure 4(a)), which produce minimum effec-

tive energy, can form a single triangle pattern which is

then formed into a single hexagon pattern (six Ni atoms

and one Co) (Figures 4(a)–(d)). Based on how these

hexagon patterns are arranged across a layer, their resul-

tant thermodynamic energies are different. Thus, the

user should decide how the hexagon patterns can be

arranged more efficiently (Figure 4(e) and (f)) to create

an atomic configuration with the minimum thermody-

namic free energy. The final task will be to determine an

atomic configuration by efficiently repeating the pattern

in a lattice achieving the least amount of thermody-

namic free energy (Figures 4(g) and (h)).
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Figure 3. Visual representations of atomic orderings and corresponding effective interaction energy. Effective
interaction energy for each type of an atomic ordering is also visualized in its associated bar chart. The bars
corresponding to selected orderings (represented by red arrows) are highlighted in red color: (a) Short, (b) Triangle,
(c) Long vertical, and (d) Long diagonal.
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Levels and level attributes. In GoCrystal, the levels

play the role of ‘‘milestones’’ in a user’s analytical

progress toward reaching stable atomic configuration.

At each level, the user will be tasked with solving sim-

ple puzzles to identify an atomic configuration with

minimum energy, thereby enabling them to complete

the final goal of determining the most effective atomic

configuration for the layer. Thus, the overall problem

is deconstructed into smaller, level-specific problems,

which are also combined at the final level to achieve

the complete solution. Specifically, each level in

GoCrystal has different level attributes. These level

attributes are displayed as a pop-up menu before the

beginning of each level and throughout the game play

(Figures 2(b), (g), and (l)). The following level attri-

butes are varied depending on the level, but increase

the level of complexity and difficulty in solving a puz-

zle for each level.

� Target Energy: Users are presented with a target

thermodynamic free energy for each level. The

user must reach the target energy goal to ‘‘win’’

that level and move on to the next level.

Specifically, when the user creates an atomic con-

figuration that produces the least energy possible

for that given lattice, the level is completed. As the

user advances from level to level, the target energy

values become less, thereby increasing the

challenge.
� Time: GoCrystal incorporates a time limit for

completing each level, which increases level-by-

level based on the size of the lattice and the num-

ber of atoms to be arranged. Failing to determine

the correct solution within the time allotted ends a

level, prompting the user to start over at the

‘‘failed’’ level. Faster completion times are recorded

on a leaderboard.
� Layer Size: For each stage, the layer (lattice) size

that the user employs to arrange atoms to create

an atomic configuration is different. As the user

progresses from level to level, the size of the layer

increases.
� Types of Atoms: At each level, different types

and sets of atoms (we used Li, Ni, and Co for the

study, but other types of atoms can be added) are

available for creating an atomic configuration. As

the user progresses from level to level, the available

types of atoms to be used in the layer can increase.

Based on these four attributes, users will be chal-

lenged to complete each level before they can advance

to the next level—thereby integrating a ‘‘reward’’
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Figure 4. A workflow of constructing atomic orderings and atomic configurations. This shows visual analytics processes
of how two different atomic configurations can be constructed by arranging effective hexagon atomic orderings in a
layer, considering thermodynamic energies. (a) Form a triangle pattern with two Ni-Co orderings; (b) and (c) Combine
multiple triangles to form a hexagon pattern; (d) Decide how individual pattern can be combined more effectively in
terms of effective and thermodynamic energies; (e) and (f) Arrange and repeat the combined orderings regularly in a
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system that encourages them to continue the game.

Note that the user can only advance sequentially

through levels. Should the user need to terminate the

session and wish to resume it later, he or she can use

the level-select screen at the beginning of the game.

Similarly, when users fail a level, they can also select

and restart that level or previously completed levels

from the screen. GoCrystal tracks and saves each

user’s progress based on the user name entered at the

beginning of the session. The user can pick up where

they left off or try a different solution with an unsuc-

cessful level rather than starting from scratch.

In many puzzles or educational games, specific level

conditions and attributes are manually designed by the

game designer who has prior knowledge of all informa-

tion about the available problems and solutions.25,26

However, solutions for unanticipated analytical prob-

lems may not be available until an analyst actually con-

ducts a specific analysis and determines all answers to

emergent questions. To support this characteristic of

visual analytics tasks, GoCrystal determines the level

attributes for each level in a semi-automatic manner

(Algorithm 1). Table 1 shows actual attribute values

generated by Algorithm 1; these levels and level attri-

butes were incorporated into our user study.

Particularly, our level algorithm focuses on produc-

ing the level attributes based on the lattice size, avail-

able types of atoms, the number of moves, and time.

A target energy for each level is calculated based on

these level attributes. Initially, the user sets a target

thermodynamic free energy value to be achieved; then,

according to the number of levels (e.g. 6 levels) and

the maximum values for all other attributes, the algo-

rithm generates proportional values for the attributes

at the levels. For an actual analysis scenario, the user

can set this target attribute value to be achieved

according to their analysis goals.

Our level algorithm controls the final level sepa-

rately, which involves assigning the maximum values

for all the attributes. We should note that the values of

the level attributes are increased gradually from level 1

to the penultimate level. To be exact, the algorithm

increases the values of the level attributes randomly

and marginally based on the prior level’s values until

the penultimate level. But when the final level is

reached, the algorithm assigns the user-defined maxi-

mum values for all attributes in order to generate the

most challenging level in terms of the available size

and types of atoms. The target energy value is also cal-

culated based on these assigned attribute values at the

final level.

Energy indicator. The energy indicator denotes the

output thermodynamic free energy of an atomic con-

figuration for the layer (Figure 2(j)). The goal of

GoCrystal is to arrange different types of atoms (e.g.

Li, Ni, and Co) on a layer in order to identify the

Table 1. Level attributes generated for six levels (MAXLEVEL = 6) with Algorithm 1.

Levels 1 2 3 4 5 6

Layer rows 2 2 3 4 5 8
Layer columns 3 3 4 5 6 9
Level time (seconds) 500 1000 1500 2000 2500 3000
Target energy (eV) 12,067 11,895 11,353 11,165 8591 8.56
Maximum number of Li atoms 72 72 72 72 72 72
Maximum number of Ni atoms 2 3 8 14 20 72
Maximum number of Co atoms 1 2 4 7 10 72

Target energy doesn’t refer to the optimized energy.

Algorithm 1 Generate level attributes

1: //Define min. and max. val. of three attributes:
2: // MAXLEVEL, MINROWS, MINCOLS
3: function Levelconfig (level)
4: if level = MAXLEVEL then
5: return Maximum values of all attributes
6: else
7: //Calculate attr. val. proportional to current level
8: levelTime (level/MAXLEVEL) * MAXTIME
9: if level \ MINROWS then

10: layerRows Random integer between MINROW
and level

11: layerCols layerRows + 1
12: else
13: layerRows MINROWS
14: layerCols MINCOLS
15: end if
16: levelFactor (layerRows * layerCols)/MAXLEVEL
17: maxNi RoundUp(levelFactor * 4)
18: maxCo maxNi/2
19: targetEnergy 

Energy of the layer with maxNi, maxCo and others
as Li

20: return All calculated attributes values
21: end if
22: end function
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atomic configuration with the lowest thermodynamic

free energy in electron volts (eV) possible. The energy

indicator shows the overall energy produced by a com-

bination of all atomic ordering patterns in the lattice

in a range of 12,000 eV to –1,000 eV (Figure 2(j)).

For each level, the user should reduce the thermody-

namic free energy for an atomic configuration below a

certain target thermodynamic free energy by forming

an atomic configuration. As illustrated in Figures 2(j)

and 4(g) and (h), when a user conducts such a task

with GoCrystal, a blue energy bar will show the ther-

modynamic free energy which the user has achieved so

far. Importantly, this visual aid also indicates the mini-

mum energy level under which the user must stay in

order to win and advance to the next level. As noted,

it also shows and provides the target energy by display-

ing an indicator line on the energy bar (a thin white

line on the bar in Figure 2(j)); thus, the user is guided

by a target energy level that they must achieve to

advance to the next level.

If the user updates an atomic orderings and config-

uration in the layer, a corresponding thermodynamic

free energy is computed and updated accordingly. The

bar increases or decreases indicating the current energy

value generated by the overall atomic pattern on the

layer. The energy indicator is an important visualiza-

tion, since it shows the user how close they are to win-

ning the level and reaching the desired solution—as

well as imparts a sense of accomplishment.

Time bar. As noted, every level in GoCrystal has a

specific time limit during which the player must reach

the target design goal. The time limit changes with

every level proportionally, and is represented at the

top of the screen with a time bar and a numeric value

(Figure 2(c)). The time bar indicates how much time

(in seconds) remains for the user to determine the

required atomic arrangement. At the beginning of

every level the entire length of time bar is orange in

color, which then decreases according to the time

remaining. The amount of time allocated for each level

is decided based on the complexity of the problem,

and the user must achieve the assigned goal within

that specific period to complete a level. As a game

mechanic, a time limit indicator adds a degree of chal-

lenge in the form of time pressure to the user’s task,

but can also encourage the user to make decisions

more efficiently toward achieving the final game goal.

Real-time notification. GoCrystal includes real-time

notifications in the form of an ongoing response from

the system based on the user’s actions/progress. Since

the goal of each level is to reduce the energy of the

material below a certain target energy, the real-time

feedback feature of GoCrystal provides information on

energy and other factors that indicate how the user is

performing on the task, as well as suggests corrective

action to better achieve the goal. For instance, the

immediate feedback from changes in atomic arrange-

ments can help users perform the task more attentively.

For every atom change in the lattice, the energy change

value is shown for 4 seconds in a small pop-up mes-

sage around a changed atom. In addition, an upward

or a downward arrow indicates an increase or decrease

in the energy. The user can also use this feature to ver-

ify the outcome of their actions immediately, in addi-

tion to checking on detailed views such as the bar chart

and the atom status table.

Score. The score feature (Figure 2(d)) is designed to

motivate users to work competitively toward a higher

score (Figure (2f)), since individual scores from other

users are used to create a high-score leaderboard. Both

the user’s score and the high score are displayed in the

top right corner of the screen (Figures 2(d) and (f)).

The score is calculated based on (a) the achieved ther-

modynamic free energy value, (b) the time consumed,

and (c) the number of steps which represent a change

of atoms in the lattice. Specifically, we used the follow-

ing formula to calculate the score at each level:

score=
1

time
3

1

steps
310n

� �
+EnergyBonus

EnergyBonus =
Initial Energy� Attained Energy

Initial Energy� Target Energy
3103 when Attained Energy \ Initial Energy

0 when Attained Energy . Initial Energy

8<
:

In this formula, n is the scale of the score (we used

n = 5 for our study).

Rewards and bonus. GoCrystal also incorporates

reward features in the form of bonuses for completing

a level more efficiently. First, upon completion of each

level, the next level is unlocked as a form of reward.

Bonus points are also offered based on the amount of

time remaining in the level and the number of atoms

being used. In addition, time extensions are given as a

reward when a user is able to decrease the energy con-

tinuously during a consecutive number of atomic

changes; for a streak of five atom changes that do not
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result in any increase of energy, three seconds are

added to the level’s time limit.

Game dynamics

In GoCrystal, Game Dynamics can take the form of

new and personalized analytical processes that emerge

from playing with game features, leading to the cre-

ation of atomic configurations with minimum thermo-

dynamic energy. There are two game dynamics that

could be emerged from different features of GoCrystal.

Problem-solving strategies. Throughout GoCrystal’s

analytical tasks, the user is required to apply a number

of different atomic arrangements in the lattice—and

then observe and understand how the effective ener-

gies among different sets of atoms have changed. A

user may apply different atomic arrangements that

facilitate solving puzzles to reduce a thermodynamic

energy—but they are also encouraged to come up with

and apply their own strategies for solving the problems

at multiple levels. The status table displays part of level

attributes, but it is also designed to help the user deter-

mine different approaches according to the attribute

changes. This table (Figure 2(g)) persistently shows

both the maximum number of available atoms for the

three types (i.e. Li, Ni, and Co) and the number of

atoms being currently used on an ongoing basis in a 3

3 3 table format. If any atom type reaches its maxi-

mum count based on the level conditions, the associ-

ated atom is highlighted in red, and the user will not

be allowed to use the corresponding atom type in the

layer. In response to this case, the user must change

the number of atoms. This constraint can encourage

the user to come up with an emergent idea to create a

more effective atomic configuration using a limited

resource.

Progression dynamics. The Progression view (Figures

2(k) and 5) allows users to explore atomic configura-

tions that they selected previously during their tasks.

At each level, users may extend or even reuse the solu-

tions identified from earlier levels, thereby advancing

their knowledge and skills to discover target atomic

patterns. In particular, the game dynamics incorpo-

rated in GoCrystal assist users in gradually improving

their skills by completing smaller tasks at each level.

This type of gradual improvement is also known as

progression dynamics,32 which refer to how incremen-

tal findings and activities contribute to solving a

broader problem. To better support the idea of pro-

gression dynamics, we incorporated a provenance fea-

ture34 in order to trace the history of the atomic

configurations that the user has selected at each level.

This feature provides the user with a way to compare

the current thermodynamic free energy with those pre-

viously identified and even return to a specific atomic

configuration if desired.

Importantly, this feature enables the user to restore

a prior atomic configuration in the layer and recovers

a more efficient state (in terms of lower energy) that

the user has selected during the analytical process at

each level. As shown in Figure 5, the Progression view

looks like a line chart overlaid with clickable data

points (red dots); its x-axis represents last ten atomic

configurations, and the y-axis represents the associated

thermodynamic free energy values with these atomic

configurations. Each clickable data point allows users

to see how thermodynamic free energies correspond-

ing to different atomic configurations have been chan-

ged during their tasks. An atomic configuration

previously selected by the user can be recovered by

clicking on these points.

Evaluation

To understand the effectiveness and efficiency of our

visual analytics approach with gamification features in

conducting the visual analytics task, we performed a

controlled lab study comparing two versions of

GoCrystal. The first version included all the gamifica-

tion features described in earlier sections; the second

version did not include any gamification features

except the energy indicator, which is an essential fea-

ture for checking the thermodynamic free energy pro-

duced by an atomic configuration. In terms of their

assigned task, participants were asked to identify the

stable arrangement of atoms that would produce the

least amount of energy possible for the given lattice

size. We envisioned that gamification features would

enable users to identify the required atomic

Figure 5. The progression view. An atomic configuration
previously selected by the user can be recovered by
clicking on each red points.
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arrangements. Accordingly, we formulated the follow-

ing hypothesis for this study:

H1: The gamification features of GoCrystal can lead

to a better performance in identifying the stable

atomic configuration with the least lowest thermody-

namic free energy than a conventional visual analytics

system.

Study method

Participants. In total, 30 participants ages 18 to 30

were recruited to take part in this user study. The 25

males and 5 females were graduate or undergraduate

students from a local university, who were studying

some field of engineering, computer science, or busi-

ness administration. The 30 participants were rando-

mized and assigned to one of two groups of 15

participants each: (i) the Gamification Group (GG),

which conducted the task using GoCrystal with all of

its gamification features; and (ii) the Non-

Gamification Group (NGG), which utilized the ver-

sion of GoCrystal without any gamification features

except the energy indicator. Some of them had prior

experience using data visualization tools, but had little

acquaintance with some concepts in materials

sciences. Overall, participant interest in games varied

from spending 0–2 hours of gaming per week, to more

than 25 hours per week.

Task. For this user study, participants in both groups

were asked to engage in an identical discovery task for

the stable atomic configurations. Specifically, partici-

pants were given 50 minutes to identify the most stable

atomic configuration within an 8 3 9 lattice that would

produce the lowest thermodynamic free energy possi-

ble. For the target solution, participants were expected

to identify and create a tiling of the lattice using identi-

cal hexagonal patterns with six Ni atoms on the edges

and one Co atom at the center (Figure 4(e)), which

would produce the least thermodynamic energy. The

GG participants needed to conduct the task using the

full range of GoCrystal’s gamification features by com-

pleting multiple levels based on their associated level

attributes, which were computed using Algorithm 1;

thus, they used the attributes for each level as shown in

Table 1. Conversely, the NGG participants performed

their task without the levels as well as other gamifica-

tion features except for the energy indicator.

Procedure. At the beginning of the study session, par-

ticipants were asked to complete biographical ques-

tionnaires. The study session was undertaken using a

desktop computer with an Intel Xeon E5-1620 CPU

and 16GB RAM connected to a 27’’ monitor with a

resolution of 3840 3 2160 pixels. Prior to engaging in

the actual user study, each group was given a demo on

a GG or NGG version of GoCrystal, with an addi-

tional 5 minutes allotted for exploring and becoming

familiarized with the interface and interactions. Then,

the experimenters explained the task they would be

asked to complete over the course of the 50-minute

session: identifying optimal atomic arrangements with

the lowest possible energy levels. After the study tasks,

the participants also completed the post-study survey.

Each study session was observed by the experimen-

ters, who made detailed notes on how participants

interacted with the interface. With the exception of

two participants from NGG, all other participants

were able to finish the task within the allocated time of

50 minutes.

Data collection and analysis. We used three perfor-

mance measurements to compare overall task perfor-

mance between the two groups.

� The task-completion time indicates the dura-

tion of time spent by each participant in seconds

from the beginning to the end of the task session.

For the GG participants, the time represents the

sum of the time spent (in seconds) for each level,

including any retries for the levels (GG).
� The number of steps indicates the efficient atom

changes executed by the participant throughout the

entire task. Note that each click on an atom that

changes a type of the atom in the lattice site is con-

sidered as one step (move). For GG, the sum of all

the steps executed by each participant during all

levels (including replayed levels) was calculated.
� The performance score is achieved by the parti-

cipants in both groups. Each participant starts

from zero points, and the system added or sub-

tracted points to the performance score, propor-

tional to the amount of energy changes based on

each atomic change. It must be noted that for GG

we evaluated the scores achieved during the last

level only; in contrast, for the NGG participants,

their scores were based on the entire task session.

For a fair comparison between both groups, we

used the revised performance score—minus three

factors (the task-completion time, the number of

steps, and the level-completion bonus) from the

original score formula.

At the end of the study we asked each participant to

complete a subjective feedback questionnaire. After

collecting all data from the user study, the data from

both the GG and NGG groups were tested for
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normality of distribution using Shapiro-Wilk test.

Since the resultant data was not normally distributed,

we performed the non-parametric Mann–Whitney U

test on the collected data to determine the significant

difference between the two groups for these measures.

Results

The study results are shown in Figures 6–8. In addi-

tion, we also evaluated the post-study survey collected

from participants after the completion of tasks. The

results and the post-study survey are described in this

section, with discussion of these results deferred to the

next section.

Performance and completion time. We measured and

compared performance scores and task-completion

times between the two groups, noting a significant dif-

ference in both the average of the task-completion

times (Figure 6) and the performance scores between

NGG and GG (Figure 8). For the task-completion

times—which is the number of seconds each partici-

pant spent to identify the target atomic configuration

for the entire task time—Mann–Whitney U testing for

both groups revealed a significance level of 0.05, indi-

cating a difference between the two groups. Overall,

the GG participants consumed less time to complete

the tasks significantly. Specifically, between the two

groups (U = 23, p \ 0.001), we found that the GG

participants (mean = 915.2 s, s = 626.576 s) were

able to complete the task quicker than the NGG parti-

cipants (mean = 2172 s, s = 707.825 s). In assessing

the entire task-completion time recorded throughout

the entire task session, we confirmed that the GG par-

ticipants were able to complete the task faster when

compared to the NGG participants.

In addition, we observed that the GG participants

used fewer steps to complete their tasks (Figure 7).

Fewer steps to complete the task implies that partici-

pants used effective atom changes with fewer efforts

throughout the entire process. For the number of

steps—which corresponds to the number of atomic

changes each participant made to identify the target

atomic configuration—Mann–Whitney U testing for

both groups revealed a significance level of 0.05, indi-

cating a performance difference between the two

groups. Overall, the GG participants utilized fewer

steps to complete the tasks. Specifically, between the

two groups, we found that the GG participants

(mean = 621.6, s = 506.263) were able to complete

the task with fewer steps than the NGG participants

(mean = 727, s = 303.194). However, we were

unable to confirm a significant difference (U = 73,

p = 0.101) in the number of steps between the GG

and NGG group. We attribute this result to the fact

that the GG participants had to work on multiple lev-

els; moreover, 5 of 15 GG participants retried levels 4

and 5, which increased the number of steps.

During the final level for the GG group, partici-

pants worked on the same tasks with those of the

NGG participants, in terms of the lattice size, number

of available types of atoms, and a target energy.

Importantly, both groups were required to discover

the same complete atomic configuration. Regarding

the performance scores between GG and NGG, we

identified a significant difference between the two

groups (U = 11, p \ 0.001) in that the GG partici-

pants (mean = 1099.052 points, s = 45.630 points)

Figure 6. The average task-completion times between the
two groups. The GG participants consumed less time to
complete the tasks significantly. Error bars indicate
standard errors.

Figure 7. The average number of steps of the participants
between the two groups. The GG participants used fewer
steps to complete their tasks. Each step represents a
change of atoms in the lattice to create a target atomic
configuration.
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were able to earn more points compared to the

NGG (mean = 794.858 points, s = 106.750 points)

(Figure 8).

User experience. We also evaluated the user experi-

ence of both the GG and NGG participants who were

asked to rate their overall experience using GoCrystal.

The post-study questionnaire included nine questions

(Q1–Q9), which each person answered using a 7-point

Likert-type scale (1 = strongly disagree, 7 = strongly

agree). Detailed results of the subjective responses are

presented in Figure 9. The questions were categorized

and directed to evaluate the four overarching aspects

of GoCrystal: tool-evaluation (A1, A2), engagement

and motivation (A3–A6), visualization (A7), and

materials-by-design (A8, A9). For the tool-evaluation

category, two questions were asked to examine the

impact of the presented gamification features on the

completion of the given task: This tool helped me to

achieve the final goal (A1); and Tasks were mentally

undemanding (A2). Four questions were asked in the

engagement/motivation category: This tool was fun to

use (A3); This tool kept me engaged throughout the task

(A4); This tool motivated me toward the final goal (A5);

and I would recommend this tool for other similar tasks

(A6). For the visualization category, one question was

asked to determine the degree to which the visual ana-

lytics features helped participants complete their tasks:

Visualizations helped toward the final goal (A7). Finally,

two questions were included to determine their under-

standing of materials-by-design concepts: GoCrystal

increased my confidence on materials by design (A8); and

I will be able to solve more complex problem (A9).

This overall subjective feedback was assessed to

evaluate the ability of GoCrystal to assist users in gain-

ing expertise in the given field. On average, the GG

participants answered slightly more positively (mean =

6.2, s = 0.402) for all of these questions in compari-

son to the NGG participants (mean = 5.840,

s = 0.371), even though there was no significant dif-

ference between the two groups. Among these

Figure 8. The average score of the participants between
the two groups. Overall, the GG participants were able to
earn more points significantly.

Figure 9. Results of post-study survey. The GG participants answered more positively for all of the exit survey questions
in four topics (tool-evaluation, engagement, and visualizations, materials-by-design tasks), in comparison to the NGG
participants. However, there was no significant difference between the two groups.
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questions, we observed larger differences between the

two groups for two questions A1 and A5. Therefore,

the results appear to show that gamification features

would be useful for identifying the stable atomic

configurations.

Discussion

Overall, our evaluation partially supports our study

hypothesis that the GG was more effective and effi-

cient in identifying the stable atomic configuration in

comparison to the NGG. The study results demon-

strated significant differences in task performance

between the two groups with respect to time and

scores. Moreover, the GG participants reported they

enjoyed conducting the tasks, even though they had no

prior experience with the area of materials informatics.

Impact of gamification on visual analytics
tasks

We further analyzed how gamification would affect the

analytical process and tasks for identifying more effec-

tive atomic configurations. Since most of the partici-

pants were not familiar with materials science or

chemistry, they did experience some difficulties in

understanding the materials science concepts, which

did hinder their progress at the beginning of the study

session. According to feedback from the GG partici-

pants, it appeared that they were able to understand

the problem and concepts gradually by completing

lower levels. As the levels progressed, the GG partici-

pants were able to find the atomic configurations in

less time since they could better understand the con-

cepts. As such, the GG participants could extend the

solutions from lower levels to complete the puzzles at

the higher levels. On the other hand, the NGG partici-

pants took longer to grasp the problem. In fact, in

struggling to understand the concepts, two NGG par-

ticipants gave up on the task completely (after 40 and

50 minutes); the response given by the NGG partici-

pants who failed to complete the task was that they

could not understand how to find the required atomic

configuration and it was not motivating them to con-

tinue further. The two NGG participants recom-

mended including tips or instructions that would

provide additional information on how to complete

the task.

Using subjective feedback after the study and our

own observations, we sought to further understand

how participants employed the gamification features

and multiple visualization views of GoCrystal to

understand the atomic configurations and their rela-

tionships to the thermodynamic energies. Initially, we

expected that the participants would first come to

grasp the relationships between atomic orderings and

interaction energies on the bar chart, after which they

would determine the precise positions of atoms in the

lattice based on that understanding. Interestingly,

however, all the participants in GG started the task by

randomly changing atoms. After manipulating atoms

in the layer, they simply investigated how modifying

the atomic orderings would impact the corresponding

interaction energy on the bar chart or the energy indi-

cator. Even though the bar charts enabled them to

ascertain which pattern has lower interaction energy

compared to others, analyzing such information

required taking extra time to encode and memorize it

before applying this understanding in the subsequent

decision on atomic orderings/configurations. It

appeared to show that directly manipulating atoms

and seeing the resultant atomic ordering in the lattice

helped participants better understand relational pat-

terns/atomic configurations and their energies. This

behavior is closely related to epistemic action,35 in

which space is used to offload cognitive work in aid of

computation. There are various analogous examples

of epistemic actions, such as actual movement of

pieces within a game space for playing Tetris.36 These

prior examples emphasize directly manipulating and

arranging some artifacts (i.e. atoms in GoCrystal) with

an available space, rather than mentally computing a

solution.

Longitudinal and qualitative studies

In real-world materials informatics scenarios, the

exploration of various atomic patterns is crucial for

understanding and predicting the characteristics of

particular material systems. For our user study, we

invited graduate students with no prior knowledge of

this domain area to conduct the study tasks. Although

this approach may have reduced its ecological validity

to a small degree, we believe that the use of non-

domain experts increased its authenticity in better rep-

resenting a diverse range of learners and analysts, as

detailed below.

Our study task did not require any specialized

domain knowledge of materials science, and our gami-

fication techniques were designed to engage and moti-

vate users in the challenging tasks of making inferences

about the relationships among a particular set of

atoms, which they were tasked to do based on arrange-

ments of atoms and associated effective interaction

energies. These inferences can be used to construct

favorable patterns. In our study, the participants were

required to make logical connections between the

effective energies and structures of atoms, in order to

draw informed conclusions about atomic
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configurations. Even though one expert may be well

acquainted with one particular materials system, it

may not be easy for that same person to identify favor-

able atomic patterns for a new or different materials

system and they are likely to use similar inferences to

those done by the non-expert users. Thus, we designed

our study tasks such that users who may or may not be

skilled in materials informatics must apply human

judgment and intuition to determine those

connections.

Nonetheless, our study focuses on evaluating the

effectiveness of our gamification techniques by mea-

suring a set of performance metrics that are generated

by interacting with the system. We did not examine

qualitatively how the system assists domain experts in

solving real-world problems with its gamification fea-

tures, or how the overall materials-by-design process

could be impacted by the developed gamification tech-

niques. Similar to other data-analytics processes, this

atomic discovery/understanding task is very explora-

tory in nature. Thus, we still need more longitudinal

use cases conducted by domain experts, which will also

facilitate examining the impact of both gamification

and prior knowledge on solving complex problems.

Flow and reinforcement

Our study result showed that gamification has a posi-

tive impact on task performance. Specifically, we argue

that GoCrystal provides benefits along two major axes:

flow37 and reinforcement.38

Flow. In the context of our study, the term ‘‘flow’’

refers to a mental state wherein the game player is fully

immersed and engaged in an activity, thereby enhan-

cing the probability that they will achieve a known goal.

Accordingly, we focus on specific aspects of flow factors

that increase the likelihood of achieving flow on visually

assisted discovery tasks in GoCrystal. One important

factor for directing a player toward a flow state is to

provide appropriate and achievable challenges. To fos-

ter flow through challenges, the flow activity requires

maintaining a balance (called ‘‘flow channel’’) between

boredom and frustration by increasing or decreasing

the difficulty level as needed.39

GoCrystal engages users and encourages them to

remain in the system by providing gradually increasing

challenges through its multiple levels and level attri-

butes. Specifically, the values of level attributes are

increased (or decreased according to different attri-

butes) gradually from level 1 to the penultimate level

(see the Score section for details), making the subse-

quent levels more challenging than all prior levels.

Thus, our level algorithm approximates the ‘‘moving

straight up’’ model in which the level of challenge is

increased linearly. It should be noted, however, that

the ‘‘tense and release’’ model is considered to be more

effective in maintaining a player’s focus, since it is con-

sidered to more easily foster human enjoyment.39 This

type of model is represented with a repeating cycle of

increasing challenge, followed by an easier period of

reduced challenge.

For the improved version of GoCrystal, we will

investigate a new algorithm that will generate the levels

that oscillate between easy and difficult with the goal

of enhancing excitement while minimizing anxiety.

GoCrystal’s redesign involves modifying its level algo-

rithm by increasing and decreasing the level attribute

values among different levels, rather than linearly

increasing the difficulty or challenge for each level.

Reinforcement. In GoCrystal, reinforcement involves

the successful performance of specific actions (reduc-

ing the thermodynamic energies for atomic configura-

tions) in order to encourage users to achieve a final

goal. It has long been known that both positive and

negative reinforcement can foster desirable beha-

viors,40 both of which can be incorporated as new

game mechanics in GoCrystal.

Positive reinforcement. Positive reinforcement is

designed to increase the motivation for a participant to

engage in the discovery tasks. In GoCrystal, it is pro-

vided as a reward for good performance, which is

implemented as extended time, high-score/best-time-

record, and energy bonus for a player’s strong perfor-

mance (i.e. identifying the optimum atomic

configuration).

As positive reinforcement, performance records

with respect to correctly identifying stable atomic

orderings/configurations, quicker completion time,

and higher overall score can be shared with other par-

ticipants. In our study, we found that the participants

are naturally inclined to want to see the leaderboard to

compare their records/scores with other participants—

both after each level and at the close of the study ses-

sion. In addition, such performance records can be

used to confirm if their atomic orderings and config-

urations represent the best solution for each level. In

fact, looking at the leaderboard, some participants

with lower scores were interested in knowing what the

best solution to the task problem actually was.

However, since this performance information from

other users was provided at the end of every level and

at the close of the session, it is questionable whether

the timing of this feedback element did actually

heighten each individual’s competitive spirit, thereby

enhancing performance directly while they were work-

ing on the tasks. Thus, we will redesign the
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leaderboard feature to indicate the best score directly

on the time bar during the task time. In addition, this

feature may be applied for collaborative visual analy-

tics tasks in the future to motivate collaborating ana-

lysts to be more engaged in given analytics tasks.

Negative reinforcement. Negative reinforcement

occurs when a certain stimulus (usually an aversive sti-

mulus) is removed after a particular behavior is exhib-

ited. The likelihood of the desired behavior occurring

again in the future is therefore increased because of

removing/avoiding the negative consequence. In

GoCrystal, the aversive outcome (a poorly ordered

atomic structure in terms of its energies) involves

increasing the effective interaction energies from the

atomic orderings or the overall atomic configuration.

However, GoCrystal does not generate aversive situa-

tions as challenges or game mechanics for negative

reinforcement. In a future version of GoCrystal, we

would consider new game mechanics that provide

additional challenges based on important physical phe-

nomena related to materials systems. For instance, in

each layer atoms of the LNC model can automatically

swap their positions based on temperature changes,

and these unintended position changes of atoms will

make it difficult for the user to create favorable atomic

structures. Thus, temperature must be managed to

avoid unwanted changes (as aversive stimulus) in

atomic configurations and achieve the final goal, sup-

porting negative reinforcement.

Integrating gamification with computational
approaches

In the realm of materials informatics, data mining and

machine-learning approaches are often used to identify

stable atomic configurations with respect to their low

thermodynamic energies. These computational methods

are becoming increasingly useful for identifying larger-

scale combinations of atomic orderings for a variety of

materials systems.1,41 In fact, our prior work employed

such computational models for identifying new atomic

configurations7 such as patterns of Va-Va.6 Although

powerful, many computational methods require signifi-

cant research effort and time in order to devise appro-

priate algorithms for understanding different materials

systems. In addition, such research will often require

high performance computing (HPC) resources.

We believe that GoCrystal is able to overcome these

common barriers for investigating advanced materials

system as an alternative approach. The new visual

representations and interaction methods based on

gamification enable both the expert and novice analyst

to decipher and understand complex atomic structures

and patterns for favorable materials. As our user study

showed, GoCrystal’s gamification features benefited

non-expert analysts who lacked deeper knowledge of

particular materials systems in discovering meaningful

atomic arrangements, thereby enabling them to jump-

start their discovery process.

In our ongoing efforts to amplify the impact of

GoCrystal, we continue to investigate how advanced

gamification approaches can provide an interactive

form of visual analytics that better integrates gamifica-

tion features with more sophisticated computational

analytical methods—the goal of which is to empower

the user in investigating the field of materials infor-

matics involving large-scale data.

Limitations and new gamification features for
visual analytics

Based on feedback from our study participants, we

examined the problems identified with the current ver-

sion of GoCrystal and what new gamification tech-

niques could be incorporated in a subsequent visual

analytics design.

Support ‘‘Game-like’’ hinting and tutoring. According

to participant feedback, one problem with GoCrystal

was that the first few levels were somewhat confusing

and intimidating to a new user due to multiple views

and the large lattice with many visual objects (i.e. cir-

cles and lines)—despite the fact that we provided

tutorial sessions prior to commencing the study.

Multiple leading game designers agree that the first

15 minutes of play are crucially important to any

interactive experience: ‘‘A player must be actively

engaged by a new game within 15 minutes of starting

or we risk losing the player forever.’’42 In order to

ensure that GoCrystal better engages the user in the

visual analytics tasks, we will create a new level algo-

rithm that can simplify the first few levels.

In addition, we discovered that the materials science

theories behind the materials-by-design task were not

sufficiently explained to users. Thus, while GoCrystal

does contain a box that reminds the player of their goal

and provides some technical information (Figure 2(l)),

it does not contain any type of hints or early level tutor-

ial system to guide the user toward the most effective

solutions. This view will instead be used to provide

real-time instructions according to different conditions

and user selections, while at the same time guiding

them through what actions they should be performing

to obtain the desired result.

In general, ‘‘game-like’’ hinting features are often

useful in puzzle games because when players get stuck

they are more likely to stop the task, or even give up

(which is what two of the NGG participants did). To
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mitigate this problem, we will investigate how hinting

features can be incorporated in a visual analytics sys-

tem. One possibility is utilizing computationally gener-

ated suggestions or solutions as a hint with more

game-like interfaces. However, these features require

constantly detecting and tracking the user’s analysis

problems and behaviors with the goal of providing

users with relevant information on a timely basis.

Identifying users’ difficulties and providing more

appropriate hints and suggestions can represent a new

research agenda for visual analytics.

Narrative and story for visual analytics. Even though

GoCrystal focuses on conducting a materials-by-

design task related to battery design using a game-like

context, the design of its features and user interfaces

emphasize more visual analytics aspects. Thus, the

system still lacks essential game elements such as game

characters, a story, and an engaging environment.

Since incorporating a story in games is important for

keeping a player’s attention and connecting them on a

deeper emotional level with the game, we could con-

sider developing a game narrative that would ‘‘hook’’

players and motivate them to complete visual analytics

tasks. For instance, we could assign users the virtual

role of battery designer/scientist and ask her or him to

design more effective battery materials using GoCrystal

in an interesting (fictional) situation. Indeed, under-

standing the critical environmental importance of more

efficient battery design is timely, to say the least. Instead

of visualizing interaction energy in simple bar charts, we

could represent the energy as light levels of a bulb, or

cost/mile of an electric car based on its battery capacity/

efficiency.

Support different analysis scenarios and domain
experts. The design goal of the time bar feature is to

engage and motivate the analyst to work on simplified

analysis problems using gamification in order to

achieve the final goal as quickly as possible. However,

depending on available data and the specific materials

analytics task, a longitudinal analysis may be more

appropriate; in such instances, the time bar feature

may not be as effective. Instead, to better support dif-

ferent analysis scenarios, we can consider two game

modes: User and Sandbox modes.

� User modes: GoCrystal can support a range of

different users in varying analysis contexts using a

modal interface. Specifically, by choosing different

settings the user can determine how game mechanics

in GoCrystal will behave, as well as whether each

game element should be user-controlled or not.39 By

selecting the different modes, users can conduct their

analysis without time limits, or certain game

mechanics may not be included.
� Sandbox mode: We can also enable the user to

change the style of game mechanics between a

level-based game and a sandbox game which

allows the user to play in a more nonlinear manner

(e.g. Simcity’s Sandbox mode43). In Sandbox

mode, users can create and modify their own work

environment without being channeled by prede-

fined goals or a progression requirement where

tasks can only be unlocked sequentially. For

instance, we can consider some sandbox game fea-

tures (e.g. game missions and mini-games) based

on the storylines selected by users—rather than

held to time limits, levels, and so on.

Promote a deeper search for the entire atomic
configuration. The current design of GoCrystal’s

leveling features and the progression view centers on

identifying the local optimum values (target interac-

tion energies) for the lower levels, and then exploiting

and combining the identified solutions in order to

determine the atomic configuration with the minimum

energy. Thus, at the lower levels a user can focus on

searching for the effective atomic orderings (the local

optimums), while at the higher levels the user is

required to do a deeper search for global optimums

using identified atomic patterns that will satisfy the

overall thermodynamic energy.

In the current system, however, the user must go

through the entire process of creating identified atomic

orderings repeatedly at each level, rather than focusing

on the global optimum. For instance, one interesting

observation involved one GG participant, who

appeared to search indiscriminately for the atomic

orderings rather than carefully considering arrange-

ment patterns of atoms and their effective energies at

each level. This participant tended to arbitrarily

change all atoms at each lattice site, mostly while

referring to fluctuations in the progression graph.

In response, we want to avoid this tendency to ran-

domly search for the local optimum in identifying the

favorable atomic configurations. Instead, we would

consider new features that will enable the user to save

atomic orderings at lower levels, and then use them

when they find and create a broader atomic configura-

tion as groups of atoms at higher levels. Specifically,

these saved atomic orderings could be used to identify

an atomic configuration that features the minimum

thermodynamic energy by easily manipulating them as

a group in the lattice, instead of repeatedly creating

each atomic ordering. Thus, we expect that the user

can focus more on identifying atomic configurations in

terms of global thermodynamic energy.
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Conclusion

Understanding atomic configurations and their associ-

ated thermodynamic models as required for a materi-

als-by-design task can be time-consuming and

complicated. We believe that GoCrystal presents an

interesting opportunity for advancing materials infor-

matics, as well as visual analytics, because it facilitates

visual analysis of both stable visual patterns of atomic

arrangements and thermodynamic free energy using

gamification features. The processes of materials

synthesis and fabrication create a set of constraints

and conditions that could be converted into a set of

game features. GoCrystal uses gamification features to

incentivize the player to achieve a stable material pat-

tern with the lowest effective interaction energy, and

fosters rapid exploration for atomic orderings as a

means to achieve this goal. As part of a user study, we

showed how our application of the presented gamifica-

tion features to a simplified materials-by-design prob-

lem could improve task-completion times and lead a

better performance with GoCrystal.

Our future work consists of investigating additional

gamification features for visual analytics systems, such

as a hints and tutorial system, as well as narrative and

story elements. We also expect the generalized gamifi-

cation elements that make up GoCrystal to be applied

and tested with other visual analytics tools that focus

on identifying visual patterns in different application

domains.
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