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Figure 1: An example of a line chart automatically generalized to different display sizes. The algorithm preserves the various
elements of the line chart based on their semantic importances at a given display size.

ABSTRACT

Inspired by cartographic generalization principles, we present a
generalization technique for rendering line charts at different sizes,
preserving the important semantics of the data at that display size.
The algorithm automatically determines the generalization opera-
tors to be applied at that size based on spatial density, distance, and
the semantic importance of the various visualization elements in
the line chart. A qualitative evaluation of the prototype that imple-
mented the algorithm indicates that the generalized line charts pre-
served the general data shape, while minimizing visual clutter. We
identify future opportunities where generalization can be extended
and applied to other chart types and visual analysis authoring tools.
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1 INTRODUCTION

In the context of presenting data visualizations, resizing is par-
ticularly critical when engaging with a dashboard featuring lim-
ited screen real-estate, and/or when visualizations created on one
display must then rendered on a different-sized display. The ma-
jor challenge associated with developing techniques that facilitate
resizing and creating multi-scale visualizations, is the significant
number of variations that must be considered to represent a rescaled
visualization effectively. A visualization author may need to repre-
sent every detail of the visualization at a given display size, while
also taking into account every possible combination of the display
properties such as resolution, size, and aspect ratio.

General resizing techniques such as uniform scaling and scale-
and-stretch can be easily applied to resizing a visualization, but they
tend to make the visualization illegible and increase the amount of
visual clutter at smaller scales [46]. Such resizing also does not
consider semantic information represented by the underlying data.
Hence, it is crucial for visualization techniques to support a smarter
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way to automatically adapt visual representations so that the viewer
can read the chart more easily, regardless of the particular display
size.

In cartographic literature, generalization refers to the process of
abstracting the visual detail in a map, with the goal of maintaining
the legibility of the map at any given scale [35]. Inspired by car-
tographic generalization, this work explores how these principles
can be applied to resizing data visualizations effectively at differ-
ent scales. Particularly, we extend cartographic generalization to
rescaling line charts, a common chart type. We present a set of
spatial metrics to examine geometric properties and relationships
among elements in a line chart. These metrics are used to deter-
mine the presence of visual clutter and complexity in a view. Based
on these metrics, we developed a set of generalization techniques
for semantically resizing line charts to target display sizes.

2 RELATED WORK

There are several approaches to resizing content beyond mere uni-
form scaling and can be organized into the following categories:

2.1 Cartographic Generalization
Cartographic generalization enables one to simplify or eliminate
less semantically important features, exaggerate more important
ones, and resolve visual clutter to improve information quality on a
smaller scale [11, 30, 35]. Route maps have effectively and suc-
cinctly applied various forms of generalization [3, 47]. Kray et
al. describe a method of presenting route instructions on a mo-
bile device depending on various situational factors such as lim-
ited resources and varying quality of positional information [28].
Although automatic map generalization techniques have been de-
scribed for two decades in the cartographic and geographic liter-
ature, little research has been undertaken on how these methods
could be extended to other forms of visualization.

2.2 Scroll, Pan and Zoom, Overview + Detail
Scroll and pan behavior maintains the layout and size of the origi-
nal viewport, allowing for a portion of the visualization to be seen
at any given time [2, 1], resulting in a loss of context [6]. Semantic
zoom lets the user see different amounts of detail based on semantic
importance [16]. Panning and zooming are often combined to cre-
ate a continuous navigation experience [7]. Overview + detail tech-



niques display more than one level of detail such that manipulating
the overview causes a corresponding change in the detail view. In
SeeSoft [19], a miniaturized overview of text operates as a scrollbar
for a more detailed view. While overview + detail reduce disorien-
tation by having the overview co-present with the detail view, the
techniques often suffer from visual discontinuity between the two
views. Schwab et al. [34] studied how pan and zoom timelines are
used to navigate large time series data. They found that the visual
context and orientation play a role in efficient navigation. While
these interaction techniques provide users the flexibility of viewing
a portion of the content at a time, the navigation can be often disori-
enting especially when the frame of reference is not clearly defined.
Our work explores how line charts can be generalized for a specific
target size, displaying detail for more salient information.

2.3 Content Retargeting

For viewing large-sized content on smaller screens, there has been
work on adapting or retargeting the content for these smaller dis-
plays. Automatic reformatting of web pages concatenates columns
or hides less important information [15, 39]. With the prevalance of
online data journalism, Kim et al. [25] explored how data thumb-
nails in these articles can be designed to be interpretable. MiniMap
[33] changes the size of the text relative to the size of the view-
port. Other techniques explore changing the geometrical properties
of visualization elements and views, including geometrical trans-
formation [4, 41, 43] and view deformation [46, 5]. Vistribute [22]
automatically distributes visualizations and user interface compo-
nents across multiple heterogeneous devices. Shi et al. [36] evaluate
a diversity of automatic line simplification algorithms based on po-
sitional accuracy and processing time. These various techniques for
retargeting however, may get challenging if the layout transforma-
tions affect the semantics of the content. We explore generalization
as a way to preserve the recognizability of semantically important
elements in the line chart at different display sizes.

2.4 Responsive Visualizations

The prevalence of mobile devices motivates the need to design
communicative visualizations that are responsive to varying screen
sizes. Kim et al. [24] identify strategies and trade-offs between
the presentation of information and the intended takeaway of the
chart. Often these visual representations and graphical user inter-
faces have to be adapted for smaller displays and lower resolu-
tion [8, 18, 12]. ViSizer [46] presents a perception-based frame-
work for scaling important regions uniformly and deforming ho-
mogeneous context. MobileVisFixer [45] adapts a reinforcement
learning-based approach that automatically learns and applies deci-
sion rules for generating mobile-friendly visualizations. Hoffswell
et al. [21] analyzed a corpus of responsive news visualizations that
informed a prototype tool for designing responsive visualizations
for different device contexts. Our work is motivated by similar
goals, but we specifically explore how cartographic generalization
principles can be applied to line charts. By considering the spatial
relationships of the individual elements in the chart, we developed
an automated approach to emphasize and de-emphasize informa-
tion based on their semantics and target display size.

3 ALGORITHM

Our algorithm identifies and categorizes chart elements in a given
view and adaptively performs a set of generalizations that selects
and abstracts the elements based on a set of spatial and semantic
constraints. The constraints determine the type of generalization
operation that is applied to the resized line chart to minimize visual
clutter. We implemented our algorithm using HTML5/JavaScript
and D3 [10]. We now discuss the algorithm in more detail.

3.1 Identifying Semantic Importance
The first step in our algorithm is to identify all of the elements in the
given chart. The algorithm assigns higher semantic weights to local
extrema, first and last data values compared to chart elements such
as axes or tick marks. Each element is assigned a unique ID and
the algorithm computes a bounding box for each of them. Similar
elements are then categorized into layers. This allows us to apply
different constraints and generalization operators based upon the
unique characteristics and semantics of each element layer. Each
layer is assigned a value from 0 (lowest importance) to 1 (highest
importance) based on the semantics of a line chart [27].

3.2 Compute Spatial Metrics
The algorithm then computes various spatial metrics for the ele-
ments in the resized line chart to minimize visual clutter. Based on
visualization best practices [29, 14, 40], the amount of visual clutter
is informed by the following guidelines:
Avoid congestion: A visualization view should not include too
many elements at specific region.
Avoid conflict: To maintain legibility, elements should not overlap.
Each element should be easily identifiable and readable.
Make more semantically important elements prominent: An el-
ement of higher importance value should be more visible than less
important ones.
We now describe each of these spatial metrics in more detail.

3.2.1 Density

Figure 2: Computing density. The entire multivariate line chart view is
divided into n×m uniform cells and density at each cell is calculated
to determine the number of elements visible within each cell area.
Darker the square, higher the density.

Data density can provide simple, yet effective metrics for evalu-
ating visual clutter in the view [40, 32]. To calculate density, we di-
vide the entire visualization view into uniform n×m cells (where m
and n are empirically determined based on the target display size).
We then apply Topfer’s Radical Law [38, 44] to express the number
of elements that can be maintained at that size (Figure 2):

Cell information density =
Number of Elements

Number of Pixels in the Cell
(1)

This metric allows for generalization operators to be applied to
different regions based on their density value. For example, we can
show more information or enlarge elements in less dense regions.

3.2.2 Distance
In our algorithm, the distance is measured between similar elements
within the same layer such as labels or tick marks. The distance is
measured using Euclidean distance. We utilize this metric to assess
whether elements (e.g., annotations and associated data points) are
too close to each other.



3.2.3 Collision
This metric determines collisions between elements in a chart that
contribute to visual clutter. We employ a quadtree, a compact data
structure to keep the algorithm performant [26]. We use the follow-
ing equation to compute the overlapping area between elements:

Collision area =
N

∑
i

N

∑
j 6=i

A(i, j) (2)

where A(i, j) is the area of overlap between elements i and j.

3.2.4 Area ratio
As the display size decreases, the proportion of areas that elements
occupy with respect to the area of the resized chart, increases. This
metric assesses the ratio of the total area of elements to the area of
the entire visualization view and is used to maintain the area of the
more semantically important elements in the chart, deemphasizing
the area of less important ones. Area ratio is computed as follows:

Area ratio =
Area of element

Total display area
(3)

3.3 Generalization operators
The primary goal of generalization is to maintain the recognizabil-
ity of important elements, while deemphasizing less important in-
formation. We describe four generalization operations based on the
spatial metrics - jittering, elimination, simplification, and merging.

3.3.1 Jittering
Jittering is a technique used to resolve collisions between elements
by displacing the elements from their original positions to reduce
visual clutter. We employ and extend the label placement simulated
annealing algorithm [41] by adding additional heuristics:

1. A label should not overlap a data point.
2. A label should be located at the place which has the lowest

information density.
3. A label’s text-anchor should be updated based on the new po-

sition of the label.

We first determine a 3× 3 density cell diagonally adjacent to a
label anchor located in cell (i, j) with density (Figure 2). We chose
a 3× 3 cell neighborhood as it provided a reasonable heuristic for
determining visual clutter. The sum of each 3× 3 density cells is
computed as follows:

Northwest (NW) = d(i−3..i−1, j−3.. j−1)
Northeast (NE) = d(i+1..i+3, j−3.. j−1)

Southwest (SW) = d(i−3..i−1, j+1.. j+3)
Southeast (SE) = d(i+1..i+3, j+1.. j+3)

(4)

where d(a..b,c..d) denotes the sum of cell information density
d(x,y) for all a ≤ x ≤ b and c ≤ y ≤ d. i and j are the indices of
cells where the anchor is located and the screen coordinates where
the origin is, at the top-left. After calculating the sum of each of
the four directions, jittering is applied by calculating a new position
that has the minimum density sum: min(NW,NE,SW,SE)

3.3.2 Elimination
There is a high likelihood that too many elements will occupy a
small area when the scale is reduced. This situation significantly
increases both local information density and the likelihood of con-
flict. We compute a score S based on semantic importance for each
element to determine which of the elements ought to be removed.

Figure 3: Left: Before elimination. Right: After elimination. Here, a
few intermediate labels are removed as they are less important than
other labels denoting start and end points as well as local maxima.

S = (1− imp)×Wimp+ local density×Wdens+overlap×Wov (5)

where Wimp, Wdens, and Wov are weights for the importance imp,
local density, and overlap constraints respectively. Algorithm 1 per-
forms the jittering and elimination operations and Figure 3 shows
how elimination is applied to remove less important labels.

Algorithm 1 Elimination operation
Input: Resized line chart without elimination applied and

semantic importance score S for all chart elements.
Output: Resized line chart with elimination applied.

1: while ! satisfyConstraints do
2: Perform jittering to ascertain if constraints are satisfied.
3: Eliminate elements starting with lowest S that overlap the

most with other elements in the chart.
4: end while

3.3.3 Simplification
To reduce this complexity and clarify semantic intent, we simplify
the line using the Douglas-Peucker algorithm [17] line simplifica-
tion method. We found that this line simplification method offers
efficient compression ratios while retaining important visual fea-
tures in the lines. As shown in Figure 1, simplification maintains the
overall data shape, while preserving visually prominent features.

3.3.4 Merging

Figure 4: Left: Before merging. Right: After merging. Here, the
domain of the x-axis is updated to merge yearly tick marks to two-
year intervals.

This operation combines elements when there is congestion or
the elements are in conflict. In the context of line charts, this oper-
ation applies to tick labels. As shown in Figure 4, two tick labels
are merged into a single tick label by updating the axis domain and
the interval between the tick marks.

3.4 Performance and space complexity
With our generalization algorithm, a new chart can be rendered on
the fly based on the spatial constraints of the current view. While the
overall complexity of the algorithm depends on the actual general-
ization operators employed, the complexity is at most O(n2) based



on the worst-case time-complexity of the jittering algorithm. The
algorithm has been tested on a desktop browser for various target
sizes and further investigation would need to be done to assess the
algorithm’s performance on mobile devices and smart watches.

4 EVALUATION

We conducted an evaluation of the algorithm with the following
goals: (1) collect qualitative feedback on the usefulness of the gen-
eralization algorithm on various target display sizes and (2) identify
limitations and future opportunities. Because the main goal of our
study was to gain qualitative insight in the algorithm behavior, we
encouraged participants to think aloud with the experimenter.

4.1 Method
4.1.1 Participants
We recruited 30 volunteers (12 males, 18 females, age 24 – 54)
from a local town mailing list. The participants had a variety of
backgrounds - software engineer, technical writer, sales consultant,
product manager, program manager, and graduate student. Based
on self-reporting, all were fluent in English and had experience
reading line charts. 22 used a visualization tool [2, 1] on a regular
basis and the rest considered themselves having limited proficiency.

4.1.2 Procedure and Apparatus
We ran a between-subjects design study where each participant
was randomly assigned one resized chart from a set of 10 single-
line charts. We sourced the charts from Pew Research [31],
Wikipedia [42], and Tableau Public [37] and recreated them in
D3. We removed graphical elements that could potentially affect
the readability of the features such as highlighting and background
shading. All the original charts had a display size of 6307×3220.
Task 1: During the first part of the study, each participant was ini-
tially shown the original line chart and then randomly shown one of
three resized images of the chart, targeted at tablet (1536× 2048),
phone (750×1334), and watch (324×394) display sizes. The dis-
play sizes were chosen based on evaluation criteria commonly used
to evaluate visualizations on mobile devices [9]. Because we were
seeking subjective responses, participants could complete only one
trial to avoid biases that might arise from repeated exposure to the
task. To assess whether features in the chart were discernible, par-
ticipants were asked the values for the start and end, local extrema,
minimum, and maximum data points. We did not impose a con-
straint on the amount of time spent looking at the chart and answer-
ing the questions, emulating chart reading in the real world.
Task 2: The second part of the study was exploratory where par-
ticipants used the prototype with the original line chart loaded into
a web browser. They could resize the chart to any arbitrary dis-
play size by dragging and resizing the browser window. The study
concluded with an interview.

The prototype was hosted on the experimenter’s 16-inch laptop,
a 2.4 GHz MacBook Pro running macOS Catalina 10.15.7 set to a
resolution of 3072×1920. Each session took about 45 minutes.

4.1.3 Analysis Approach
We employed a mixed-methods approach involving qualitative
and quantitative analysis, but considered the quantitative analysis
mainly as a complement to our qualitative findings.

5 RESULTS AND DISCUSSION

Overall, participants were positive about the system and identified
many benefits for the system being able to dynamically generalize
the line chart to different display sizes. Several participants were
impressed with the system’s ability to preserve local extrema fea-
tures and the general data shape in the line chart at smaller display
sizes - (“I can recognize the smaller chart and has kept the peaks
that I observed in the larger one (P2).”). All the participants were

able to identify the start and end values in the three generalized line
charts during Task 1. 100% for the larger (1536×2048) size, 80%
(8/10) for the phone (750×1334) size, and 30% (3/10) of the partici-
pants for the watch (324×394) size were able to accurately provide
values for the local extrema, minium, and maximum points. Partici-
pants appreciated the sparkline appearance in the smallest chart and
commented that such a representation would be useful for certain
applications. For example, “I go running and this chart can be use-
ful to show my heart rate on my iWatch. (P25)” and “I see these
charts a lot for stock prices. They are simple and easy to read at a
quick glance (P14).” During the exploratory part of the study (Task
2), participants appreciated the dynamic nature of the algorithm to
be able to generalize the chart as they resized the browser window.
Comments related to this behavior included, “I can see this being
very useful if I’m switching between devices and want to view the
same data (P2)” and “I often need to add charts into my table. It
would be neat if I can drag a line chart into a cell and it creates a
little microchart for me (P10).”

The study has limitations and provides opportunities for further
improving and expanding the scope of the generalization behavior.
Exploring complex chart types and tasks: We evaluated our gen-
eralization algorithm for univariate line charts. While the spatial
metrics apply to multivariate line charts, there are interesting re-
search opportunities to explore how well generalization applies to
other chart types. P4 said, “I use a lot of Excel tables, but often
struggle to get the gist of them when I view them on my mobile de-
vice.” Exploring how data distributions can affect the spatial met-
rics and semantic properties of chart elements, is another interest-
ing direction of research inquiry. The task of reading data values
from the charts at different scales, is rather simplistic. Future work
should explore more complex chart reading tasks including trends,
seasonal patterns, and overall takeaways.
Control over feature retention and simplification: A challenge
for automating the generalization process is representing data at
multiple scales [13]. Participants wanted to have more control over
what information is preserved as the line chart is resized. P7 com-
mented, “I wanted to keep the label on the small dip in the dollar
price as I felt that was important and I wish there was a way to keep
it sticky.” Similar to responsive web design tools [20] that support
both automation and flexibility of content and layout, there is a need
to explore responsive chart and dashboard authoring tools.
Generalization with deep learning models: Our approach em-
ploys spatial metrics for determining the generalization operation.
Neural networks and deep learning methods are promising avenues
for learning good generalization examples through pattern recogni-
tion [23]. Exploring how such deep learning approaches can repli-
cate many difficult aspects of expert generalization, such as line
smoothing, enlargement, and displacement, would help scale the
applicability of chart generalization over a variety of use cases.

Finally, future work should test these ideas in a live system for
specific real-world analytical tasks and actual target display devices
rather than in the artificial setting of a study.

6 CONCLUSION

This paper presents a technique for applying cartographic principles
to the resizing of line charts at different target display sizes. Specifi-
cally, we present a set of spatial metrics to examine geometric prop-
erties and relationships among elements in line charts. We employ
these metrics to determine a set of generalization operations for se-
mantically resizing line charts; maintaining the legibility of visu-
ally prominent features and demphasizing less important features.
An evaluation of the algorithm indicates that participants found that
the generalized line charts preserved the general data shape and fea-
tures from that of the original. Feedback from interacting with the
prototype identified opportunities for further exploring the space of
generalization techniques for creating responsive chart design.
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