
Assembly Academy: Using Video Games and
Virtual Robots to Teach Assembly Programming

Kaden Gryphon
Department of Computer Science

University of Alabama in Huntsville
Huntsville, Alabama, United States

kb0125@uah.edu

Haeyong Chung
Department of Computer Science

University of Alabama in Huntsville
Huntsville, Alabama, United States

hc0021@uah.edu

Abstract—Assembly is underutilized as a beginner program-
ming language. Its simple and repetitive syntax allows students
to focus on logic and problem-solving. While the low level of
abstraction causes Assembly to be challenging to work with,
using Assembly gives students better insights into how computers
operate and more fundamental skills for procedural program-
ming. This paper introduces Assembly Academy, a programming
puzzle game utilizing a virtual robot. We include a use case
demonstrating how the game provides feedback to students to
keep them engaged and motivated while learning Assembly.

Index Terms—assembly programming, learning programming,
programming game, virtual robot

I. INTRODUCTION

Computer programming has increasingly become a core part
of education, and as such, there have been many efforts to
improve methods of teaching programming [1], [2]. While
a multitude of tools and games are available for visual and
scripting languages, there are few for assembly programming.
Assembly language is usually considered more challenging to
learn as it is harder to visualize its lower abstraction level than
high-level programming languages like Python or JavaScript.
Assembly programming is important for students to learn
despite these challenges. Assembly’s simple syntax can make
for a good beginner language as the students can focus on
solving logic problems instead of fixing syntax errors. It gives
greater insight on how a PC operates and executes commands
and gives students the problem-solving skills to write high-
performance code for embedded systems [3].

In this paper, we introduce Assembly Academy, a game that
walks students through learning assembly programming with
a virtual robot and progressively more challenging puzzles.
Robots can be a powerful tool for learning programming.
Using a robot makes programming more tangible, as the
student’s code is executed in a real-world environment. This
makes learning more engaging as the student can directly see
the effects of their code [4]. We believe a virtual robot has
these same advantages but is more accessible. Code can be
edited and executed more quickly in a virtual environment
where the student does not have to reset the robot by hand.
This creates less downtime between testing each code iteration,

This work was partially supported by National Science Foundation Grant
HCC-2146523.

helping keep students in a flow state. Assembly Academy
is designed to provide a fun and engaging way to learn
programming and develop fundamental skills using a robot.
We aim to keep students focused and motivated and negate the
challenges of visualizing assembly code. Our use case shows
how our game accomplishes this by providing feedback to the
student to help walk them through using their newly learned
skills to complete programming puzzles.

II. RELATED WORK

Assembly Academy’s main design goal is to give students
a virtual robot to help visualize their code, with game-like
puzzles to keep them focused and motivated.

Professional programming environments and high-level lan-
guages can be intimidating for new students. Mobile robots
were tested against traditional methods as a means to address
this [4]. Students felt that using robots made the course more
enjoyable and less difficult, as a result, they were absent less
often and had higher programming self-concept. We designed
Assembly Academy’s user interfaces to clearly show the pro-
gram state and provide constructive error messages to reinforce
this idea. Thus, students can focus on problem-solving without
getting overwhelmed by a complex environment.

Multiple studies have linked using robots or games in
teaching to increased student motivation and programming
self-concept [1], [2], [5]. This includes SPIMbot, a simulator
that lets students write MIPS assembly to control virtual robots
[6]. However, SPIMbot lacks the constructive feedback and
guidance that Assembly Academy aims to provide.

Combéfis et al. [1] suggest that games need feedback to help
motivate students to improve, and that guidance helps keep the
students from feeling confused and demotivated. They also
say that using scoring or contests motivates self-improvement
through competition. Assembly Academy also gives students
scores on their code. Using assembly means that the scoring
and efficiency can be more precisely measured, encouraging
students to be more competitive.

The general consensus on beginner programming education
is that the focus should be on teaching and strengthening
problem-solving and logical thinking over the syntax of any
one programming language [2], [4], [5]. This is the goal of
using assembly as the target language. It has a simple and



Fig. 1. The three robot commands, (a)botmove: if R0 is positive the robot
moves right, else it moves left. (b)botgrab: the robot picks up a block and
sets R1 to 1, or puts down a block and set R1 to 2. (c)botlook: the robots
sets R1 to the ASCII value of the held letter block.

repetitive syntax that can let students focus on logic and
problem-solving.

III. DESIGN OF ASSEMBLY ACADEMY

Assembly Academy is a game that walks the student
through the basics of assembly programming by having the
student program a virtual robot. The game uses commands
and syntax based on the ARM assembly language. The robot
is based on a final programming assignment of a beginner
programming class where the student has to write code for a
virtual robot that can move left and right, carry blocks, and
compare the values of blocks. The game is implemented in
the Unity game engine using the C# programming language.

A. General Structure and Mechanics

Assembly Academy consists of short tutorials that explain a
new ARM command, followed by puzzles that have the student
use the newly learned commands to program the robot. The
game contains a compiler that converts the student’s code into
ARM machine code, reporting any syntax errors it finds and
their line numbers. An emulator then runs the machine code
and sends commands to the virtual robot.

Each level gives the player an increasingly difficult puzzle
to solve. Most puzzles have a dynamic element that is ran-
domized each run to encourage the student to make a general
solution to the puzzle. Part of the puzzle is managing the
computer’s eight registers, R0-R7. Registers act as variables
and hold a small amount of data (2 bytes). The first two
registers are often reserved for function input and output. This
creates a challenge for the programmer who has to juggle this
limited resource. An example puzzle is “Move the block to
the position given in R2”. Every time the student runs their
program, the value in register two will be randomized.

Assembly Academy uses a limited instruction set of the
ARM language found in the ARM 7TDMI data sheet [7].
There are a few commands that are added in order to control
the robot: botmove, botgrab, botlook (Fig. 1).

When the execution of the student’s program is complete,
the game will evaluate if the program completed the puzzle.

Fig. 2. Assembly Academy’s user interface during one of the levels.

If the program fails, the game will ask the student to try again
and give a hint. If the program succeeds, the game will show
the student’s memory and clock cycle usage.

B. User Interface

Fig. 2 shows the user interface for the puzzles. The top left
has a row of buttons to control the game (Fig. 2a).

• Build: Complies student’s program and checks for errors.
• Run: Executes the student’s program start to finish.
• Step: Advance the execution of program by one step.
• Reset: Clears the registers memory, resets the robot’s

position, and randomizes the dynamic parts of the puzzle.
• Goal: Toggles a pop up showing the puzzle’s goal.
• Help: shows list of ARM commands and their syntax.
Below the buttons is the text area where the student writes

their code solution to the level’s puzzle (Fig. 2b). On The
right is the robot view, where the student can watch the
virtual robot execute their program (Fig. 2c). Below this is
the current contents of the emulator’s registers. This includes
an interpretation of the currently executed command, registers
R0-R7, the program counter (PC), and the configuration and
control register (CCR) (Fig. 2d). These get updated in real-
time as the emulator executes the student’s program. Below
this is where error messages are displayed (Fig. 2e).

IV. USE CASE

To illustrate the learning process supported by Assembly
Academy, it was used by a beginner programmer. The student
has already completed the early tutorials and puzzles and has
made it to the tutorial on “labels, loops, and branches.” First,
the student reads through the tutorial. It introduces the idea
of labels and their use. Labels mark locations in the code that
loops and functions can jump to. The tutorial explains the
syntax for labels and gives a simple example of an infinite
loop (Fig. 3a). The tutorial then explains the CCR flags and
conditional branch commands with similar syntax explanations
and examples. After the tutorial, the student is given a puzzle
based on the newly learned commands. “Use a loop to move
the robot off the right side of the screen.” The student writes
their first attempt and hits build (Fig. 4a). The compiler finds



Fig. 3. (a) The tutorial’s example code for an infinite loop. (b) The student’s
first compile attempt with error messages. (c) The student’s first run attempt,
the robot did not travel far enough, and the game gives a hint. (d) The student’s
program succeeded, and the game scores the memory and clock cycle use.

two errors in the student’s code and reports them to the debug
console (Fig. 3b). The first error: “Error line 1: unknown reg”
was caused because the student did not write a number for
the register, and the second one: “Error line 3: unknown com-
mand” was from misspelling ‘botmove’. Using these messages
the student can quickly find their mistakes and correct them.
The student runs their code but it only moves the robot over by
two spaces. The game asks the student to try again and gives
them a hint, “use a b command to create an infinite loop” (Fig.
3c). The student remembers the example code given in the
tutorial for an infinite loop and recreates that structure but with
the botmove command (Fig. 4b line 3). Their new program
complies without error and the robot successfully completes
the puzzle. Finally, the end screen congratulates the player
and gives the program’s memory usage and clock cycles used
(Fig. 3d). The next puzzle reinforces the skills the student
just learned. Giving them a similar puzzle to keeps them from
getting overwhelmed, but it adds some extra complexity to
keep the student from getting bored, hopefully keeping them
in a flow state.

V. DISCUSSION AND FUTURE WORK

Assembly programming is a good candidate for teaching
programming and computer hardware due to its simple struc-
ture. Learning assembly programming helps students under-
stand how the computer works at a low level and write
code that is optimized for efficiency. Because of its limited
instruction set and consistent syntax, less time needs to be
spent fixing syntax errors when using this language. This
allows students to spend more time developing their problem-
solving and logical thinking abilities.

An advantage of using a complete emulator for running the
student’s code is that the quirks of writing and debugging
real ARM assembly carry over. The ARM instruction set does
not have a mov command. mov gets replaced with add #0
by the compiler. Functionally this does the same thing, but
when debugging the code the mov will show up as add in

(a) First (b) Final
0: .text 0: .text
1: mov r, #1 1: mov r0, #1
2: botmove 2: loop:
3: btmove 3: botmove
4: botmove 4: b loop

Fig. 4. (a) the student’s first attempt that produced compiler errors. (b) the
student’s code that completed the puzzle.

the debugger. By using a complete emulator, students can get
used to seeing quirks like these.

We found that using a virtual robot has advantages over
using a physical robot. One advantage is that setting up and
calibrating a physical robot can take a lot of time, while a
virtual robot can eliminate this issue. Additionally, a virtual
robot is available to students at any time, unlike a physical
robot that may only be accessible during lab hours. These
limitations and delays can lead to student frustration, as
highlighted in Fernández’s study [8].

One area we would like to expand upon is visualization
of the hardware. Showing how the commands are being
decoded and moved around the registers and ALU during the
fetch-execute cycle. This could further improve the students’
understanding of low-level programming and could open the
game up to supporting micro-programming puzzles.

The assembly language is a powerful tool for students to
learn. It gives them the freedom to focus on problem-solving
rather than fixing syntax errors. We believe that Assembly
Academy can serve as the foundation for an educational game
that can introduce beginner programmers to the assembly
language by visualizing their code through the use of virtual
robots.

REFERENCES

[1] S. Combéfis, G. Beresnevičius, and V. Dagienė, ”Learning programming
through games and contests: overview, characterisation and discussion,”
Olympiads in Informatics, vol. 10, no. 1, pp.39-60, 2016.

[2] F. Kalelioğlu, ”A new way of teaching programming skills to K-12
students: Code.org,” Computers in Human Behavoir, 52, Nov., pp.200-
210, 2015.

[3] R. Logozar, M Horvatic, I Sumiga, M Mikac, ”Challenges in teaching
assembly language programming - desired prerequisites vs. students’
initial knowledge,” IEEE Global Engineering Education Conference,
pp.1689-1698, 2022.

[4] A. Pásztor, R. Pap-Szigeti, E. Torok, ”Mobile robots in teaching pro-
gramming for IT engineers and its effects,” International Journal of
Advanced Computer Science and Applications, vol. 4, no. 11, pp.162-
168, 2013.

[5] R. Rajaravivarma, ”A games-based approach for teaching the introduc-
tory programming course,” ACM SIGCSE Bulletin, vol. 37, no. 4, Dec.,
pp.98-102, 2005.

[6] C. Zilles, ”SPIMbot: an engaging, problem-based approach to teaching
assembly language programming,” Proceedings of the 2005 Workshop
on Computer Architecture Education: Held in Conjunction with the 32nd
International Symposium on Computer Architecture, June, pp.4-es, 2005

[7] ARM 7TDMI Data Sheet, Advanced RISC Machines Ltd, Cambridge,
United Kingdom, pp.5-1 - 5-46, 1995.

[8] B.G. Fernández, et al. ”Robotics vs. game-console-based platforms to
learn computer architecture,” IEEE Access, vol. 8, May, pp.95153-95169,
2020.


