Overlay Networks
A Scalable Alternative for P2P

CS670 – Computer Networks
Thomas Owen

Outline

- Introduction to P2P networks
 - Definition
 - Advantages
 - Uses
 - Disadvantages
- Introduction to Overlay Networks
- Internals of Overlay Networks
- An example of Chord
Introduction to P2P

- **P2P – What is it?**
 - P2P stands for Peer-to-Peer
 - It refers to a network that adheres to a philosophy of decentralized collaboration and communication
 - Each node is called a peer; all peers are equal
 - No centralized servers, storage, coordination, or communication

- **How do P2P networks accomplish tasks?**
 - Peer nodes connect directly to other peer nodes
 - Tasks such as searches, reading/writing of data, communication, etc. are performed by contacting the list of “neighbors”
 - Tasks propagate through the network of peers until the data is found or the target node is located

- **What are P2P networks good for?**
 - These networks promise many advantages over traditional client/server systems:
 - Accelerating communication processes [2]
 - Exploiting idle resources [2]
 - Disseminating most recently created and highly distributed information [2]
 - Availability – 24-hour access [3]
 - Durability – Information can last forever [3]
 - Access control – Information is protected [3]
 - Authenticity – Forged documents cannot be substituted for real documents [3]
 - Denial-of-Service resilience – Makes it difficult for DOS attacks to succeed [3]
 - Massive scalability – Supports thousands, millions, billions of nodes [3]
 - Anonymity – Protects users from being exploited/punished [3]
 - Deniability – Users can deny knowledge of data on their machines [3]
 - Resistance to censorship – No one can censor the data once in the system [3]
Introduction to P2P

What are P2P networks good for (cont.)?

- Applicability of P2P ranges over many areas:
 - Distributed file storage
 - Data replication
 - File sharing
 - Communication via message boards [5]
 - Content distribution [5]
 - Publishing websites [5]
 - DNS-type services [4]
 - Cooperative mirroring – Allows a set of web developers to mirror pages of one another that could (at certain times) have high levels of traffic [4]
 - Time-shared storage – Provides storage of data for nodes intermittently connected to the network [4]

Weaknesses of standard P2P

- P2P is a flooding style network
- Limited scalability; potential high network load
- Connections between peers unstructured
 - Content location and network topology are uncorrelated, forcing searches to use flooding with a TTL (time to live)
 - Due to TTL, all content is not necessarily accessible from all nodes
 - The network is random, giving search times of O(N) where N represents number of nodes
- Non-deterministic searches
Example 1 – Unstructured P2P Network

![Diagram of unstructured P2P network]

Taken from [1]

Introduction to Overlays

- **What is an Overlay?**
 - A software network topology
 - Organizes the P2P network by content
 - Gives the network a symmetrical, structured layout (rather than a random layout)

- **Advantages over unstructured P2P**
 - Deterministic data retrieval
 - Guaranteed data retrieval [1]
 - Bounded lookup times [1]
 - Automatic load balancing [1]
 - Self-organization [1]
 - Scalability [4]
Overlays – How They Work

- **Deterministic data retrieval**
 - Data is mapped to nodes according to content
 - Uses secure one-way hashing algorithms to obtain fixed-width keys from data
 - Data is distributed to nodes on the network according to where it belongs (see example 2)
 - Since data is organized onto nodes by content, searches are more productive, producing $O(\log N)$ complexity in searches
 - Due to content-mapped data and $O(\log N)$ complexity searches, data can be definitively located in the network (if the data exists, it is found from any node in the network)

- **Automatic Load Balancing**
 - Consistent hashing produces a uniform distribution
 - Since keys are hashed in a uniform way, all nodes in the network receive roughly the same number of keys [4]
 - Additionally, when nodes join or leave the network, key/data pairs are migrated to the appropriate nodes in the network, thus maintaining balance in the system

- **Self-organization**
 - Application-specific algorithms exist to organize the network
 - Chord maintains a pointer to the next node in the chain (the successor), as well as a list of pointers to “finger” nodes for nodes $(n + 2^k)$ with $1 < k < \text{total # nodes}$
 - Chord then runs algorithms periodically to guarantee that all required properties hold true; namely that the successor and finger pointers are valid
Overlays – How They Work

- **Scalability**
 - Searches are not flooding style, so load does not increase at a near exponential rate with network size
 - Searches are always bounded to $O(\log N)$ time, allowing for reasonable search times even with large numbers of nodes
 - “The cost of a Chord lookup grows as the log of the number of nodes, so even very large systems are feasible. No parameter tuning is required to achieve this scaling.” [4]

Example 2 – Structured Overlay Network

- **A simple example using DNS with Chord [2]**
 - Purpose of DNS is to map host names to IP addresses
 - Host name represents the key
 - IP address represents the value for the key
 - Two hashes calculated using SHA-1 (secure hashing algorithm)
 1. The address of each peer in the network
 2. The host name in order to obtain the true key
 - Host name/IP address pairs are moved to the nodes whose hashed ID precedes the hashed host name key
Example 2 – Structured Overlay Network

Summary

- Unstructured P2P networks provide a great service, although in an undeterministic, unbridled way
- Overlays tame P2P networks into a structured, deterministic pattern such that critical applications can perform well on them
- Overlays provide advantages in:
 - Deterministic searches
 - Bounded search time
 - Content-addressable data
 - Load balancing
 - Scalability
References