
Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Advanced cache optimizations -
overview

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Why More on Memory Hierarchy?

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year

P
e

rf
o

rm
a

n
c

e

Memory

Processor Processor-Memory

Performance Gap

Growing

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Review: 6 Basic Cache Optimizations

• Reducing hit time

1. Giving Reads Priority over Writes
• E.g., Read complete before earlier writes in write buffer

2. Avoiding Address Translation during Cache
Indexing

• Reducing Miss Penalty

3. Multilevel Caches

• Reducing Miss Rate

4. Larger Block size (Compulsory misses)

5. Larger Cache size (Capacity misses)

6. Higher Associativity (Conflict misses)

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

11 Advanced Cache Optimizations

• Reducing hit time

1.Small and simple
caches

2.Way prediction

3.Trace caches

• Increasing cache
bandwidth

4.Pipelined caches

5.Multibanked caches

6.Nonblocking caches

• Reducing Miss Penalty

7. Critical word first

8. Merging write buffers

• Reducing Miss Rate

9. Compiler optimizations

• Reducing miss penalty
or miss rate via
parallelism

10.Hardware prefetching

11.Compiler prefetching

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

1. Fast Hit times via
Small and Simple Caches
• Index tag memory and then compare takes time

• ⇒⇒⇒⇒ Small cache can help hit time since smaller memory
takes less time to index

– Also L2 cache small enough to fit on chip with the processor avoids
time penalty of going off chip

• Simple ⇒⇒⇒⇒ direct mapping

-

0.50

1.00

1.50

2.00

2.50

16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1 MB

Cache size

A
c

c
e

s
s

 t
im

e
 (

n
s

)

1-way 2-way 4-way 8-way

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

2. Fast Hit times via Way Prediction

• The idea: combine fast hit time of Direct Mapped and
have the lower conflict misses of 2-way SA cache

• Way prediction: keep extra bits in cache to predict the
“way,” or block within the set, of next cache access.

– Miss ⇒⇒⇒⇒ 1st check other blocks for matches in next clock cycle

• Accuracy can be as high as 85%

Hit Time

Way-Miss Hit Time Miss Penalty

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

3. Fast Hit times via Trace Cache
(Pentium 4)

• P4 translated X86 to “RISC” micro-ops

1. Dynamic traces of the executed instructions vs. static sequences
of instructions as determined by layout in memory
– Built-in branch predictor

2. Cache the micro-ops vs. x86 instructions

– Decode/translate from x86 to micro-ops on trace cache miss

- Problems:
- complicated address mapping since addresses no longer aligned to

power-of-2 multiples of word size

- instructions may appear multiple times in multiple dynamic traces due
to different branch outcomes

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

4: Increasing Cache Bandwidth by
Pipelining

• Pipeline cache access to maintain bandwidth, but
higher latency

• Instruction cache access pipeline stages:

1: Pentium

2: Pentium Pro through Pentium III

4: Pentium 4

- ⇒⇒⇒⇒ greater penalty on mispredicted branches

- ⇒⇒⇒⇒ more clock cycles between the issue of the load
and the use of the data

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

5. Increasing Cache Bandwidth:
Non-Blocking Caches

• For Out-of-order execution, the processor need not
stall on a cache miss. “hit under miss” reduces the
effective miss penalty by working during miss vs.
ignoring CPU requests

• Non-blocking cache or lockup-free cache allow data
cache to continue to supply cache hits during a miss

– requires multi-bank memories

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

6: Increasing Cache Bandwidth via
Multiple Banks

• Rather than treat the cache as a single monolithic
block, divide into independent banks that can support
simultaneous accesses

• Banking works best when accesses naturally spread
themselves across banks ⇒⇒⇒⇒ mapping of addresses to
banks affects behavior of memory system

• Simple mapping that works well is “sequential
interleaving”

– Spread block addresses sequentially across banks

– E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4
is 0; bank 1 has all blocks whose address modulo 4 is 1; …

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

7. Reduce Miss Penalty:
Early Restart and Critical Word First

• Don’t wait for full block before restarting CPU

• Early restart—As soon as the requested word of the
block arrives, send it to the CPU and let the CPU
continue execution

• Critical Word First—Request the missed word first
from memory and send it to the CPU as soon as it
arrives; let the CPU continue execution while filling
the rest of the words in the block

– Long blocks more popular today ⇒ Critical Word 1st Widely used

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

8. Merging Write Buffer to
Reduce Miss Penalty

• Write buffer to allow processor to continue
while waiting to write to memory

• When a new entry is loaded in the buffer, its
address is checked against the other blocks in
the buffer

• If there’s a match, blocks are combined

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

9. Reducing Misses by Compiler
Optimizations

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses

– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in order
stored in memory

– Loop Fusion: Combine 2 independent loops that have same looping
and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding
through memory every 100 words; improved
spatial locality

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Loop Fusion Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;
improve spatial locality

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]

– Read N elements of 1 row of y[] repeatedly

– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

10. Reducing Misses by Hardware
Prefetching of Instructions & Data

• Prefetching relies on having extra memory bandwidth that can
be used without penalty

• Instruction Prefetching
– Typically, CPU fetches 2 blocks on a miss: the requested block and the

next consecutive block.

– Requested block is placed in instruction cache when it returns, and
prefetched block is placed into instruction stream buffer

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

11. Reducing Misses by
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)

– Cache Prefetch: load into cache
(MIPS IV, PowerPC, SPARC v. 9)

– Special prefetching instructions cannot cause faults;
a form of speculative execution

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Compiler Optimization vs. Memory
Hierarchy Search

• Compiler tries to figure out memory hierarchy
optimizations

• New approach: “Auto-tuners” 1st run variations of
program on computer to find best combinations of
optimizations (blocking, padding, …) and algorithms,
then produce C code to be compiled for that
computer

• “Auto-tuner” targeted to numerical method
– E.g., PHiPAC (BLAS), Atlas (BLAS),

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking

for finite element problem [Im, Yelick, Vuduc, 2005]

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Best Sparse Blocking for 8 Computers

• All possible column block sizes selected for 8 computers; How could
compiler know?

IBM
Power 3

Intel/HP
Itanium 2

IBM Power 4,
Intel/HP Itanium

Sun Ultra 2,
Sun Ultra 3,

AMD Opteron

Intel
Pentium M8

4

2

1

1 2 4 8

ro
w

 b
lo

ck
 s

iz
e

(r
)

column block size (c)

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs) Needs nonblocking cache; in
many CPUs3++

Compiler-controlled
prefetching

Many prefetch instructions;
AMD Opteron prefetches

data

2 instr., 3

data++

Hardware prefetching of

instructions and data

Software is a challenge;
some computers have

compiler option0+

Compiler techniques to reduce

cache misses

Widely used with write

through1+
Merging write buffer

Widely used2+
Critical word first and early

restart

Used in L2 of Opteron and

Niagara1+
Banked caches

Widely used3++
Nonblocking caches

Widely used1+–
Pipelined cache access

Used in Pentium 43+
Trace caches

Used in Pentium 41+
Way-predicting caches

Trivial; widely used0–+
Small and simple caches

Comment
HW cost/

complexity

Miss

rate

Mi

ss
pe

nal

ty

Band-

width

Hit

Time
Technique

