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Why More on Memory Hierarchy?
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Review: 6 Basic Cache Optimizations

• Reducing hit time

1. Giving Reads Priority over Writes 
• E.g., Read complete before earlier writes in write buffer

2. Avoiding Address Translation during Cache 
Indexing

• Reducing Miss Penalty

3. Multilevel Caches

• Reducing Miss Rate

4. Larger Block size (Compulsory misses)

5. Larger Cache size (Capacity misses)

6. Higher Associativity (Conflict misses)
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11 Advanced Cache Optimizations

• Reducing hit time

1.Small and simple 
caches

2.Way prediction

3.Trace caches

• Increasing cache 
bandwidth

4.Pipelined caches

5.Multibanked caches

6.Nonblocking caches

• Reducing Miss Penalty

7. Critical word first

8. Merging write buffers

• Reducing Miss Rate

9. Compiler optimizations

• Reducing miss penalty 
or miss rate via 
parallelism

10.Hardware prefetching

11.Compiler prefetching
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1. Fast Hit times via 
Small and Simple Caches
• Index tag memory and then compare takes time

• ⇒⇒⇒⇒ Small cache can help hit time since smaller memory 
takes less time to index

– Also L2 cache small enough to fit on chip with the processor avoids 
time penalty of going off chip

• Simple ⇒⇒⇒⇒ direct mapping
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2. Fast Hit times via  Way Prediction

• The idea: combine fast hit time of Direct Mapped and 
have the lower conflict misses of 2-way SA cache 

• Way prediction: keep extra bits in cache to predict the 
“way,” or block within the set, of next cache access. 

– Miss ⇒⇒⇒⇒ 1st check other blocks for matches in next clock cycle

• Accuracy can be as high as 85%

Hit Time

Way-Miss Hit Time Miss Penalty
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3. Fast Hit times via Trace Cache 
(Pentium 4)

• P4 translated X86 to “RISC” micro-ops

1. Dynamic traces of the executed instructions vs. static sequences
of instructions as determined by layout in memory
– Built-in branch predictor

2. Cache the micro-ops vs. x86 instructions

– Decode/translate from x86 to micro-ops on trace cache miss

- Problems:
- complicated address mapping since addresses no longer aligned to

power-of-2 multiples of word size

- instructions may appear multiple times in multiple dynamic traces due 
to different branch outcomes
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4: Increasing Cache Bandwidth by 
Pipelining

• Pipeline cache access to maintain bandwidth, but 
higher latency

• Instruction cache access pipeline stages:

1: Pentium

2: Pentium Pro through Pentium III 

4: Pentium 4

- ⇒⇒⇒⇒ greater penalty on mispredicted branches 

- ⇒⇒⇒⇒ more clock cycles between the issue of the load 
and the use of the data
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5. Increasing Cache Bandwidth: 
Non-Blocking Caches

• For Out-of-order execution, the processor need not 
stall on a cache miss. “hit under miss” reduces the 
effective miss penalty by working during miss vs. 
ignoring CPU requests

• Non-blocking cache or  lockup-free cache allow data 
cache to continue to supply cache hits during a miss

– requires multi-bank memories
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6: Increasing Cache Bandwidth via 
Multiple Banks

• Rather than treat the cache as a single monolithic 
block, divide into independent banks that can support 
simultaneous accesses

• Banking works best when accesses naturally spread 
themselves across banks ⇒⇒⇒⇒ mapping of addresses to 
banks affects behavior of memory system

• Simple mapping that works well is “sequential 
interleaving”

– Spread block addresses sequentially across banks

– E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4
is 0; bank 1 has all blocks whose address modulo 4 is 1; …
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7. Reduce Miss Penalty: 
Early Restart and Critical Word First

• Don’t wait for full block before restarting CPU

• Early restart—As soon as the requested word of the 
block arrives, send it to the CPU and let the CPU 
continue execution

• Critical Word First—Request the missed word first 
from memory and send it to the CPU as soon as it 
arrives; let the CPU continue execution while filling 
the rest of the words in the block

– Long blocks more popular today ⇒ Critical Word 1st Widely used 
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8. Merging Write Buffer to 
Reduce Miss Penalty

• Write buffer to allow processor to continue 
while waiting to write to memory

• When a new entry is loaded in the buffer, its 
address is checked against the other blocks in 
the buffer

• If there’s a match, blocks are combined 



Adapted from Patterson and Hennessey 

(Morgan Kauffman Pubs)

9. Reducing Misses by Compiler 
Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses

– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in order 
stored in memory

– Loop Fusion: Combine 2 independent loops that have same looping 
and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data 
repeatedly vs. going down whole columns or rows
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Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality
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Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding 
through memory every 100 words; improved 
spatial locality
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Loop Fusion Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; 
improve spatial locality
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Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]

– Read N elements of 1 row of y[] repeatedly

– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits
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10. Reducing Misses by Hardware
Prefetching of Instructions & Data

• Prefetching relies on having extra memory bandwidth that can 
be used without penalty

• Instruction Prefetching
– Typically, CPU fetches 2 blocks on a miss: the requested block and the 

next consecutive block. 

– Requested block is placed in instruction cache when it returns, and 
prefetched block is placed into instruction stream buffer
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11. Reducing Misses by 
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)

– Cache Prefetch: load into cache 
(MIPS IV, PowerPC, SPARC v. 9)

– Special prefetching instructions cannot cause faults;
a form of speculative execution
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Compiler Optimization vs. Memory 
Hierarchy Search

• Compiler tries to figure out memory hierarchy 
optimizations

• New approach: “Auto-tuners” 1st run variations of 
program on computer to find best combinations of 
optimizations (blocking, padding, …) and algorithms, 
then produce C code to be compiled for that
computer

• “Auto-tuner” targeted to numerical method
– E.g., PHiPAC (BLAS), Atlas (BLAS), 

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W
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Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking

for finite element problem [Im, Yelick, Vuduc, 2005]
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Best Sparse Blocking for 8 Computers

• All possible column block sizes selected for 8 computers; How could 
compiler know?

IBM 
Power 3

Intel/HP 
Itanium 2

IBM Power 4, 
Intel/HP Itanium

Sun Ultra 2, 
Sun Ultra 3, 

AMD Opteron

Intel 
Pentium M8
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many CPUs3++

Compiler-controlled 
prefetching

Many prefetch instructions; 
AMD Opteron prefetches 

data

2 instr., 3

data++

Hardware prefetching of 

instructions and data

Software is a challenge; 
some computers have 

compiler option0+

Compiler techniques to reduce 

cache misses

Widely used with write 

through1+
Merging write buffer

Widely used2+
Critical word first and early 

restart

Used in L2 of Opteron and 

Niagara1+
Banked caches

Widely used3++
Nonblocking caches

Widely used1+–
Pipelined cache access

Used in Pentium 43+
Trace caches 

Used in Pentium 41+
Way-predicting caches 

Trivial; widely used0–+
Small and simple caches
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