Some charts based on lecture slides provided by Morgan/Kaufman

Performance (from Chapter 1)

Definition: Performance

\[
\text{performance}(x) = \frac{1}{\text{execution_time}(x)}
\]

"X is n times faster than Y" means

\[
n = \frac{\text{Performance}(X)}{\text{Performance}(Y)} = \frac{\text{Execution_time}(Y)}{\text{Execution_time}(X)}
\]
Amdahl’s Law

\[
\text{ExTime}_{\text{new}} = \text{ExTime}_{\text{old}} \times \left(1 - \text{Fraction}_{\text{enhanced}}\right) + \frac{\text{Fraction}_{\text{enhanced}}}{\text{Speedup}_{\text{enhanced}}}
\]

\[
\text{Speedup}_{\text{overall}} = \frac{\text{ExTime}_{\text{old}}}{\text{ExTime}_{\text{new}}} = \frac{1}{\left(1 - \text{Fraction}_{\text{enhanced}}\right) + \frac{\text{Fraction}_{\text{enhanced}}}{\text{Speedup}_{\text{enhanced}}}}
\]

Best you could ever hope to do:

\[
\text{Speedup}_{\text{maximum}} = \frac{1}{\left(1 - \text{Fraction}_{\text{enhanced}}\right)}
\]

Amdahl’s Law example

- Application: Network Server, 60% of time is spent waiting on I/O.
- We replace the server’s processor with one that is 10 times faster.

\[
\text{Speedup}_{\text{overall}} = \frac{1}{\left(1 - \text{Fraction}_{\text{enhanced}}\right) + \frac{\text{Fraction}_{\text{enhanced}}}{\text{Speedup}_{\text{enhanced}}}}
\]

\[
= \frac{1}{(1 - 0.4) + \frac{0.4}{10}} = \frac{1}{0.64} = 1.56
\]

The new processor improves only the 40% of the execution time that is not I/O.

10 times faster processor provides only 56% speedup.
Performance of a computer for a specific program (that you know a lot about)

“Processor performance equation”

CPU time of a program

= # of instructions executed by the program
x Average Clock Cycles per instruction (CPI)
x Clock cycle time

Example:
- A program executes 1000 instructions on a particular processor
- CPI of this processor = 2
- Processor has a 4GHz clock (cycle time = 250psec)

CPU time = 10^3 x 2 x 250x10^-12
= 500 nsec

To get a more general idea of a computer’s performance

- Usually rely on benchmarks vs. real workloads
- To increase predictability, collections of benchmark applications, called benchmark suites, are popular
- SPECCPU: popular desktop benchmark suite
 - CPU only, split between integer and floating point programs
 - SPECint2000 has 12 integer, SPECfp2000 has 14 integer pgms
 - SPECSFS (NFS file server) and SPECWeb (WebServer) added as server benchmarks
- Transaction Processing Council measures server performance and cost-performance for databases
 - TPC-C Complex query for Online Transaction Processing
 - TPC-H models ad hoc decision support
 - TPC-W a transactional web benchmark
 - TPC-App application server and web services benchmark
How Summarize Suite Performance

• Arithmetic average of execution time of all pgms?
 – But they vary by 4X in speed, so some would be more important than others in arithmetic average

• Could add a weights per program, but how pick weight?
 – Different companies want different weights for their products

• **SPECRatio**: Normalize execution times to reference computer, yielding a ratio proportional to

\[
\text{specratio} = \frac{\text{time on reference computer}}{\text{time on computer being rated}}
\]

• If program SPECRatio on Computer A is 1.25 times larger than Computer B, then

\[
1.25 = \frac{\text{EXECUTIONTIME}_A}{\text{EXECUTIONTIME}_B} = \frac{\text{EXECUTIONTIME}_A}{\text{EXECUTIONTIME}_B} = \frac{\text{SPECRatio}_A}{\text{SPECRatio}_B}
\]

\[
= \frac{\text{EXECUTIONTIME}_B}{\text{EXECUTIONTIME}_A} = \frac{\text{PERFORMANCE}_A}{\text{PERFORMANCE}_B}
\]
Define and quantity dependability

- How decide when a system is operating properly?
- Infrastructure providers now offer Service Level Agreements (SLA) to guarantee that their networking or power service would be dependable
- Systems alternate between 2 states of service with respect to an SLA:
 1. Service accomplishment, where the service is delivered as specified in SLA
 2. Service interruption, where the delivered service is different from the SLA
- Failure = transition from state 1 to state 2
- Restoration = transition from state 2 to state 1
Define and quantity dependability

- **Module reliability** = measure of continuous service accomplishment (or time to failure).

 2 metrics

1. **Mean Time To Failure (MTTF)** measures Reliability
2. **Failures In Time (FIT)** = 1/MTTF, the rate of failures
 - Traditionally reported as failures per billion hours of operation

- **Mean Time To Repair (MTTR)** measures Service Interruption
 - **Mean Time Between Failures (MTBF)** = MTTF+MTTR

- **Module availability** measures service as alternate between the 2 states of accomplishment and interruption (number between 0 and 1, e.g. 0.9)
 - **Module availability** = MTTF / (MTTF + MTTR)