Classification of Service Discovery in Pervasive Co mputing
Environments

Feng Zhu, Matt Mutka, and Lionel Ni
Michigan State University, East Lansing

Abstract: Service discovery is an essential task in pervasivepating environments.
Simple and efficient service discovery enables heterogeneousbaqdtous computing
devices and services to be easier to use. Servicedtitgguses services as building
blocks to achieve complex services. We describe servicovdisc and service
integration, analyze design issues, and categorize the service digumtecols.

Keywor ds: Service Discovery, Service Integration, Service Security.

n 1991, Mark Weiser coined the terabiquitous computingwhich is also calledbervasive

computing In pervasive computing environments, people are surrounded biety vl computing

devices. Those devices communicate with each other and provide itiborriat a glance” without
our “active attention” [1]. Presently, PCs, notebooks, cell phomelsParsonal Data Assistants (PDAS)
surround us. In the near future, additional networked computers, rédngimdiny sensors to extremely
dynamic and powerful devices will provide a variety of infation and services. It becomes
overwhelming to manage these devices, configure different kihdpplications, and dynamically find
the available computing services in such pervasive computing envirament

Service discovery protocols enable computers to be easier.torasg facilitate interaction between
computers, with an aim to approach zero administration overheathenedore free users from tedious
and redundant administrative and configuration work. Therefonacsatiscovery research is critical to
the success of pervasive computing [2].

Let's consider the basic problem of service discovery ia $isenario. Bob visits Michigan State
University (MSU). He turns on his PDA. We call the PDAliant He searches the Web and finds an
online MSU map. The map, however, is too small to view on his PDA. He enters the Begirsering
Building (EB) to try to find a printer for printing the MSUap. The PDA begins locating a printer.
Many printers in the EB provide printirggrvices Nevertheless, Bob is only allowed to use some of the
public printers as a guest. After finding two printers, Bob pihksone that is closer to him. Then the
PDA contacts the printer. Although the PDA may not havewedfor the printer, it may still determine
how to use the printer without Bob'’s intervention. Then, Bob printsnibp successfully. In this
scenario, Bob explicitly uses the printing service. He iatgdicitly uses the wireless connection service

available on the campus and the location information service to helfinkim nearby printer.

SERVICE DISCOVERY MODELS

A trivial service discovery model is one in which clients kribes services in advance, or clients have
already cached the services’ information, so that clienieaid lookups before contacting the services.
In simple environments such as home environments, clients inquiné sdwices first, and then contact
the services. To support thousands of computing services, suicl sartices in the EB at MSU, we
may optionally uselirectoriesto store all the service information. A client queries acttirg for service
information and then contacts services. Nevertheless, addirntpdies introduces a level of indirection.
Next, we illustrate what a client does from its point ofwie In turn, we show the views of a service and

a directory.

From the Client’'s Point of View

In most cases, a client is a program that runs on behalf afraand interacts with the user. We list
the client’s steps below.

» A client queries directories for services. A client @itbrowses services or looks for a specific

service.

» Alternatively, without going through directories, a client dingcfueries all the services. All

the services that meet the query requirement reply back to the client.

» Then the client program or the user selects a service to use.

» Finally, the client uses the service.

With service discovery software installed, the client du#seed to configure server settings, such as
printer servers. No drivers need to be pre-installed. Thetimext when that printer is replaced, users
can use the new printer without worrying about installing a dever. Furthermore, computing system
support staff will be released from the burden of upgrading andlimgtsoftware on all client machines.

In addition, service discovery provides fault tolerance transpgrentl

From the Service’s Point of View

A service has a name, a list of attributes, and useldqgas. For instance, a printer says it provides
printing service and it is able to provide color printing at B2@20 dpi. It might only allow people in
the marketing department to use it. When a service needs tothwsr services, we call it a client.
Services work as follows.

» A service announces its information to clients or directortes. example, every ten minutes a

printer announces its information to let clients or directories knoexittence.

» Alternatively, a service answers directory solicitation omtlgueries.

* A service authenticates and authorizes the user when a clisrfbaskrvice.

» Finally, the client is granted service access and uses the dhirgagh the service’s interface.

From the Directory’s Point of View

With directories available, a client queries twice, filng time asking directories and the second time
contacting the service(s). Without directories, a client looksdintices directly.
« On hearing a service announcement, directories first cheeilegeas; and then service
information will be updated or recorded in the directories.
» Alternatively, directories may ask what services a@lable instead of waiting for the service
to be announced.

* When receiving a query from a client, directories authenticate, @&e¢hand reply to the client.

AN ANALYSIS OF SERVICE DISCOVERY DESIGNS

Much active service discovery research has been occurkivg.discuss major service discovery
products or projects in the sidebar. Targeted at different@ments, these service discovery protocols
have different design criteria and choices. We categdnzgetdesigns and then compare and contrast
them.

Service Designs

We describe a service as some computing resource used byussgrprograms, or other services.
Using our scenario as an example, printing services, locatiommafion, and wireless network
connections are services.

Service Naming. A service has a name. Suppose Bob uses a priRteting is the name of the
service that Bob uses. Nevertheless, the problem is wheroBkd flor a printing service, a printer calls
itself aprint service. Then Bob is unable to find the printer [2]. Mostquait solve this problem by
defining a service naming standard, which avoids the naming donBicietooth (see Appendix) maps
service names to 128-bit numbers. Defining services in S&® Appendix) should follow a service
template [3].

It is likely that many service discovery protocols co-exi¥¥hen a mobile client moves from one
service discovery domain to another service discovery dortfeenmobile client needs to understand
different service protocols and use different vocabularieXample sayingrint service at one time and

printing service at another time.

The other problem is how to support new services. Although isisteeadd a new service name to a
service protocol standard, it is difficult for users anéntl programs to know it automatically. Very
likely, users need to browse for service names and then learn the msw ter

Service Attributes. A service usually has many attributes. To avoid conflictsjcge attributes also
have standard naming conventions as service names. A <lreqtiest is matched against services’
attributes. When a client supplies more precise query regeins, fewer services will be selected. As a
result, less network traffic is generated and fewerisesvare involved. If a query is too strict, no
services may be matched and then the client needs to quemywatiafewer constraints. In addition to
search functionality, almost all service discovery protocodsige wild card searches, which let clients
examine all the available services.

Service Invocation. After discovering the service, a client invokes the sertiiteugh a service
interface. Some protocols such as the Bluetooth Service DigcBvetocol leave the service interface
for applications to define. Some protocols base on Remote Rrec&all (PRC). Salutation (see
Appendix) is such an example. Some protocols use downloadable codeexdrople, Jini (see
Appendix) uses downloadable Java code. Other service protodglsransfer data. UPNnP (see
Appendix) achieves service invocation based on eXtensible Marnguage (XML), Simple Object
Access Protocol (SOAP), and Hyper Text Transform Protocol (HTTP).

Service invocations in Jini and UPnP need TCP/IP protocols, H&Mers, or Java Virtual Machines
(JVMs), which may not suitable for very resource limited dessic&pecial design considerations are
needed for those wireless devices that have limited network bandwidpiowed

Service Status Inquiry. A client may be interested in services’ events or status esargne way of
knowing about them is by polling the service. Another way, knowreagce event notification, is by
registering with the service and the service will notifgrts who have shown interest. Most protocols
implement service event notifications. If events are ggadrvery frequently or a service status changes
very fast, it is better to use service polling.

It is even better to have agents do event filtering andegggon. Jini provides several such methods.
Services send events to agents and let agents make stime ellents are delivered to clients; an agent
may act as a sink for events, which will be filtered, agapedy and then sent to clients; or an agent may
also resemble a mailbox to filter events over time. Althociggnts and services benefit from event
filtering and aggregation, some computers in networks nee@vwadprcomputing resources to handle the
events. We compare different service discovery product designs m T.abl

Table 1. Comparison of service discovery protocols.

Bluetooth DEAPspace INS Jini Salutation SLP SSDS UPnP
Service
Naming and attributes | Standard N/A N/A Standard Standard Standard N/A nd&ted
Invocation N/A N/A N/A Java code Remote ProceduneURL N/A XML Data
Call
Statusinquiry N/A N/A N/A Notification and Notification N/A N/A Polling and
event agent notification
Directory
Centralized vs. N/A N/A Distributed Distributed Either Centralized Distributed N/A
distributed
Number of Service N/A N/A Fully replicated in sub | Multiple copies Multiple copies Multiple copies $ime copy N/A
Information Copies domains, single copy
globally
Flat vs. hierarchical N/A N/A Flat and hierarchical Flat or hierarchical Flat N/A Hierarchical N/A
Service Statein N/A N/A Soft state and hard statg Soft state Hard state with Soft state Soft state and hayd\N/A
Directories 8 periodically check state®
Directory address N/A N/A Configured address Configured or Configured or Multicast Multicast address N/A
multicast address multicast address | address
Number of Directory N/A N/A Multiple hierarchies Single hierarchy N/A N/A Multiple N/A
Hierarchies hierarchies
Announcement and
lookup
Query vs. Query Announcement Both Both Both Both Both Both
announcement
Directory-based vs. Non-directory- | Non-directory- | Directory-based Directory-based Directory-based hetit Directory-based Non-
non-dir ectory-based based based directory-
based
Communication Unicast and Broadcast Unicast, anycast, and | Unicast and multicast Unicast and Multicast Unicast, multicast| Unicast and
broadcast multicast broadcast and broadcast multicast

Service Selection

User vs. Protocol User selection User selection Protocol selection erdslection User selection User selection Usexcteh User selectior
Selection
Service Matching Match all N/A Match best Match all Match one or Match all Match all or Match all
match all match best
Context-aware N/A N/A N/A N/A N/A N/A N/A N/A
Scope-awar e Location N/A Location and Location and N/A Administrative Location, N/A
Ivicinity administrative domain | administrative domain administrative
domain domain, and
network topology
QoS-aware N/A N/A Yes N/A N/A N/A N/A N/A

'We do not compare service design of the research institute projectgheynck not have or publish their standards
2INS: Flat in sub-domain and hierarchical globally; INS/Twine: flatypeeeer.
3 Soft state at leaf directories and hard state at other directorie

5

Directory Designs

Directories cache service information and answer clidotskup requests. Thus, the overhead of
handling unrelated requests for services and the communicationebetlients and unrelated services
are removed. More importantly, this facilitates largdess®rvice discovery. Directory architectures,
service information cache strategies, and hierarchies areedifféepending on the environments.

Centralized vs. Distributed Directories. A centralized directory stores all the services’ infaiora
in a central location. The directory is likely to be a botlk and the single point of failure, which
causes the whole system’s failure. In large serviseodery domains, it is inefficient to go through a
centralized directory all the time.

Most of the service discovery protocols use distributed direst, which store services’ information
within their own domains. Service information is distributed andirectories. A directory failure only
affects part of the system. With less information inhedicectory, service lookup within a directory is
more efficient. On the other hand, a service lookup may go threemgral directories. In contrast, a
service lookup in a centralized directory only goes to one digeetih less network communication
overhead and latency.

Number of Service Information Copies. For each service, the service information may be a single
copy, multiple copies, or fully replicated in directoriesayl protocols have a single copy of services in
its domain. A directory failure will affect the domain for whiit is responsible. In Jini and SLP service
discovery environments, multiple directories may coexist. Tbherefmultiple copies of service
information may exist. It is more reliable with multiplepies of service information in several
directories, but the greater the number of directories, thategréhe overhead. INS (see Appendix)
implements fully replicated copies within a sub domain. Theustdge of fully replicated directories is
that a service search only goes to the directory to whicheatdb attached. Multiple copies or fully
replicated copies of service information should be consistetitdntories. Otherwise, querying different
directories may result in different service information and may caoddepns.

Flat vs. Hierarchical Directory Structure. In a flat directory structure, directories have peer-terpe
relationships. In one type of flat directory structure, dowes connect to each other and exchange
information. In INS, directories have a flat mesh structuitkin its domain and exchange information
with all other directories, so that all service inforroatis available locally and the service search is very
efficient. These information exchanges generate much commuonidadiffic, and therefore it is not
scalable. INS/Twine based on peer-to-peer technology, as discussed in the isidelen more scalable

because service information is not replicated.

While in a hierarchical directory structure, directoriesehparent and child relationships. Domain
Name System (DNS) is an example of a hierarchical dingstructure. Searching through the directory
hierarchy is necessary. For example, a service discovergcptas based on widely available DNS
servers to do service discovery [4]. Many other service disg@vetocols also use tree-like hierarchical
structures to provide scalable solutions. Neverthelessdifficult to make directories both scalable and
efficient.

Service State in Directories. Most service discovery protocols maintain service stafuso#t states.

In a service announcement, the life span of the service ¢ffisde Before the service expires, it should
announce itself again to renew the service. Otherwise, thieseavill not be valid to use after expiration.
In the mean time, expired service entries will be wiped off from the difest In case a service is down,
that service will not be available after its lifespam &lients will not use it. Therefore, directories are
free from monitoring service states. This elegant sofe starvice management mechanism greatly
simplifies the system design and makes service infoomdtesh. On the other hand, regular service
announcements require more network bandwidth, and put extra load on the directories

On the contrary, directories may maintain service stathsu@sstate. In this case, the directories keep
the service status until it is told to change the service statrsnafion. Using hard state directories, few
service announcements and housekeeping jobs are required. On theothet is difficult to guarantee
all service information is up to date in hard state diréegor Services may go down without notifying
directories or out of date service status results fromaor&t@ommunication error. One solution is that
directories can poll services for status periodically.

Directory address. Conventional directories, such as DNS, listen on well-known portslimtiscare
manually configured with the directory addresses. Moving to diffemetworks, clients need different
directory addresses. With DHCP servers, manual configuratioatinecessary, but DHCP servers need
to be deployed.

To avoid directory address configuration or support from DHCP sergeme service discovery
protocols use multicast addresses. Directories listemddak on a multicast address, such as in SLP
and SSDS. Clients query for services by sending requests totinagtuaddress or by listening on a
multicast address. If multiple directories reply, clierds pick one directory to further communicate.
Using multicast addresses, directories also provide faldtance features. A directory failure will not
cause any problems, since other directories listening to the samesaddseprovide the same services.

Number of Directory Hierarchies. A single hierarchy directory has a tree structure, whiteutiple
hierarchy structure could be a forest or many trees sharsgg of leaf directories. Multiple hierarchies

index service information on different keys. Like a database isgexice information search based on a

key may greatly speed up the search. Extra computing resarddsouse keeping jobs are obvious
overhead for multiple hierarchy directories.

Many service discovery protocols implement more than dingdtorctionalities. Directories in INS
not only cache service information, but also select thedmsices for users. In Table 1, we compare

those service discovery protocols, which have directories.

Service Announcement and Lookup

Service announcement and lookup are the key parts of serviaeratigcprotocols. Query and
announcement are the two basic mechanisms for clients, senrdnds directories to exchange
information. Service announcement and lookup may also be categarivedon-directory-based and
directory-based approaches. Furthermore, four different commuamdatthniques are used in service
discovery protocols: unicast, anycast, multicast, and broadcased Ba the OSI reference model, these
four communication techniques may be at the data link layer &retiess control sub-layer), at the
network layer, or at the application layer.

Query vs. Announcement. The two methods for clients to learn which services ardadlaiare
guery and announcement, also known as active and passive or pull and\pastnouncements go to all
the clients or directories, interested clients or direcgode not need to ask separately for the same
service. Nevertheless, clients or directories havetulle all the announcements, regardless of whether
they are interested. When asking actively, a client directory will receive an immediate response.
While listening to service announcements, a client or a direatasy wait up to the interval of service
announcement.

Unicast. Unicast is widely used in many service discovery protocols. eV client knows a
directory’s network address in advance, it will send a unicast messdgedirectory. If a client knows a
service provider’s address, it will contact the service providectly. Furthermore, if a service’s address
is known to a directory or vice versa, service announcemewitsjaeries between a directory and a
service are also using unicast.

Anycast. A set of similar services all may meet a client'suest. The service request sent to one of
the set of services is known as anycast. For instancejsBsSoverlay network anycast, so its anycast is
at the application layer. In INS, a client’s request goesdirectory. After searching that directory, INS
routes the request to a service based on the application-deéindgde weight. Thus, a client request
goes to a service with the best service weight.

Multicast. The drawback of unicast is that the network address needsdonkigured or known
ahead of time. On the contrary, in many situations, the addi@gsasknown. A solution is that clients,
service, and directories use multicast addresses fmuacements and queries. For example, SLP uses

TCP/IP network layer multicast addresses. It is simfemobile clients and will be automatically
compatible when new services or directories are added tetesiuse global multicast addresses are used.
Nevertheless, there are very limited globally multicastreskks at the network layer. Moreover,
multicast is not allowed on some routers even though the rooéees multicast capabilities. Using
multicast also introduces more communication overhead compared dastinsince more nodes are
involved in the communication.

Broadcast. Sometimes broadcast is used in service discovery protocols.exiople, Bluetooth
Service Discovery Protocol uses broadcast to find othercgstviln Bluetooth, as other communication
techniques are based on broadcast, it is simpler to use broddeasiy. Another example is that
Salutation can utilize broadcast if underlying protocols supportdbesh. Regardless, data link layer
broadcast is usually limited to its subnet.

Using unicast usually saves much communication traffic; usingcast simplifies client side
processing; using multicast saves administrative overhead; ang ioadcast is sometimes more
efficient. We compare service announcements and lookups in Table 1.

Service Selection

While many similar services are available to a clierttjctv service should the client use? It is
challenging to find services for users efficiently and accurately.

User vs. Protocol Selection. Service discovery protocols may select services foea us INS, for
example, the protocol decides which service a client should usemdarservice discovery protocols,
client programs or users choose from a matched list of senfibesadvantage of protocol selection is
that it simplifies client programs or little user involvemésitneeded. On the other hand, protocol
selection may not reflect the actual user’s will. Predefiselection criteria may not apply to all cases.
Alternatively, too much user involvement causes inconvenience. xaanpée, it may be tedious for a
user to examine many printers and compare them. A balance bepraecol selection and user
selection is preferred.

Service Matching. Some service discovery protocols match one of the servizea tlient. In
Matchmaking, a classified advertisement matchmaking framewaient requests are matched to
services and one of the matched services is selected foj5hisén INS, the service discovery protocol
matches the best service based on application defined me¥tag. protocols match all the services and
let the user choose.

Context-awareness. Context information is useful in selecting services. Fomgpte, when Bob
drives on the highway, his cell phone uses a Bluetooth conneactfordthis earphone. While he wants
to access his email, his cell phone uses a 3G connection. dbdkie two scenarios, selecting one of the

connections to use for the cell phone is based on context informditiver intelligence should be built
in his cell phone or user involvement is necessary for bettgice discoveries. So far, only a few
projects use location information as a kind of context infomattd help service selection. We discuss
more about location-awareness in the next paragraph.

Scope-awareness. To support a large amount of services, defining and grouping esrivicscopes
facilitates service search. Location-awareness is ddayre in pervasive computing [1] and location
information is helpful in many service discovery cases.

Although location information is very important and there has beeh ftogation awareness research
for indoor and outdoor location sensing techniques, few serviceveisc protocols integrate location
information. Research at MIT [6] integrates CrickeDifiNS to provide location dependent service
discovery. Another example is Jini, in which location inforomatis an optional attribute for services.
We say this is a scope searched by physical location.

The administrative domain is another kind of scope, which is stggbtwy many protocols. For
example, while Jack is at home and looking for a printer, he shoulithd Bob's printer in Bob’s house
although it is next door. Jack’s domain and Bob’s domain are twaasemiomains. In an enterprise
environment, we see more examples of administrative domains.

When Bob wants to watch news online on his PDA with a wirelgsd tonnection, he needs
software to cache the video data for his PDA in case theess connection between his PDA and the
wireless access point is intermittently faulty. That cackiofgware is preferred to be close to his PDA,
for example, within one hop of the network. This is a scopgckeby network topology. In SSDS,
similar scopes are mentioned.

These geographical location information, administrative domaorrrdtion, and network topology
information may be attributes of services. Multiple hieh&gas may be built based on these categories; so
different service searches may utilize different hidr@s It is worthwhile to build different directory
hierarchies just as phone books have yellow pages and white pages.

Much research has proposed locating objects in a wide area. ddhem use a single directory
hierarchy, and others use multiple directory hierarchies. Noéemitthere is a single hierarchy or
multiple hierarchies, the difficult problem is how to expréssservice information at different levels of
the hierarchies.

First, what services need to be listed in upper level direst? Second, what service information to
store in lower level directories and what service informatostore in higher level directories? To avoid
being a bottleneck, upper level hierarchy directories shouldrEseo Filtering and aggregating service
information is necessary when building the upper level hierarchidird, updating service information

in the upper level hierarchies may overwhelm the directorieenvmany services update information at

10

the same time. Service status changes and mobile servis@sgnall cause the directories to be busy
updating.

In SSDS, service information in non-leaf level directoriehashed and filtered into indexed bit
numbers. High compression is achieved. Nevertheless, the dasateed to be built again and again
over time, since the algorithm is not able to remove staléces. Another example of locating mobile
objects in a wide area is Globe [7]. In the Globe architectam indirection layer of name to address
mapping is added to handle mobile objects gracefully. Object names arenthelepaf addresses. Name
to address mapping happens when an object is searched. Castrqyrep@ed a protocol to access
specific application data across different service disgodemains with different service discovery
protocols [8].

QoS-awareness. Providing users with better services and balancing seruvisgge are nice features
for service discovery protocols. For better service matclsagjice requests may be directed to less
loaded services or better resource price ratio services.

Service attributes are defined to match client requaste precisely. Nevertheless, most protocols
only support static attributes. Let’'s use a printer's priqnpeed as an example; the current load of a
printer is dynamic and should be taken into consideration. If aep@mnounces its current load as an
attribute, it will announce its service more frequently thaib lilas only static information. Much more
communication traffic is generated and directories are more busy handling aameunt& To reduce the
directory’s update and network overhead, printers may waitlimts to query. Clients, however, may
spend too much time determining from which printer to print.

At the service side, sharing the loads and balancing them fenedif services is also preferred. Few
protocols define application metrics-based load balancingodd example is INS. Applications define
their metrics and service lookups are based on the metricEable 1, we compare service selection of

different service discovery protocols.

Security and Privacy

We consider user authentication, service authorization, confdlgntiintegrity, non-repudiation,
availability, and user privacy in service discovery prote¢9]. Although there is much research related
to service discovery, few protocols have full security and privacy fumatity built-in.

User Authentication and Service Authorization. Protecting services from unauthorized use is
necessary. For example, we do not want a storage semleeaccessible by anyone. Furthermore, users
of a storage service should not be allowed to access othes'afbitrarily. The problem is that it is not
realistic for each service to maintain its users andcaess control list. User passwords may be different
on different services. Small devices may be overburdened to handle aati@ntad authorization.

11

In many network infrastructures, servers are availablestore user information and distribute
cryptographic keys. With these servers, providing authenticatidrauthorization is not difficult. While
it is more difficult to obtain these servers in ad hoc enviranseét is even worse for some devices with
very limited processing and communication capability to do authenticatibatdinorization.

Confidentiality and Integrity. Confidentiality and integrity in service discovery arenpiily
communication security. Communication between service discovenyponents should be safe.
Malicious users may listen to communication channels or everelctttack systems. We do not want
service information exposed to malicious users or changed dwinmgnication. These requirements
are translated to use of message encryption and message authentication code

Availability, User Privacy, and Non-repudiation. Services and directories may be targets of
attackers. Making services and directories availablainag attack is similar to other network
applications. User privacy is always a concern. We warntdaervices easily but keep our information
private. In the mean time, service usage should be trackeligital signature is usually used to achieve
non-repudiation of the service usage.

Deploying security in service discovery protocols means mdreirgstrative overhead. Proper
permissions need to be set for services and users. With tldgusfservices and hundreds of users in an
enterprise, groups or roles need to be created and privilegeb toebe assigned. In dynamic
environments, daily administrative tasks may be overwhelmifygen if service discovery protocols try
to make service usage easier, overwhelming security adratiiettasks may offset some advantages.
SSDS implements most of these security properties. Bluetoothitshdmiilt-in challenge-response

authentication, authorization, and also an encrypted mode of communication.

AN ANALYSIS OF SERVICE INTEGRATION DESIGN

Services provide different functionalities. Taking sessi@s building blocks, service integration can

build complex and very powerful services. Service integration is also knosamase composition.

Simple Service Integration vs. Complex Service Inte gration

Simple service integration chains services together. Qme&as output is another service’s input.
For example, Bob is driving on the highway; he wants to find the stelslicDonald’s. An Internet map
service’s output (a driving direction map) goes to an adapifiwére) to change to an output format that
will fit Bob’s PDA and then displays on it. Ninja Pathsaisexample of simple service integration [10].
To get a composite service, a path is created. Along thlat pervices are dynamically selected and

connected.

12

Complex service integration may provide more complicated services xd&opke, Bob even wants to
hear the driving directions. Then not only the graph (mapéns t® Bob, but text directions as well.
Another adapter (text to speech software) converts the inetts@nd output to Bob’s earphone. Based
on the feedback of Bob’s PDA about the network connection, whisbhn®times good and sometimes
bad, the adapters change the output format accordingly. Two eors@lvice integration methods are
discussed in [11]. One way is to create a service interface to intgtlaenultiple services. Another way
is to compose services and build a stand-alone service. Thegemtetl services may be used as service
components to build other services.

Static vs. Dynamic Service Integration

Static service integration integrates services befarkeat uses the services. If one of the services
fails, service integration needs to start over again. Dimaervice integration may replace failed
services or add in more services if necessary with@utirgj over the service integration processes.
Dynamic service integration is more difficult to impleméinan static service integration since every
service component of the dynamic service is being monitoredramdd be replaced immediately in case
of failure.

Fault Tolerance and Failure Recovery

In dynamic and distributed environments, fault tolerance amhardaiecovery for service integration
are two difficult issues. In the Ninja Architecturervdees are monitored and paths are dynamically
changed to guarantee optimal services [10]. Another examplseis/iae integration architecture based
on software hot-swapping technology proposed by Mennie and PagurekJdijowski, et al. modeled
and analyzed different failure recovery strategies in [I#8)i and UPnP were the two protocols that they

tested. Performance responsiveness, effectiveness and effisierecgxplored in that work.

n this paper, we discussed elements of service discovetgcpis and their design issues.
Classifications of the service discovery protocols wevergi Different protocol designs were

compared. In addition, we described service integration and related issues.

13

Appendix

Service Discovery Protocols

There are a few surveys of service discovery protocolsooll @xample is by Richard [13]. All the
service discovery protocols in this sidebar operate in ways thatral@ $0 what we describe in the main
text in the Service Discovery Models section, with the etkaepof DEAPspace, which has a unique

method of service announcement and lookup.

Bluetooth Service Discovery Protocol

Bluetooth, from the Bluetooth Special Interest Group (SIG), esafrbarby devices to communicate
with each other at low cost and low power consumption [14]. Part d@lthedooth specification is the

Bluetooth Service Discovery Protocol, which enables Bluetooth devickscver each other.

DEAPspace

IBM Research has studied and proposed a service discovery protwcainflle-hop ad hoc
environments, known as DEAPspace [15]. In contrast to otherceethgécovery protocols in which
services announce their information, DEAPspace’s algorithm cagheice information at each node,
then each node broadcasts its knowledge of other services amdhitervices in turn. The nodes learn
from others. Service lookup is accomplished by searching thedache. Furthermore, energy weak

devices use idle mode to save power.

Intentional Naming System (INS) and INS/Twine

Researchers at MIT designed INS [16]. As services in lé$iat mapped to fixed service locations,
a level of indirection is added. INS resolves a serldo&up to a service location at the delivery time,
known adate binding

In INS/Twine [17], service attributes are hashed and dtoremesh structure directories. Service
lookup is based on peer-to-peer technology, a more scalable apprdaahdte millions of services.

Service lookups, however, may go through several directories, whichamayadditional search latency.

Jini Network Technology

Sun Microsystems’ Jini is based on Java technology [18]. Oméabkfeature of Jini is the mobile

Java codes, which may be moved among clients, services, aotrig® The advantage of Jini is its

14

platform independency, but the disadvantage is that allligwets; services, and directories depend on

Java runtime environments directly or indirectly.

Salutation

The Salutation Consortium has rolled out the Salutation prof®pl It is an open source protocol
and royalty-free. One advantage of the protocol is that it mgés two interfaces. One interface is for
applications. The other interface is designed to be indepeofitin transport layer, so that it is very
flexible to use various underlying transport protocols and mayudexl for more environments.
Furthermore, a mapping of Salutation over the Bluetooth SeBismovery Protocol has been specified
[20].

Secure Service Discovery Service (SSDS)

SSDS at UC Berkeley puts emphasis on security and supportingeanbmndper of services, known as
wide-area support [21]. Public key and symmetric key encryptierused for communication privacy
and security; a Message Authentication Code (MAC) is usednture message integrity; and
authentication and authorization are available. For wide-area supptetent hierarchical directory
structures are considered. A technology based on the Bloom [HRgris used to achieve service
information aggregation and filtering when building up the hierarchicattdiries.

Service Location Protocol (SLP) Version 2
Posted by IETF as a standard track protocol, SLP is formiserenvironments [23]. As the protocol
name states, SLP only defines a way to locate a servickavek open the interaction between clients

and services after service discovery. URLs are used for stovat@®ns.

Universal Plug and Play (UPnP)
UPNP is from the UPnP Forum [24]. The major player is therddoft Corporation. UPnP targets

unmanaged networking environments, such as home environments. U&me\vike oriented service
discovery protocol. All the service information and communicais in the XML format, which is

platform and programming language independent and greatly increasegéerability between devices.

15

Reference

[1] M. Weiser, "The Computer for the 21st Centu§c¢lentific Americanvol. 265, Issue 3, 1991, pp.
66-75.

[2] T. Kindberg and A. Fox, "System Software for Ubiquitous Computilig;E Pervasive Computing
January-March, 2002, pp. 70-81.

[3] E. Guttman, C. Perkins, and J. Kempf, "Service Templates and SSelwmes," IETF, RFC 2609,
June, 1999, available attp://www.fags.org/rfcs/rfc2609.html

[4] S. Cheshire, "Discovering Named Instances of Abstract ServicesDNS," IETF, Internet Draft
draft-cheshire-dnsext-nias-00.txt, July 13, 2001, availathé&@t/files.dns-sd.org/draft-cheshire-
dnsext-nias-00.txt

[5] R. Raman, M. Livny, and M. Solomon, "Matchmaking: Distributed Resource Manesgdor High
Throughput Computing,Proceedings of the Seventh IEEE International Symposium on High
Performance Distributed Computin@hicago, IL, 1998.

[6] A. ChakrabortyA Distributed Architecture for Mobile, Location-Dependent Applicatiomsster's
thesis, Engineering in Electrical Engineering and Computer Science, Massts Institute of
Technology, Cambridge, MA, 2000.

[7] M. v. Steen, F. J. Hauck, P. Homburg, and A. S. Tanenbaum, "Locating Objects in Wade-A
Systems,'|IEEE Communications Magazinganuary, 1998, pp. 104-109.

[8] P. Castro, B. Greenstein, R. Muntz, C. Bisdikian, P. Kermani, and M. Papadobociitifig
Application Data Across Service Discovery DomaifsCM SIGMOBILE MOBICOM 2001, 7th
Annual Int. Conf. Mobile Computing and NetworkiRpme, Italy, 2001.

[9] W. Stallings,Cryptography and Network Security: Principles and Practired ed, Prentice Hall,
1998.

[10] S. D. Gribble, M. Welsh, R. v. Behren, E. A. Brewer, D. Culler, N. Borisov, S. Czeiwihsk
Gummadi, J. Hill, A. Joseph, R. Katz, M. Mao, S. Ross, and B. Zhao, "The Ninja Atalatéor
Robust Internet-Scale Systems and ServidB&E Computer Networksol. 35, Issue 4, 2001.

[11] D. Mennie and B. Pagurek, "An Architecture to Support Dynamic Composition\o€&er
Components,5th International Workshop on Component-Oriented Programming, WCOR 2000
Cannes, France, 2000.

[12] C. Dabrowski, K. Mills, and J. Elder, "Understanding Consistency Mante in Service
Discovery Architectures during Communication FailuRrceedings of the 4th International
Workshop on Active Middleware ServicEdinburgh, UK, 2002.

[13] G. G. Richard lll, "Service Advertisement and Discovery: Enablingéssal Device Cooperation,”
IEEE Internet Computingseptember-October, 2000, pp. 18-26.

[14] "Specification of the Bluetooth System -- Core," Bluetooth, Si&sion 1.1, February 22, 2001,
available athttp://www.bluetooth.org/docs/Bluetooth V11 Core_22Feb01.pdf

[15] M. Nidd, "Service Discovery in DEAPspacéEEE Personal Communicationdugust, 2001, pp.
39-45.

[16] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, "The aesigl implementation of
an intentional naming systend,7th ACM Symposium on Operating Systems Principles (SOSP
'99), Kiawah Island, SC, 1999.

[17] M. Balazinska, H. Balakrishnan, and D. Karger, "INS/Twine: A ScalBBker-to-Peer Architecture
for Intentional Resource Discoveryervasive 2002 - International Conference on Pervasive
ComputingSpringer-Verlag, Zurich, Switzerland, 2002.

[18] "Jini™Technology Core Platform Specification,” Sun Microsysteviersion 1.2, December, 2001,
available ahttp://wwws.sun.com/software/jini/specs/

[19] "Salutation Architecture Specification," Salutation Consortiusrsion 2.0c, June 1, 1999,
available aftp://ftp.salutation.org/salute/sa20ela21.ps

16

[20] "Mapping Salutation Architecture APIs to Bluetooth Service Dispplcayer," B. Miller, Version
1.0, July 1, 99, available http://www.salutation.org/whitepaper/BtoothMapping.PDF

[21] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph, and R. Katz, "An ArchitectuaeSecure Service
Discovery Service,Fifth Annual International Conference on Mobile Computing and Networks
(MobiCom '99) Seattle, WA, 1999, pp. 24-35.

[22] B. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Eff@smmunications of
ACM, 13(7), 1970, pp. 422-426.

[23] E. Guttman, C. Perkins, J. Veizades, and M. Day, "Service Location &lrdtecsion 2," IETF,
RFC2608, June 1999, availablehttp://www.ietf.org/rfc/rfc2608.txt

[24] B. A. Miller, T. Nixon, C. Tai, and M. D. Wood, "Home Networking with UniveBhig and Play,"
IEEE Communications MagazinBecember, 2001, pp. 104-109.

17

