
A Private, Secure, and User-Centric
Information Exposure Model for

Service Discovery Protocols
Feng Zhu, Student Member, IEEE, Matt W. Mutka, Senior Member, IEEE, and

Lionel M. Ni, Fellow, IEEE

Abstract—Service Discovery as an essential element in pervasive computing environments is widely accepted. Much research on

service discovery has been conducted, but privacy and security have been ignored and may be sacrificed. While it is essential that

legitimate users should be able to discover services, it is also necessary that services be hidden from illegitimate users. Since service

information, service provider’s information, service requests, user presence information, and user’s identities may be sensitive, we

may want to keep them private during service discovery processes. There appears to be no existing service discovery protocols that

solve these problems. We present a user-centric model, called PrudentExposure, which exposes minimal information privately and

securely. Users and service owners exchange code words in an efficient and scalable form to establish mutual trust. Based on the

trust, secure service discovery sessions are set up. The model is further improved to counter attacks. We analyze the mathematical

properties of our model, formally verify our security protocol, and measure the performance of our prototype system.

Index Terms—Pervasive computing, privacy, security.

�

1 INTRODUCTION

AS we move toward pervasive computing environments
with various computational devices and services em-

bedded in the surroundings of our daily life, service
discovery as an essential element to access network services
(services for short) is widely accepted. Many products and
standards have emerged and much research work has been
conducted. Privacy and security, however, have been ignored
and, therefore, may be sacrificed when services may be
discovered or used by any user. In this paper, we present a
secure, efficient, and scalable model, called PrudentExposure,
to allow legitimate users to discover and use services easily,
while it excludes others from seeing sensitive information
within pervasive computing environments.

To help address the problems and solutions, we sketch a
scenario of Bob discovering services at different places.
Bob’s house has various wired and wireless computing
devices. He shares these devices and services with his
family members. As usual, he puts his cell phone, PDA, and
MP3 player in his handbag and a Bluetooth earphone in his
pocket, and then travels to his office. On the way to his
office, he may wear his Bluetooth earphone and use it to
discover his Bluetooth MP3 player and listen to songs.
Nevertheless, he does not want others to know what is in
his bag. In his office, he uses his computer, cell phone, and

MP3 player. When he goes to Alice’s office, they look at a
document on the office file server simultaneously with their
respective laptops via the office’s wireless LAN. The
devices within his pocket, however, should not be able to
discover and use Alice’s personal services on the devices in
her purse, and vice versa, unless Alice later provides a user
name and a password for him to access.

Envision that within pervasive environments, dozens to
hundreds of devices and services may surround a user.
Over time, she or he may utilize thousands of services at
different places. Meanwhile, the user may be the owner of
some services. When discovering services in such environ-
ments, much information is sensitive and should be
exposed with prudence. We identified that the following
information is sensitive during service discovery. Keeping it
private is our goal:

. At the service owners’ side, service information,
owners’ identities, and presence information should
only be exposed to legitimate users and hidden from
others.

. At the users’ side, identities used for authentication,
user’s presence information, and service query
information should only be exposed when it is
necessary.

Achieving the two goals is challenging in pervasive
computing environments. First, services coexisting in a
place may belong to different owners. For example, in Bob’s
work place, services belong to Bob, Alice, or the office.
Second, user mobility and service mobility cause the
available domains and services to change dramatically.
For instance, different services are available in Bob’s house
and on his way to the office. Bob carries his mobile devices
and the services on them move with Bob. Third, since users

418 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 4, APRIL 2006

. F. Zhu and M.W. Mutka are with the Department of Computer Science
and Engineering, 3115 Engineering Building, Michigan State University,
East Lansing, MI 48824. E-mail: {zhufeng, mutka}@cse.msu.edu.

. L.M. Ni is with the Department of Computer Science, The Hong Kong
University of Science & Technology, Clear Water Bay, Kowloon, Hong
Kong. E-mail: ni@cs.ust.hk.

Manuscript received 2 Mar. 2004; revised 1 Aug. 2004; accepted 9 Dec. 2004;
published online 15 Feb. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0043-0304.

1536-1233/06/$20.00 � 2006 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

act in many different roles, they use different identities for
different administrative domains. For instance, Bob uses
one user name to access his office PC and another user
name for his PDA. These three issues make pervasive
service discovery more challenging:

. Requiring a priori knowledge of services and their relative
domains. If a user does not know the existence of a
service in advance, for example, a new service, he
may not be able to input the relative identities for
authentication. Similarly, if a user does not know to
which domain a service belongs, he again misses the
opportunity to use the service.

. Usability problem. Usability is very poor when a user
has to remember the relation among domains,
authentication identities, and pervasive services. In
addition, it is distracting for users to actively identify
existing domains before each service discovery.

Many service discovery protocols have been proposed.
Nevertheless, to the best of our knowledge, there is no
service discovery protocol that meets the goals and the new
challenges for pervasive computing environments as we
discussed above. Most protocols do not consider privacy
and security issues [1]. Devices and services are permitted
to discover each other freely. Therefore, services may be
used by anyone and, thus, access control is violated.
Furthermore, by exposing service and domain information
in an unrestricted manner, services are inclined to be
attacked and privacy may be sacrificed. Additionally, the
user’s or owner’s presence information is exposed. For
example, if Alice’s MP3 player announces its existence
every five minutes, her itinerary is known. Secure service
discovery protocols, such as Secure Service Discovery
Service (SSDS) [2], manage services centrally. In pervasive
computing environments, user and service information
exposed to central servers may not be appropriate. For
instance, Bob may not want to register his MP3 player with
the office’s directory. Universal Plug and Play (UPnP)
Security [3] provides many authentication and authoriza-
tion mechanisms, but the generic mechanism of automati-
cally selecting services is limited to one’s own services. The
mechanism requires every device to reply and, thus, service
privacy is sacrificed. Moreover, an important issue that has
not been addressed in existing protocols is how to properly
acquire user identities for service discovery. Heterogeneous
devices may potentially be used to discover various
services, which may require different authentication me-
chanisms. It seems infeasible to support all mechanisms on
every device for authentication.

Our service discovery architecture is user-centric; user
identities are managed centrally and are supplied auto-
matically. Hence, users are free from the burden of
associating identities with domains and pervasive services.
If users have privileges, they do not need a priori knowl-
edge of the existence of services or the knowledge of which
domain a service belongs. Moreover, devices are free from
authenticating users. To achieve our goals, we expose
information prudently. Sensitive information is protected
throughout the service discovery process. Identities and
service information are exchanged in a secure and private
form, more specifically within the Bloom filter form [4].

Further information exposure between a discovering party
and a service provider is based on mutual trust. Moreover,
devices and services are less likely attacked when we
protect their sensitive information by hiding it and by not
responding to arbitrary queries in the first place.

Our model is complete such that users do not miss any
services that they should discover and services let all
legitimate users discover them. Our protocol is formally
verified by using and extending BAN logic [5]. Compared
to existing protocols, our protocol introduces little over-
head. The rest of the paper is as follows: In Section 2, we
discuss work related to secure and private service discovery
protocols. In Section 3, we present our user-centric service
discovery architecture. Next, in Section 4, we illustrate our
PrudentExposure model. Then, we analyze and evaluate
our model in Section 5. Last, in Section 6, we conclude and
discuss our future work.

2 RELATED WORK

Active service discovery research has occurred in both
industry and academia. Major operating system vendors
have shipped service discovery protocols with their operat-
ing system products, such as Sun Microsystems’s Jini [6],
Microsoft’s UPnP [7], and Apple Computer’s Rendezvous
[8]. Several organizations have also proposed service
discovery protocols such as Bluetooth Service Discovery
Protocol [9] from the Bluetooth Special Interest Group,
Salutation from Salutation Consortium [10], and Service
Location Protocol (SLP) Version 2 by IETF [11]. Some
representative academic projects are DEAPspace [12], Inten-
tional Naming System (INS) [13], and INS/Twine [14]. A
detailed comparison of these protocols may be found in [1].

These protocols may be roughly classified into
two models: client-service and client-service-directory. In the
client-service model, clients (discovering devices) first
inquire about the services’ availability. After examining
the client’s queries, matched services return replies. Among
the replied services, clients select and contact services. Since
all services are involved in a query, the model is not
scalable. To support thousands of computing services,
directories may be used to store service information. In
the client-service-directory model, a client discovers a
directory and then queries the directory for service
information. After receiving a list of matched services in
the directory’s reply message, the client chooses and
contacts a service. Services, on the other hand, discover
and register service information with directories.

Most service discovery protocols, however, do not
provide security and privacy support. Therefore, any
services may be discovered and used by any user via
service discovery protocols. Secure service discovery pro-
tocols, such as SSDS [2], UPnP Security [3], and a secure Jini
service discovery in [15], have proposed models or
solutions for different environments with different security
requirements. Nevertheless, these protocols may only be
suitable for single administrative domain environments,
such as enterprise environments or home environments, in
which services are owned by the same owners and
administrated centrally.

ZHU ET AL.: A PRIVATE, SECURE, AND USER-CENTRIC INFORMATION EXPOSURE MODEL FOR SERVICE DISCOVERY PROTOCOLS 419

As one of the first secure service discovery protocols,
SSDS has many built-in security features including authen-
tication, authorization, data and service privacy, and
integrity. In SSDS, directories, known as Service Discovery
Service servers, are trusted. Clients and services authenticate
with the directories for service lookups and announcements,
respectively. SSDS is good for enterprise environments,
where users are willing to expose identities and service
requests, and where services are willing to expose their
service information to central directories. In pervasive
computing environments, however, trusted central direc-
tories may not be appropriate. Besides the privacy problem,
access control is difficult to enforce, manage, and maintain.
The situation of multiple directories from different owners
coexisting is not addressed.

UPnP Security [3] offers many security features. In UPnP
Security, devices are named personally and identified by
public keys. Different authorization methods are supported,
for instance, access control lists, authorization servers,
authorization certificates, and group definition certificates.
UPnP Security provides a generic method to differentiate an
owner’s devices from others. Based on the hash of a device’s
public key, a user can decide whether he owns the device or
not. The approach is inefficient and lacks privacy for
services. In our scenario, if Bob waits in a train station and
wants to use his earphone to discover his MP3 player, then
all MP3 players in the vicinity will reply to the service
discovery request. Although Bob’s earphone will tell which
MP3 player is his, he may not have privileges to access
many of the MP3 players and should not even be aware of
the existence of the services.

Other work also influences our approach. We borrow the
ideas of using public keys and hashes of public keys to
represent domains from SDSI [16] and SPKI [17]. We use
Bloom filters [4] extensively in our protocol because using
Bloom filters provides a scalable method for membership
tests. In Summary Cache [18], cached Web pages at a proxy
are represented as a Bloom filter form and shared among
neighbor proxies. To support wide-area service discovery in
SSDS [2], service information is in the Bloom filter form
when building the hierarchical directory structure. The
Resurrecting Duckling security policy [19], [20] provides a
new way for authentication in pervasive computing
environments. By mimicking the behavior of mother ducks
and ducklings, the policy sets up a master-slave relation.
We borrow this idea to associate owners’ devices and
services with their directories.

3 A NEW SERVICE DISCOVERY ARCHITECTURE

Based on the client-service-directory model (see Section 2),
our architecture has four types of components—clients,
services, directories, and user agents. Clients and services
are similar to their counterparts in the client-service-
directory model. A client is a device a user utilizes to
access services, for example, Bob’s Bluetooth earphone in
our scenario. A service is a networked computing resource
such as Bob’s Bluetooth MP3 player. (A device may change
its role; for example, if Bob downloads new songs to his
MP3 player from his PC, the MP3 player becomes a client in
that context.) Directories store and dynamically update

service information. However, they have tight relations
with the services (see Section 3.2). We introduce a new
component, called a user agent, to facilitate users managing
identities for authentication.

The four components are classified as: a service dis-
covering party, which consists of a user agent and a client,
and a service provider, which consists of services and a
directory. Two discovery diagrams are shown in Fig. 1.
There are three pairs of relationships among the four types
of components: a relationship within a service provider
(binding A in Fig. 1), a relationship within a service
discovering party (binding B in Fig. 1), and a relationship
between a service provider and a service discovering party.
We discuss the first two relationships in Sections 3.2 and
3.3, respectively. The last relationship is discussed in
Section 4 when we discuss the detailed discovery process.

3.1 Target Environments

Our model targets pervasive computing environments in
which users discover services in their vicinities. Our
prototype system uses IEEE 802.11b and UDP multicast,
but our model may be deployed to wired and wireless LAN
(such as IEEE 802.11x and Bluetooth) or other communica-
tion mechanisms that support broadcast or multicast. If a
device has multiple interfaces, it may simultaneously
communicate via all interfaces to discover services. In a
place, multiple administrative domains may coexist. Service
owners (owners for short) or their administrators manage
their domains, respectively. For example, in Bob’s office,
Bob manages his personal devices and services, Alice
manages hers, and system administrators manage the
office’s computing resources. Moreover, users utilize
different roles to access services. To access the office’s
services, Bob uses a user name and password pair; to access

420 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 4, APRIL 2006

Fig. 1. Two service discovery examples. (a) A PDA (client) discovering

services. (b) A digital camera without a public key operation capability

discovering services via a user agent on a Personal Server [21] (a

powerful processing and networking handheld device).

Alice’s services, Bob uses another user name and password
pair that he acquires from Alice.

Our model does not require a fixed underlying authenti-
cation and authorization mechanism. However, we assume
that users have valid identities from service providers. A
user may use a user name and a password to access one
service and use a certificate to access another service.

3.2 Owner-Based Service Management

In insecure service discovery protocols, services announce
their information periodically or after directories’ solicita-
tions, and directories accept all service registrations.
Exposing service information to everyone sacrifices privacy
and may cause attacks. In the meantime, directories may be
swamped with unrelated service information and degrade
their performance. Nevertheless, deploying centralized
secure service discovery protocols in pervasive computing
environments causes new problems. If an owner registers
his services with a central directory, he not only exposes his
service information to the directory but also loses control of
who should acquire the service information. Moreover, in
the client-service-directory model, directories announce
their existence information periodically or when clients or
services discover directories. In pervasive computing
environments, if a directory represents a person, the
announcements expose the person’s presence information.

To solve the problems, service registration in our model
is selective and owner-based. A directory only stores
information of the services that belong to the same owner.
Similarly, a service only announces its information to the
directory of the same owner. For example, in our scenario,
in Bob’s office, services owned by Bob register with Bob’s
directory and services owned by the office register with the
office’s directory. Furthermore, Bob’s directory does not
accept Alice’s service registrations. Thus, Bob’s services are
kept private and service information is exposed under the
control of his directory and in turn under his control. In
addition, services and directories use soft state and a lease-
based service registration mechanism (used in many service
discovery protocols [1]) to maintain the freshness of the
service information.

In our model, directories do not announce their informa-
tion periodically. When hearing a discovery message, a
directory checks whether the discovery message is sent by a
valid user or service. If the check returns a positive answer,
the directory replies back. Otherwise, the directory keeps
silent. The detail discovery processes are discussed in
Section 4.

Besides the service registration, a directory and a service
have a long-term control relationship: The directory
controls the service. This relationship only needs to be set
up once. For instance, when the owner first acquires the
service, he associates the service with his directory. We
borrow the master-slave relationship idea from the Resur-
recting Duckling approach [19], [20]. A directory is a mother
duck (master) and services are ducklings (slaves). After a
duckling (service) accepts an imprinting from a mother
duck (directory), a secure communication channel is
established. Moreover, only the directory can instruct the
service to break this control relationship.

Directories authenticate users and maintain access control
lists. All service accesses need to go through the directories
to get permissions. When a client is authorized to access a
service, a directory informs the service specific policies.
Owners (or administrators) can enforce access control and
manage user privileges in one place: the directories. By
moving the authentication and authorization from services
on to the directories, security and privacy requirements on
services are dramatically reduced. Managing user accounts
and privileges do not need to be done on services
individually for heterogeneous devices. Revocation of a
user’s privilege can be easily done on the directories.
Moreover, a domain may be represented by one or more
directories. If multiple directories are deployed, user
accounts and privileges need to be synchronized. Using the
Resurrecting Duckling approach may be good for a person to
manage his personal devices and services. With authentica-
tion and authorization aggregated on a device, it becomes
easy for a person to keep a directory with him. Other types of
control between services and directories may be used, for
instance, servers may be used to authenticate and authorize
users. Service access requests may occur via directories to the
servers for authentication and authorization.

Directories may run on PCs, servers, or portable devices
such as cell phones, PDAs, and Personal Servers [21]. These
portable devices have reasonably good processing capabil-
ity, network capability, and storage capacity. In our
scenario, a directory may run on Bob’s home PC to manage
services in his house and another directory may run on his
cell phone to manage devices that he carries, in his house,
and/or in his office.

3.3 User Agent-Based Service Discovery

As discussed in the Introduction, it seems infeasible to
require clients to support all potential authentication
mechanisms in existing service discovery protocols. On
the other hand, requiring users to remember services and
their domains decreases usability. We use user agents to
address the two problems. A user maintains all her
identities in a table on her user agent. In the table, a
domain identity is associated with a domain, an authentica-
tion method, authentication information (such as user
name, password, or certificate, etc.), expiration time, and/
or the domain’s public key. Securing user agents is very
important, but it is out of the scope of this paper.

Before a service discovery process, a client needs to bind
to a user agent. This binding is short-term (one-time) and
valid only in the current service discovery process. A secure
channel may be established via side channels as discussed
in [19], for example, physical touch between two devices
becomes as a physical channel. By using these side
channels, user agents and clients can exchange session keys
and establish secure communication. Moreover, this bind-
ing also triggers a service discovery process.

In a service discovery process, a client queries a type of
service and a user agent supplies necessary authentication
information to gain privileges. The service query result
depends on the identities that the user agent supplies. We
will discuss our method in Section 4. Offloading authenti-
cation tasks from clients to user agents simplifies the design
of clients, i.e., clients do not need to support various
authentication mechanisms. Moreover, it is much easier to

ZHU ET AL.: A PRIVATE, SECURE, AND USER-CENTRIC INFORMATION EXPOSURE MODEL FOR SERVICE DISCOVERY PROTOCOLS 421

add a new authentication mechanism on a user agent than
to add it on all clients.

Potential devices to serve as user agents should be handy
and available whenever needed. Cell phones, PDAs,
Personal Servers, and iButtons might be good candidates.
iButtons [22] are very small and can be worn as a ring. One
type of iButton is able to process various public key
operations and is claimed to do a key operation within a
second [22]. In our scenario, Bob and Alice may run their
user agents on their cell phones, respectively. When Bob
uses his Bluetooth earphone to discover MP3 songs, he uses
the earphone to touch the cell phone. The touch binds his
earphone to his user agent. His user agent supplies
identities associated with his user roles and finds songs
on his MP3 player and laptop. Similarly, if Alice uses Bob’s
earphone, the earphone binds to her user agent and, in turn,
finds songs on her MP3 player and PDA. Alice’s user agent
should not find Bob’s MP3 player unless Bob gives her an
identity and grants her privileges.

4 THE PRUDENTEXPOSURE MODEL

Before we focus on the interaction between a user agent and
a directory, we briefly discuss our PrudentExposure model,
as shown in Fig. 2. There are five major steps when
discovering a service (Fig. 2a): domain match, authentica-
tion, service selection, key distribution, and invocation. First,

a user agent searches available domains. After obtaining the
information, it selects the correct identities to authenticate
with them. Next, the user agent and the client ask the
directories for service information. After receiving replies,
the client or the user selects a service. Then, an encryption
key is distributed to the selected service and the client. Last,
the client is ready to use the service.

There are two steps in a service registration (Fig. 2b):
domain match and registration. In the domain match step, a
service discovers available domains. After finding its
domain, a service sends an encrypted registration message
using the secure channel, as we discussed in Section 3.2.
The two domain match steps in Fig. 2a and 2b are very
similar, thus, we will discuss only briefly the domain match
step of the service registration in Section 4.7.

The domain match step is vital for user agents and
directories. Without prudent exposure, the owner’s and
user’s presence information and user identities may be
sacrificed. To keep the domain match private and secure,
user agents and directories speak code words. A user agent
says a code word and then a directory checks whether or
not the code word is correct. If the code word is correct, the
directory says another code word and the user agent checks.
This interaction establishes mutual trust between the user
agent and the directory.

To address the issues of multiple coexisting domains and
discovering at different places, a user agent may say many
code words to find the existing domains. We express code
words in Bloom filter form [4]. It allows user agents to say
many codes words within one network packet. The
advantages of using Bloom filters in our case are: security
and privacy, simple code word assessments, space effi-
ciency, and scalability.

4.1 An Introduction of Bloom Filters

Bloom filters are suggested as an efficient way to test
membership [4]. The basic idea has two parts: Bloom filter
generation and membership test. To generate a Bloom filter,
as shown in Fig. 3a, select several hash functions that have
the same range. The Bloom filter is represented as a bit
array whose length equals to the range of the hash
functions. Each possible hash result is represented as a bit
in the Bloom filter. The filter is initially set to zero. Then, for
a set of elements, apply every hash function to each
element. By using a hash result as an index, we set a bit in
the array. Note that a bit may be set many times due to
different elements or due to different hash functions. For a
membership test of an arbitrary element, the process is
similar, as shown in Fig. 3b. First, apply every hash
function to the element. Then, using each hash result as
an index in the Bloom filter, any zero found at the index
position in the filter means nonmembership. Otherwise, the
element is considered as a member.

4.2 Matching Existing Domains Using Bloom Filters

An owner defines his domain, which is identified by a
unique ID, as a domain identity. A domain identity is a secret
that a domain shares with its users. Each code word
exchanged between a user agent and a directory is the hash
results of the domain identity. If three hash functions are
used, then three bits of the hash results in the filter

422 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 4, APRIL 2006

Fig. 2. The PrudentExposure activity diagrams. (a). The activity diagram
of discovering a service. (b). The activity diagram of a service
registration.

represent a code word. To simplify the discussion, we
suppose only one hash function is used to generate Bloom
filters, thus, every code word is one bit.

To generate a bit in the filter, first, we calculate the hash of
the domain identity using the function h(domain identity).
Then, we use the mod function, mod(h(domain identity)), to
determine the bit to set in the filter. (Note that mod(h(domain
identity)) is equivalent to the hash function that we have
discussed in Section 4.1, while h(domain identity) is an
existing hash function that we utilize. Since we may think
of the mod function as the last step of a Bloom filter hash
function, we do not distinguish them later.) We choose MD5,
SHA-1, and RIPEMD-160 as our hash functions because of
their good properties of preimage resistance (computation-
ally impossible to find the original message from the hash
result) and collision resistance (computationally impossible
to find two distinct messages with the same output) [23].
Therefore, given a bit in a Bloom filter, it is computationally
difficult to know the original domain identity.

The domain match process in Bloom filter form is shown
in Fig. 4. A user agent generates a Bloom filter by specifying
necessary domain identities. Then, the Bloom filter is
broadcast to directories for a membership test at the
directories. If a directory finds a match, it generates another
Bloom filter with two bits set. The first is the bit that the
directory finds as a match and the second bit is set for the
same domain identity using another hash function. Then,
the filter is sent to the user agent for a membership test. It is
not necessary to send the entire Bloom filter back to the
client because there are only two bits set. A message that
indicates which two bits are set is enough. Successfully

generating the filters demonstrates the knowledge of the
domain identity. User agents and directories agree on the
hash functions in advance. User agents use MD5 to generate
Bloom filters and directories use it to do membership tests.
Similarly, directories use SHA-1 to generate reply messages
and user agents use it to do membership tests. The
RIPEMD-160 is used as an optional hash function for user
agents to decrease the probability of false positive.

4.3 Exchanging Dynamic Code Words

Replay attacks are possible when exchanging static code
words. In our case, an eavesdropper may associate bits with
domains without finding the original domain identities.
After listening to the domain match messages of a directory,
he will find the bit in the Bloom filters associated with the
domain by intersecting the filters. Next, he may replay the
bit and then check the reply messages to test the existence of
the domain. Furthermore, an eavesdropper may physically
find out who the users of a domain are by checking the
relative bits in the filters. Thus, static code words should be
rarely used. However, they may be appropriate for some
domains, such as commercial wireless services in airports,
where a domain’s presence information may not be
important. Moreover, the computation overhead to generate
dynamic code words is not a concern in most cases, as we
show in Section 5.4.

To generate dynamic code words, we add a time variant
parameter when calling the hash functions, specifically,
hash-based message authentication codes as discussed in
[23]. By adding this parameter, the code word serves as a
one-time code word. Therefore, there is no fixed bit in the
filters associated with a domain identity and a replay
message can be easily detected.

The detailed method of setting a Bloom filter bit is
highlighted in Fig. 5 and we use the hash algorithm

ZHU ET AL.: A PRIVATE, SECURE, AND USER-CENTRIC INFORMATION EXPOSURE MODEL FOR SERVICE DISCOVERY PROTOCOLS 423

Fig. 3. A Bloom filter example using three hash functions. (a).

Generating a Bloom filter. (b) A membership test.

Fig. 4. Domain match using Bloom filters. A user agent broadcasts

Message 1 and then a directory replies with Message 2 when it finds a

matched code word.

Fig. 5. Using dynamic information to generate Bloom filters.

proposed in [24]. A domain identity is considered a key and
the time variant parameter is considered a message. The
time variant parameter includes a random number and a
timestamp in our case. A user agent generates the time
variant parameter and sends it along with the Bloom filter
to directories. A directory uses the time variant parameter
for the membership test and for the reply message.
Moreover, a user agent uses the same time variant
parameter for a discovery for all domains.

4.4 Preventing Internal Attackers to Act as an
Owner

When a user agent finds a match in a reply message, it will
try to authenticate. However, a domain identity is a shared
secret and, thus, a reply message might come from an active
internal attacker. If the message does come from an
attacker, the attacker is rather sure when he sees the
authentication message that a user from the domain is
discovering services.

To prevent internal attackers, a directory may sign a
reply message with its private key. At the user agent side,
after a successful membership test, the user agent may
verify the directory’s signature using the directory’s public
key. Since an internal attacker only has the directory’s
public key, he is not able to sign the message. Thus, he is
limited to analyze the Bloom filters as an internal eaves-
dropper can.

4.5 Obscure Identities to Improve User Privacy

Although an eavesdropper cannot act as an owner, he may
still infer that a user is discovering services by analyzing the
user’s Bloom filter because every bit set in the filter
represents a true code word. If the attacker has some
knowledge of a user’s code words, the user’s presence
information may be inferred. For instance, suppose Alice
knows that Bob is discovering services and then knows that
his discovery message has 18 bits set. If different employees
in the office have a different number of bits set in their
filters or if only a few employees set the same number of
bits, then a filter with 18 bits set is very likely sent by Bob.
Although a different group of 18 bits are set in each of Bob’s
discovery message (because of dynamic code words), the
number of bits set may provide a clue that Bob is nearby.

To counter the attacks, a user agent may optionally set
more bits in a Bloom filter to mix the true code words with
other randomly selected bits. For instance, a user agent may
set 80 bits in a Bloom filter, while he has 50 domain
identities. Thus, an eavesdropper is unsure how many true
code words a user has. To control the false positive rate at
the directory side, our default is to set 1 percent of the bits
in filters, including the true code words. Thus, query
messages look the same.

If a user has many code words, we may use larger Bloom
filters and compress them. For example, a user may send an
8K bytes Bloom filter with 650 bits set (1 percent). Such
Bloom filters can be compressed to less than 1,000 bytes, as
our simulation results show in Section 5.4.

4.6 Protecting Service Request Privacy

A service request specifies a service name and attributes.
Nevertheless, it is not necessary to let all directories know

the request. In our scenario, Bob may not want to tell the
office’s directory that he is looking for an MP3 player. Thus,
instead of specifying the service name and attributes, a
client may ask directories what services are available and
authorized for it to access. This is similar to the wildcard
search in many service discovery protocols [1]. Unlike those
protocols, the reply messages are in the Bloom filter form in
our model. The Bloom filters always fit in a single packet,
while the message lengths of the existing approaches vary
and may not be fit in one packet. Since services and
attributes expressed in Bloom filter form were discussed in
detail in SSDS [2], we do not further discuss them here. In
short, Bloom filters can express many services and
attributes in a filter. In SSDS, hierarchical directories need
to handle many more services than in our model, thus, we
are not concerned about the performance of building and
rebuilding the Bloom filters. Unlike SSDS, queries in our
model are evaluated at the client side instead of the
directory side.

4.7 Putting It All Together—The Detailed
Mechanism and Protocol

The message exchange sequence diagram of our model is
shown in Fig. 6 and the protocol is shown in Fig. 7. The top
halves in the figures are the service registration part, while
the bottom halves are the discovering service part. In the
first step of service registration (Step A in Fig. 6), a service
utilizes the same approach that we discussed in Sections 4.3,
4.4, and 4.5: The service generates a Bloom filter using the
domain identity and mixes the true code word with
randomly selected bits. (An owner may use two different
domain identities for users and services, respectively.) If a
directory finds a match in Step B, it replies with another
Bloom filter in Step C. Note that the directory sets two bits:
One bit is that the directory finds itself as a match and the
other bit is set by using another hash function as we have
discussed in Section 4.2. When the service also finds a
match, it sends a service registration message via the secure
channel as we discussed in Section 3.2 (Steps D and E in
Fig. 6). Afterward, the service periodically updates its
service information. As long as updates succeed, the service
does not send Bloom filters to discover directories. On the
other hand, if the service fails to update service information
or restarts, it may send out Bloom filters to discover
directories.

In the first step of the discovering service part, a client
sends a service request to a user agent using a session key
shared between them as we described in Section 3.3. Then,
in Step 2, the user agent sends a message asking for
available domains. After receiving the request, a directory
does a membership test to see if its domain matches the
request in Step 3. If the directory finds a match in the Bloom
filter, it creates a new Bloom filter and then sends the filter
back in Step 4.

If there is a match in Step 5, the user agent authenticates
with the directory. All messages afterward are encrypted
using a session key exchanged between the user agent and
the directory. The user agent forwards the service request in
Step 6. Then, the directory matches the services and sends a
reply message back in Steps 7 and 8. Next, the user agent
forwards the messages to the client and lets the client select

424 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 4, APRIL 2006

(Steps 9 and 10). After the client selects a service, it sends
the request to the user agent and the user agent forwards it
with another session key to the directory (Steps 11 and 12).
This session key is for the client and the service to use. Next,
the user agent and the directory forward the session key to
the client and the service, respectively (Steps 13 and 14).
Last, in Steps 15 and 16, the client and the service interact
with each other.

5 SYSTEM EVALUATION

In this section, we first analyze the mathematical properties
of our PrudentExposure model. Next, we consider the
possible threats. Then, we formally verify our security
protocol. Last, we discuss performance issues.

5.1 Mathematical Properties of the
PrudentExposure Model

Bloom filter membership tests always recognize members
correctly [4]. Thus, our method is complete such that
matches in the original form are always matched in the
Bloom filter form. However, the membership tests can have
false positives, which mean nonmembers are recognized as

members. When this happens, a waste of processing and

communication occurs and privacy information may leak. If

there is a false positive case at the directory side, a Bloom

filter will be returned. If there are false positive cases at the

user agent side, identities are supplied for authentication. In

our case, the false positive rate is quite low. For example, if a

filter is 8K bits long with 100 bits set, the false positive rate at

the directory side is about 0.0124 given that the query is not

sent by a domain user and, at the user agent side, it is less

than 0.0001 given that the directory does not represent a

domain that the user wants to discover. Increasing the length

of Bloom filters, using more hash functions, or exchanging

more rounds of Bloom filters can further decrease the false

positive rate. More detailed discussion of the false positive

rate in Bloom filters may be found in [18].
The mod function, mod(8192), is a mapping function

from 2128 space to 213 space (MD5 is 128 bits, others are

160 bits). This means that 2115 possible hash results will set

the same bit in a Bloom filter (supposing the hash result is

evenly distributed in the 2128 space). It is not worthwhile for

attackers to determine the hashes. Even if an attacker found

ZHU ET AL.: A PRIVATE, SECURE, AND USER-CENTRIC INFORMATION EXPOSURE MODEL FOR SERVICE DISCOVERY PROTOCOLS 425

Fig. 6. The PrudentExposure message sequence diagram.

a hash, it is still mathematically impossible to find the
original domain identity from the hash.

5.2 Threats Analysis

Since user agents and directories have a priori knowledge,
such as public/private keys or user names and passwords,
they can set up session keys. Thus, all the messages they
exchange can be encrypted, as shown in Fig. 6, Step 6 and
afterward. Hence, we focus on how a user agent correctly
identifies directories and how a directory correctly identi-
fies a user.

Unlike the discussion in Section 5.1 that assumes both
directories and user agents are honest, user agents and
directories might be malicious. There could be external or
internal attackers. To prevent internal attackers, we may use
the technique discussed in Sections 4.4 and 4.5.

External attackers, on the other hand, will not gain much
because Steps 2-5 in Fig. 6 are for a user agent to identify the
existence of the directories. Acting as a user agent, the
attacker may cause a directory to respond. In this case, the
probability of a false positive using one hash function for
the directory is

pðfalsepositive j nonmemberÞ ¼M
L
;

where M is the number of bits set in a Bloom filter and L is
the filter length. Since a large number of bits set causes a
higher false positive rate, a very high ratio of 1s set in a
Bloom filter is suspicious. Directories check the number of
bits set in a filter. If the number of the bits set is more than a

threshold (5 percent), directories do not further check

whether there is a match in the filter. By default, the filter
length is 8,192 bits and 5 percent allows a user to set up to
410 code words. Similarly, an attacker that keeps sending
Bloom filters with a majority of the bits set differently is also

suspicious. Directories do not remember the states before
authentication. Therefore the attacks will cause a limited
waste of resources.

Acting as a directory, the chance of guessing the correct
answer is

pðfalsepositive j nonmemberÞ ¼ 1

L
:

Moreover, if the signature is required, as we discussed in
Section 4.4, it is considered computationally difficult for an
attacker to sign a reply message. Another possible attack is
to replay reply messages heard from other directories. A
replay message, however, is easy to detect since a user
agent has already seen it from the genuine directory.

5.3 Formal Verification

We formally verify our protocol using BAN logic [5] and
extend the logic to meet our needs. It assists us in
improving our protocol. During a few rounds of the design
and verification processes, the logic helps us find a subtle
bug. The detailed notation may be found in [5]. As a
convention of the verification process, we first convert the
protocol to an idealized protocol. Next, we list all the
assumptions. Then, we deduct step-by-step based on the
logical postulates to reach our conclusion. The deduction is
quite lengthy. We show the idealized protocol and stepwise
results in Table 1. (The verification of the service registra-
tion part is very similar to Steps 2, 3, and 9 of the
discovering service part, thus we omit it.) Step 1 is trivial.
Since Step 4 to Step 11 is a procedure of authentication and
key distribution, the use of BAN logic is straightforward.
We show the most complicated step, Step 4, in Table 2, and
omit the similar and lengthy discussion of the other steps.

426 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 4, APRIL 2006

Fig. 7. The PrudentExposure protocol.

TABLE 1
Formal Verification Using BAN Logic

Since Steps 2 and 3 are not authentication messages, the
logic cannot be used directly. We extend the logic to help us
check these two steps because the power of the BAN logic is
its ability to check the freshness and binding. We extend the
logic constructs as follows:

. ðM � GÞ: M is a member of group G who knows the
shared secret.

. P[BF]Y: P finds a match in a Bloom filter which uses
Y as a secret. This only means that there is a
possibility that the Bloom filter generating party
knows the secret Y. The probability is as we
discussed in Section 5.1 and Section 5.2.

. P1Y G: P shares a secret Y with a group G. In our
case, G is the group of users of the domain P.

We also add the following postulates:

P1Y G; P½BF�Y
Pj� ðM � GÞj� BF

; ð1Þ

Pj� ðM � GÞj� BF; #ðBFÞ
Pj� ðM � GÞj� BF

; ð2Þ

Pj� ðM � GÞj� BF; ðM � GÞj) BF

Pj� BF
: ð3Þ

The first postulate, (1), states that if P finds a match in a
Bloom filter using secret Y, then there is a probability that
one member M of group G generates the Bloom filter.
Therefore, we are clear that if the Bloom filter is generated
without a time variant parameter, the filter may be
replayed. The second postulate, (2), goes further based on
the freshness of the Bloom filter. It comes to the conclusion
that P believes that one member of its user group generates

the filter with a certain probability. Since the member has
the control over the generation of the Bloom filter, P
believes the Bloom filter (Postulate (3)). Based on these
postulates, we can mechanically deduct and get the results
for Steps 2 and 3, as shown in Table 1.

Moreover, the logic forces us to explicitly write down our
assumptions to clarify our design goals. Our protocol is
targeted for wired or wireless LAN environments. If used
beyond LAN environments, given that a user agent and a
directory cannot directly hear each other’s broadcast or
multicast messages, the messages may be replayed in real-
time without notice. Furthermore, the time stamp and the
random number used as the time variant parameter require
accurate internal clocks in the user agents and directories.
(The clocks do not drift hours away. Otherwise, user agents
and directories have to use large caches to check the validity
of the timestamps.)

5.4 Performance Discussion

Our model is based on the client-service-directory model.
Compared to that model, our model is more efficient because
a directory only replies when a match is found. However,
three additional messages are needed in comparison to the
insecure client-service-directory model. Two messages are
for the user agent and the directory to send the session key to
the client and the service, respectively. The other message is
for the user agent to notify the directory the selected service
and the session key. The three messages should not
introduce much overhead.

Our concerns are the overheads that user agents and
directories need to calculate Bloom filters and do member-
ship tests (Steps 2-5 in Fig. 6), and that every party does
symmetric key encryption and decryption operations (from
Step 6 to Step 16).

ZHU ET AL.: A PRIVATE, SECURE, AND USER-CENTRIC INFORMATION EXPOSURE MODEL FOR SERVICE DISCOVERY PROTOCOLS 427

TABLE 2
Verification of Step 4 in Table 1

The micro Steps 4 and 7 in this table are shown in Table 1 as stepwise results.

We measure our prototype system on Compaq iPAQs
running Microsoft PocketPC 3.0. Each PDA has an ARM
SA1110 206 MHz processor, 64MB RAM, an expansion
pack, and a D-Link DCF-650W wireless card. The wireless
cards are set to the 802.11 ad hoc mode with 2Mbps. Our
software is developed using Microsoft eMbedded Visual
C++ 3.0.

We measure the performance of user agents and
directories exchanging Bloom filters (Steps 2-5 in Fig. 6).
In our prototype, this part of the protocol uses UDP
multicast. (Multicast or broadcast communication may not
be reliable. More complex algorithms may be used to
improve reliability such as the Multicast Convergence
Algorithm in SLP [11].) User agents and directories are
configured to use a multicast address for query messages
and another multicast address for reply messages. Table 3
shows the average time of the tasks in 100 discovery
processes. It takes a user agent about 20 milliseconds to
generate a Bloom filter with 100 code words and to send a
query message. A directory takes less than 1 millisecond to
check whether there is a bit that matches its code word. If
there is a match, a directory spends about 5 milliseconds to
generate another Bloom filter and send back a reply
message. Next, it takes less than 1 millisecond for a user
agent to check whether the Bloom filter in the reply message
matches the code word. In summary, it takes a user agent
about 30 milliseconds from the time to generate a filter to
finish processing the first reply message.

From Step 6 to Step 16 in Fig. 6, when compared to an
insecure model, every step needs some symmetric key
encryption and decryption operations. Our previous experi-
ence with respect to building a secure service discovery
protocol shows that the overhead to do secure key
operations are rather efficient on PDAs [25]. The public
key operations take hundreds of milliseconds, while sym-
metric key operations and hash operations take a few to
dozens of milliseconds. Thus, we believe that discovering a
service should be possible within a reasonable time period.

The compression ratio of the Bloom filters that we use is
high, as shown in Fig. 8. We randomly generate 1K, 2K, 4K,
8K, and 16K bytes Bloom filters with 5 percent, 1 percent,
and 0.5 percent of the bits set in the filters. We generate
1,000 filters for each combination of the rate and length.
Next, we use zlib (a data compression library) version 1.1.4
for Windows CE and select the maximum compression

option to compress the filters. Last, we determine the
largest file size for each combination of the rate and length.
The compression takes from 20 milliseconds for 1K bytes
filters up to 600 milliseconds for 16K bytes filters on the
same PDAs as we described above. Thus, we may compress
Bloom filters in the protocol without affecting the perfor-
mance much.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a private, secure, and
efficient service discovery model. The PrudentExposure
model provides an efficient way for authorized users to
discover services while hiding services from unauthorized
users. It automatically selects the right identities for service
accesses. We protect sensitive information such as service
information, user identities, user’s presence information,
domain identities, owner’s presence information, and
service requests. We have analyzed our model mathemati-
cally and have verified our protocol formally. Our proto-
type system shows that our method is efficient.

We are developing on mechanisms to monitor and control
the accesses of the services and, thus, provide a method for
users to easily view the status of the services and the history
of service accesses. To coexist with the current models
(providing services without a privacy concern), the security
checks at the directories and services may be loosened. One
possible solution is to reserve bits in the Bloom filters to
represent domains that do not need identities for accesses.
Meanwhile, the directories will not check user privileges and
always reply with the availability of the services.

We are investigating revocation of domain identities for
our model. Revocation of a domain identity from a user is a
problem, when many users share the domain identity as a
secret. A new domain identity needs to be distributed to all
other users, but the users may not be online or in the vicinity.
One possible solution is that a directory shares different
secrets with different users. Thus, an owner can easily stop a
user from discovering the existence of his domain. This
approach increases the processing overhead and the false
positive rate on directories and the processing overhead
linearly depends on the number of users. If a domain has up
to dozens of users, this solution is very efficient (up to
dozens of milliseconds for a directory to verify a user). If a
domain has hundreds or thousands of users, a directory may
alternatively share different secrets with different groups of
users. Revocation of a secret from a user involves distribut-
ing a new secret to the rest of the users in the group.
Moreover, it is also feasible to use hashes of two identities as
a code word, one to identity a group and one to identify a

428 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 4, APRIL 2006

TABLE 3
Performance Evaluations on Bloom Filter Exchanging

between User Agents and Directories

Fig. 8. Simulation results of the compression ratio of Bloom filters with

different percentage of bits set.

user within a group. Distribution of a new shared group
identity is not urgent after revocation, because only one
combination of the two identities is a valid code word.
Nevertheless, if each code word represents a user in a
domain, all domains in the vicinity know the user is nearby
when the user sends a Bloom filter.

We are also working to extend our model to discover
services without the presence of directories. For example,
how to authenticate and authorize Bob, if he wants to access
Alice’s electronic books but Alice and her directory are not in
the office? Maintaining user names and passwords seems
costly for limited resource devices themselves. Managing
user names and passwords for every device is infeasible for
both owners and users. Authorization certificates may
simplify the process on the devices, but acquiring and
maintaining the certificates for each device on the user’s side
introduces much administrative overhead. Thus, without
support from online directories, user authentication, author-
ization, and privacy (as we discussed in the Introduction) for
the independent services seem very challenging.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
valuable comments that greatly helped the authors improve
this paper. Their research was supported in part by US
National Science Foundation Grant No. 0334035, US
National Institutes of Health Grant No. EB002238-01, and
Hong Kong RGC Grants HKUST6264/04E and AoE/E-01/
99. This paper is an extension of a paper that appeared in
the Proceedings of the Second IEEE International Conference on
Pervasive Computing and Communications, March, 2004.

REFERENCES

[1] F. Zhu, M. Mutka, and L. Ni, “Service Discovery in Pervasive
Computing Environments,” IEEE Pervasive Computing, vol. 4,
pp. 81-90, 2005.

[2] S. Czerwinski, B.Y. Zhao, T. Hodes, A. Joseph, and R. Katz, “An
Architecture for a Secure Service Discovery Service,” Proc. Fifth
Ann. Int’l Conf. Mobile Computing and Networks (MobiCom ’99),
1999.

[3] C. Ellison, “Home Network Security,” Intel Technology J., vol. 6,
pp. 37-48, 2002.

[4] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allow-
able Errors,” Comm. ACM, pp. 422-426, 1970.

[5] M. Burrows, M. Abadi, and R. Needham, “A Logic of Authentica-
tion,” ACM Trans. Computer Systems, 1990.

[6] Sun Microsystems, “Jini Technology Core Platform Specification,”
Version 2.0, http://wwws.sun.com/software/jini/specs/, 2003.

[7] UPnP. Forum, “Universal Plug and Play Device Architecture 1.0,”
http://www.upnp.org/resources/documents/CleanUPnPDA101
-20031202s.pdf, 2003.

[8] S. Cheshire and M. Krochmal, “DNS-Based ServiceDiscovery,”
Apple Computer, http://files.dns-sd.org/draft-cheshire-dnsext-
dns-sd.txt, 2004.

[9] Bluetooth SIG, “Specification of the Bluetooth System,” http://
www.bluetooth.org/, 2004.

[10] Salutation Consortium, “Salutation Architecture Specification,”
ftp://ftp.salutation.org/salute/sa20e1a21.ps, 1999.

[11] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location
Protocol, Version 2,” http://www.ietf.org/rfc/rfc2608.txt, 1999.

[12] M. Nidd, “Service Discovery in DEAPspace,” IEEE Personal
Comm., pp. 39-45, 2001.

[13] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The
Design and Implementation of an Intentional Naming System,”
Proc. 17th ACM Symp. Operating Systems Principles (SOSP ’99),
1999.

[14] M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A
Scalable Peer-to-Peer Architecture for Intentional Resource Dis-
covery,” Proc. Pervasive 2002—Int’l Conf. Pervasive Computing,
2002.

[15] P. Eronen and P. Nikander, “Decentralized Jini Security,” Proc.
Network and Distributed System Security Symp. (NDSS 2001), 2001.

[16] R. Rivest and B. Lampson, “SDSI—A Simple Distributed Security
Infrastructure,” http://theory.lcs.mit.edu/~rivest/sdsi10.html,
1996.

[17] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T.
Ylonen, “SPKI Certificate Theory,” http://www.ietf.org/rfc/
rfc2693.txt, 1999.

[18] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, pp. 281-293, 2000.

[19] F. Stajano and R. Anderson, “The Resurrecting Duckling: Security
Issues for Ad-Hoc Wireless Networks,” Proc. Seventh Int’l Work-
shop Security Protocols, 1999.

[20] F. Stajano and R. Anderson, “The Resurrecting Duckling—What
Next?” Proc. Eighth Int’l Workshop Security Protocols, 2000.

[21] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and J.
Light, “The Personal Server—Changing the Way We Think about
Ubiquitous Computing,” Proc. Fourth Int’l Conf. Ubiquitous
Computing, 2002.

[22] iButton Home Page, http://www.ibutton.com/, 2003.
[23] A. Menezes, P.v. Oorschot, and S.A. Vanstone, Handbook of Applied

Cryptography, pp. 321-383. CRC Press, 1996.
[24] M. Bellare, R. Canettiy, and H. Krawczykz, “Keying Hash

Functions for Message Authentication,” Proc. Advances in Cryptol-
ogy (CRYPTO ’96), 1996.

[25] F. Zhu, M. Mutka, and L. Ni, “Splendor: A Secure, Private, and
Location-Aware Service Discovery Protocol Supporting Mobile
Services,” Proc. First IEEE Ann. Conf. Pervasive Computing and
Comm., 2003.

Feng Zhu received the BS degree in computer
science from East China Normal University in
1994 and the MS degree in computer science
and engineering from Michigan State University
in 2001. He is a PhD candidate in computer
science and engineering at Michigan State
University. He was a software engineer at Intel
Co. from 1997 to 1999. His current research
interests include pervasive computing, security
for pervasive computing, computer networks,

and distributed systems. He is a student member of the IEEE.

Matt W. Mutka received the BS degree in
electrical engineering from the University of
Missouri-Rolla in 1979, the MS degree in
electrical engineering from Stanford University
in 1980, and the PhD degree in computer science
from the University of Wisconsin-Madison in
1988. In 1989, he joined the faculty of the
Department of Computer Science, Michigan
State University, East Lansing, Michigan, where
he is currently an associate professor. He was a

member of the technical staff at Bell Laboratories in Denver, Colorado,
from 1979-1982, and a visiting scholar at the University of Helsinki,
Helsinki, Finland, from 1988-1989 and in 2002. His current research
interests include mobile computing, wireless networking, and multimedia
networking. He is a senior member of the IEEE and a member of the IEEE
Computer Society.

Lionel M. Ni received the PhD degree in
electrical and computer engineering from Pur-
due University, West Lafayette, Indiana, in 1980.
He is a professor and head of the Computer
Science Department at the Hong Kong Univer-
sity of Science and Technology. A fellow of the
IEEE and a member of the IEEE Computer
Society, Dr. Ni has chaired many professional
conferences and has received a number of
awards for authoring outstanding papers. His

research interests include parallel architectures, distributed systems,
high-speed networks, and pervasive computing.

ZHU ET AL.: A PRIVATE, SECURE, AND USER-CENTRIC INFORMATION EXPOSURE MODEL FOR SERVICE DISCOVERY PROTOCOLS 429

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

