PrudentExposure: A Private and User-centric Service Discovery Protocol

Feng Zhd
'Dept. of Computer Science and Engineering
Michigan State University
East Lansing, Michigan, USA
{zhufeng, mutka}@cse.msu.edu

Abstract: Service Discovery as an essential element
in pervasive computing environments is widely atszdp
Much active research on service discovery has been
conducted, but privacy has been ignored and may be
sacrificed. While it is essential that legitimatisers
should be able to discover services of which thayeh
credentials, it is also necessary that serviceshioielen
from illegitimate users. Since service information
service provider’s information, service requestsida
credentials to access services via service disgover
protocols may be sensitive, we may want to keem the
private. Existing service discovery protocols dot n
solve these problems. We present a user-centriaeimo
called PrudentExposure, as the first approach desig
for exposing minimal information privately, secyrel
and automatically for both service providers anéngsof
service discovery protocols. We analyze the
mathematical properties of our model and formally
verify our security protocol.

1. Introduction

As we are moving towards pervasive computing
environments with billions of users, devices, and
services, service discovery as an essential elensent
widely accepted. Many products and standards have

emerged and much research work has been conducted.

Privacy, however, has been ignored and therefosebaa
sacrificed when services may be discovered or bsed
any user. In this paper, we present a flexibléciefit,
and scalable model, callddrudentExposureto allow
legitimate users to discover and use servicesyeagilile

it excludes others from discovering services' efise
for wired and wireless LAN environments.

To help address the problems and solutions, we
sketch a scenario of Bob discovering services at fo
places as shown in Figure 1. Bob’s house has wsrio
wired and wireless computing devices. He shareseth
devices and services with his family members. sl
he puts his PDA and MP3 player in his handbag and a
Bluetooth earphone in his pocket and then travelsis
office. On the way to his office, he does not wattters
to know what'’s in his bag. Nevertheless, he magprwe
his Bluetooth earphone and use it to discover his

Matt Mutka

Lionel NP
Dept. of Computer Science

Hong Kong University of Science and Technology

Kowloon, Hong Kong, China
{ni}@cs.ust.hk

Bluetooth MP3 player and listen to songs on the MP3
player. In his office, Bob uses his computer, PBAd
MP3 player. When Bob goes to Alice’s office, tHegk

at a document on their office file server simulzusy
with their respective laptops. The devices withis
pocket, however should not be able to discover e
Alice’s personal services on the devices in hes@uand
vice versa, unless Alice later provides credenf@aim

to access. For example, his earphone should scower
Alice’s Bluetooth MP3 player until Alice allows hito

do so.
bt

-~
On the road

[<[

v

Colleague's office

Figure 1. A service discovery scenario.

Envision that within pervasive environments, dozens
to hundreds of devices and services may surroursta
Over time, she or he may utilize thousands of ses/at
different places. Meanwhile, the user may be anesw
of some services and devices. Most service disgove
protocols do not consider security and privacyessd].
Devices and services are permitted to discover etedr
freely, so that security and privacy may be vialate
Furthermore, exposing service information and servi
provider's information in an unrestricted manner is
inclined to be attacked. Secure service discovery
protocols, such as Secure Service Discovery Service
(SSDS) [2], manage services centrally. Either éhes
protocols may expose user and service privacy to a
central directory or they may be appropriate for
homogenous environments only. In heterogeneous
environments, it is less likely that all devicesdan
services are managed centrally because these dearide
services may belong to different owners, such ag'8o
MP3 player and Alice’s MP3 player in our scenario.

Therefore, the user needs to use different crealentd
access different services. As the number of crlen
increases, manually selecting credentials duringice
discovery may be tedious. In addition, credentiabsy
be sensitive and need to be kept private. URxdRr8y
[3] provides many authentication and authorization
mechanisms, but the generic mechanism of autonigitica
selecting services based on hashes is limited ®son
own services. The approach is inefficient. Moesov
one common shortcoming of these existing protools
that discovery is device-centric. Either the disring
device determines the discovery results, or issuaed
that the discovering devices have some ways to gain
proper user credentials for certain services.s highly
risky if the discovering device determines the lgesu
because it may totally violate access control of th
services. For example, if Bob holds Alice’s PDwill
disclose all of Alice’s personal services. Mear&hi
simply assuming that user credentials may be gaimed
some way is not appropriate. In order to provieleusity
and privacy under this assumption, either compitat
logic may need to be built in each discovering devar
tedious user involvement may be necessary.

In PrudentExposure, explicit user information is
required before a service discovery. Service
management is owner-based. Discovery is usericentr
and is based on the user roles. A user-centricemod
avoids the risk of the access violation in the devi
centric model. Moreover, our PrudentExposure model
manages user credentials centrally. Hence, themmin
processing requirements for discovering devices are
reduced and the processing logic is simplified. We
identify two basic goals for our model. First, vyaty
information including service information, service
providers’ identities and presence information, reise
credential information, and service query inforroatare
exposing prudently. Second, an automatic scheme
exposes only necessary credentials for the disgover
processes. To our knowledge, there is no service
discovery protocol that supports user and servicagy
and meets the requirements as we discussed ahove. |
PrudentExposure, privacy is protected before amthgu

authentication, authorization, service selectiomd a
invocation. Credential and service information is
exchanged in a secure and private form, more

specifically within Bloom filter form [4]. Further
information exposure between a discovering party @an
service provider is based on mutual matches within
step-by-step manner. Moreover, by protecting their
sensitive information by hiding it and by not resging
to arbitrary queries in the first place, deviced aarvices
may be less likely attacked.

We analyze the mathematical properties of our model
and compare different design choices. Our apprdgch
complete such that users do not miss any serviess t

they should discover and a service lets all legiten
users discover it. Our privacy protocol is develbin a
secure service discovery context. It is flexilwestipport
various credentials and scalable to support many
credentials. Moreover, we formally and mechanycall
verify our protocol by using and extending BAN logi
[5]. The rest of the paper is as follows. In 8stP, we
discuss work related to secure and private service
discovery protocols. In Section 3, we presentsauvice
discovery architecture. Next in Section 4, we ilate

our PrudentExposure model. Then we analyze and
evaluate our model in Section 5. Last in Sectipmvé
conclude and discuss our future work.

2. Related Work

Active service discovery research has occurred in
both industry and academia. Major operating system
vendors have shipped service discovery protocoth wi
their operating system products, such as Sun
Microsystems’s Jini [6], Microsoft's Universal Pland
Play (UPnP) [7], and Apple Computer's Rendezvols [8
Service discovery protocols such as Bluetooth $ervi
Discovery Protocol [9], Salutation [10], and Seevic
Location Protocol Version 2 [11] are from different
standardization organizations. Some representative
academic projects are DEAPspace [12], Intentional
Naming System (INS) [13], and INS/Twine [14].
Detailed comparison of these projects may be faand
[1]. These protocols may be roughly classifiedtws
models:client-service modedndclient-service-directory
model In simple environments such as home
environments, the client-service model may be used.
Clients first inquire about the services' availapil
Comparing with the client's queries, matched s&wic
return replies. After receiving responses fronvises,
clients select and contact services. To supporighnds
of computing services, such as the services inrgrise
environments, directories may be used to store the
service information. In the client-service-diragto
model, a client queries a directory for service
information and then contacts services. Servioaghe
other hand, register service information with diogies.

In these two service discovery models, user infoiona

is not considered. Therefore, any services may be
discovered and used by any user. Otherwise, it is
assumed that there are some ways to gain user
information. This assumption is not appropriate in
pervasive computing environments, especially
considering the heterogeneous capability of thecesv
that need to handle many different roles of users.

As one of the first secure service discovery protoc
SSDS from UC Berkeley has many built-in security
features [2]. In SSDS, directories, known as Servi
Discovery Service Servers, are in a hierarchicalcstre
and all directories are trusted. Clients and sewi

authenticate with the directories for service lgokwand
announcements, respectively. Various other segcurit
features are considered including authorizatiota dad
service privacy, and integrity. In short, SSD§a®d for
environments, such as enterprise environments, evher
clients are willing to expose identities and sesvic
requests, and where services are willing to exposi
service information to central directories. In yasive
environments, however, central directories may ot
appropriate. For example, as a service owner, rBalp

not be willing to register his MP3 player with tbffice’s
directory. On the other hand, the office’s diregtmay

not accept a request that Alice wants to registeiP3
player. The situation of both Bob’s directory atha
office’s directory coexisting is not addressed. The
consequence might be that Bob has to supply criadtent
manually. Thus, SSDS may not work well within
pervasive environments and does not meet our
requirements as discussed in the Introduction@ecti

UPNP Security [3] offers many security solutions fo
environments such as home environments. In UPnP
Security, devices are named personally and idedtifiy
public keys. Different authorization methods are
supported, for instance, access control lists,aightion
servers, authorization certificates, and group nitefin
certificates. UPNP Security has a generic mettmod t
differentiate an owner’s devices from others. Basa
the hash of a device’s public key, a user can eecid
whether owning the device or not. One shortcongfig
the approach is that all devices need to respook toea
client. In our scenario, if Bob waits in a tratation and
wants to use his earphone to discover his MP3 playe
then all MP3 players in the vicinity will reply bato the
service discovery request. Although Bob’s earphwitie
tell which MP3 player is Bob’s, the process is not
efficient. Among all services that reply, usersynmat
have privileges to access many of them and shootd n
even be aware of the existence of the services.

Other work also influences our approach, such as
SDSI [15] and SPKI [16]. We borrow the ideas ahgs
public keys and hashes of public keys to represent
principals (e.g., users and organizations). We alkse
Bloom filters [4] extensively in our protocol becau
using Bloom filters provides a good method for
membership tests. In Summary Cache [17], cachdd we
pages at a proxy are represented as a Bloom fidten
and shared among neighbor proxies. To support-wide
area service discovery in SSDS [2], service infdioma
is in Bloom filter form when building the hierarchi
directory structures. The Resurrecting Ducklingusity
policy [18, 19] provided a new way for authentioatin
pervasive computing environments. By mimicking the
behavior of mother ducks and ducklings, the pofiels
up a master-slave relation. We borrow the idea to
associate owners’ services with their directories.

3. Service Discovery Architecture

In our service discovery architecture, there aner fo
types of components — clients, services, directorad
user agents. The architecture is based on thatclie
service-directory model [1]. Two discovery diageam
are shown in Figure 2. Clients and services andai to
their counterparts in the client-service-directonpdel.
Directories, however, are different from the exgti
protocols. User agents manage credentials fosudaie
discuss directories and user agents first. Thea, w
discuss two bindings in bootstrapping as steps & Bn
in Figure 2. The detailed discovery process, as
unlabelled arrows in Figure 2, is discussed |n|SBGt

{/4 Service

Personal server Directory
CllenUIth user agent
Dlrectory‘ﬁ
(b) Service

Figure 2. Two service discovery models.
3.1. Owner-based Service Management

In our model, an owner defines its domain
represented by a public encryption key and assigns
privileges to its users. Directories store infotioa of
the devices and services that belong to their osvndr
may also store information of devices or servigdsch
are temporarily owned by the directory’s owner. r Fo
example, store rental car information in one’s ctivey.

An owner may have a few domains, for instance, a
long-term domain and a temporary domain. The long-
term domain of a user may be used to share serwitles
family members. At the same time, the user mayeteav
temporary public key to represent a temporary darti
share services with another user instead of cigadin
certificate or a temporary user in the long-ternmdan.
Moreover, by moving the requirements onto diree®yi

owner-based service management may reduce the
minimum security and privacy requirements on se&sic

3.2. User Agent-based Service Discovery

Users may have many digital credentials to reptesen
their roles in real life. For example, Bob may &av
credentials from work, from other family membersnf
friends, or for anonymous uses. We think thatitiea
proposed in SDSI/SPKI that each user is a certifina
authority is attractive for pervasive computing
environments. Thus, a user may have many credientia
The user agent manages credentials centrally éousir.

Before each discovery, a client needs to bindusex
agent. The user agent supplies all credentials grea
needed for service discovery. In other words, wten
same device is used by two users, the discovenjtses
may be different because the user agents and dneref
user roles are different. Moreover, user agenedbas
service discovery also simplifies the requiremefuts
clients to authenticate users.

Various possible configuration approaches may exist
depending on the devices on which the clients st u
agents run. Figure 2 (a) shows a PDA discovering
services, while Figure 2 (b) shows a digital camera
without a public key operation capability discoveri
services via a user agent on a Personal Server(§0]
powerful processing and networking handheld device)

3.3. Bootstrapping

Before a service discovery starts, two bindings are
necessary: a client needs to find a user agensemites
need to announce information to directories. The
binding between clients and user agents may be
established via side channels. Then using thede si
channels, user agents and clients may share sdssion
Detailed discussion may be found in [21]. The bigd
between a service and a directory is long-term. We
borrow the master-slave relationship from the
Resurrecting Duckling approach [18, 19], a diregtas a
mother duck (master) and services as ducklingsé€s)a
After establishing the master-slave relationshipegvice
and a directory use a secure channel for commuaoicat
Service information expressed in directories, haweis
short-term and fresh. Directories keep soft stdtéhe
service information. In other words, service imfation
is announced with a life span. A service needs to
announce its information again before expiration.
Meanwhile, directories periodically flush out stale
services. We also assume that before a serviessca
service owner has assigned privileges to users.

4. The PrudentExposure Model

In our model, directories provide most security and
privacy functionalities at the service provider esid
(services and directories). Likewise, at the distimg

side (clients and user agents), user agents harsie
credentials and most security and privacy inforomati
Therefore, the problem is to solve the privacy and
security issues between user agents and directoties
users have valid credentials from service providirsy
can smoothly authenticate with the directoriesud] tthe
key problem is that user agents need to find thsting
directories. During this discovering process, tieer
agents need to send out credential information thad
domains need to release the domain informatiothiese
two parties to build up trust relationship with kather.

To keep this discovering process private and secure
user agents and directories may speale words A
user agent says a code word, and then a direchegks
whether or not the code word is correct. If thdecavord
is correct, the directory says another code wordi the
user agent checks. Since there may be many diresto
in the vicinity, a user agent may say many coded/an
one message. We use a Bloom filter to represent
directories that a user wants to contact. The midges
of using Bloom filters in our case are: securitydan
privacy, simple code word assessments, spaceesftigj
and scalability. Eavesdroppers, however, may yethia
code words, thus we use one-time code word to ivgro
privacy for user agents and directories.

[Not match]

Key exchange

Figure 3. The PrudentExposure activity diagram.

The PrudentExposure model has five major steps, as
shown in Figure 3, in the following order: domaiatch,
authentication, service selection, key distributi@md
invocation. First, a user agent looks for the domshat
are available. After knowing the available domaiits,
selects the correct credentials to authenticatk thiem.
Next, the user agent and the client ask the direstdor
service information. After receiving service infuaition
from directories, the client selects one. Then, an

encryption key is distributed to the selected senand
the client. Finally, the client uses the servicko limit
the information exposure, the discovery procesgsstif
either the discovering side or the service provisiee
detects that it is impossible for a service access.

4.1. An Introduction of Bloom Filters

Bloom filters are suggested as an efficient watest
membership [4]. The basic idea has two parts: Bloo
filter generation and membership test. To geneesate
Bloom filter, as shown in Figure 4 (a), select sale
hash functions first. The ranges of the hash fanstare
the same. The Bloom filter is represented as arhbity,
whose length equals to the range of the hash fumti
Each possible hash result is represented as a lftei
Bloom filter. The filter is initially set to zeroGiven a
set of elements, apply every hash function to each
element. Then using a hash result as an indexsetva
bit in the array. Note that a bit may be set mames
due to different elements or due to different hash
functions. For a membership test of an arbitrégynent,
the process is similar, as shown in Figure 4 (Apply
every hash function to the element. Then use bash
result as an index to look up in the Bloom filtany zero
found at the index position in the filter means non
membership. The Bloom filters need to be rebuilt o
updated when the set of members change.

Membership tests always recognize members
correctly, but there may be false positive casedsd-
positive cases mean that hon-members are identifed
members. By adjusting the number of hash functions
and the length of a Bloom filter, different falsesjtive
rates will occur. The possibility of false poséss/in our
case is very low and thus the waste of calculatind
communication is very limited as we will discuss in
Section 5.1.

4.2. Protecting Credential Privacy

We use Bloom filters to represent domain identities

Each domain identity is represented as a bit infitter

and a bit is a code word. Many code words may be
expressed in a Bloom filter. To generate the Bloom
filter, first we calculate the hash of the domaieritity
using the functiorh(domain identity) Then, we use the
mod function,mod(h(domain identity))to find out the

bit to set in the Bloom filtet. There are two Bloom
filters used: one generated at the user agentasidehe
other generated at the directory side. A user tagen
generates a Bloom filter by specifying necessary
credentials. Then the Bloom filter is sent to diogies

! Notemod(h(domain identity)} equivalent to the hash function that
we discuss in Section 4.1, whiédomain identity)s an existing hash
function that we utilize. Since we may think thedrfunction as the
last step of a Bloom filter hash function, we da distinguish them
later.

for a membership test. Likewise, if a directorgd a
match, it will generate a Bloom filter indicatindpet
domain that it manages and sends the Bloom fiitehé
user agent for a membership test. The Bloom §ilteay
be calculated beforehand. Nevertheless, the ilbered
to be rebuilt, if a user has greater or fewer onédés or
if a domain’s identity changes.

Elements
() g (=)
\0‘-¢/
Hash1() Hash2() Hash3()

Bloomfiter [1]o[1[ol1JofJol1]1Jofol1]ofol0]
(a)
Element
Hash1() Hash2() Hash3()

[\]

Bloomfiter [1[0l110[1]ofol1T1Jolol1]olo]0]
(b)
Figure 4. A Bloom filter example using 3 hash
functions. (a). Generating a Bloom filter. (b) A
membership test.

User agents and directories agree on hash functions
in advance. For example, a user agent uses hash
function, hashl(), to create a Bloom filter, anéntha
directory uses the same hashl() to do a membetesttip
Likewise, if there is a match, the directory usest
function, hash2(), to generate the other Blooneffiind
the user agent does a membership test using the sam
hash function. In this way, both the user agent e
directory know the other side has the knowledg¢hef
domain identity. The method of using hash funcion
could be more flexible by specifying the functianghe
messages.

We choose MD5, SHA-1 and RIPEMD-160 as our
hash functions because of their good properties of
preimage resistance (computationally impossiblértd
the original message from the hash result) andsawil
resistance (computationally impossible to find two
distinct messages with the same output) [22]. &faudit,
all user agents use MD5 as the hash function. The
RIPEMD-160 is used as an optional hash function for
user agents to decrease the probability of falsitipe
(more detail in Section 5.1). All directories USEIA-1
as the hash function for the reply messages. Efautl
Bloom filter length in the implementation is 8,18#s

(1024 bytes). After we calculate the hash value, w
calculate the Bloom filter bit byhash mod 8192.
Furthermore, compression operations may be used to
decrease the length of the Bloom filters.

4.3. Exchanging Dynamic Information to
Improve Privacy

One subtle problem of using static code words,ibits
Bloom filters in our case, to represent domain fities
is that an eavesdropper may physically associdie bi
with domains without finding the original identisie The
eavesdropper may replay those bits and check tilg re
messages to test the existence of the directoriest
some domains, such as public computing servicenin a
office, privacy may not be important. For personal
domains that represent users, better privacy may be
necessary. Furthermore, an eavesdropper may physic
find out who are the users of a domain by checkivgy
relative bits in Bloom filters. Therefore he magure
out the relative credentials that the users have.

‘ Time variant parameter ‘ ‘ Domain identity ‘

h(domain identity, padding1,
h(domain identity, padding2, time variant parameter))
[]

‘ Mod function ‘
\
Bloom filter ‘

Message‘ Time variant parameter ‘

Figure 5. Using dynamic information to generate
Bloom filters.

In order to hide the presence of domains and ptrotec
user credentials, we add a time variant paramekemw
calling the hash functions, specifically hash-based
message authentication codes as discussed in [D2.
detailed method of setting a Bloom filter bit is
highlighted in Figure 5. By adding a time variant
parameter, a different bit may be set in the Blddrer
each time and a replay message can be easily eétect
As shown in Figure 5, a domain identity is considia
key and the time variant parameter is considered a
message. (To simplify explanation, we use a domain
identity as a secret. Otherwise, a secret assuciaith
the domain identity should be used.) The timeardri
parameter includes a random number and a timestamp
our case. A user agent generates the parametseadd
it along with the Bloom filter to directories. Ahe
directory side, the same calculation will be perfed. A
match means a possibility that a user has the leune
of the credential. When a domain initially createsser,
it notifies the user agent to calculate dynamic dato
filter bits before each discovery. Moreover, arusgent
uses the same time variant parameter for a disgdoer
all domains that require dynamic Bloom filters isgfs.

Results of both dynamic and static (keyed and uetey
hash functions are set in the same Bloom filterain
message.

4.4. Protecting Service Request Privacy

A service request specifies a service name and
attributes. Nevertheless, it is not necessaryetoall
directories know the request. In our scenario, Bay
not want to tell the office’s directory that hel@oking
for an MP3 player. Thus, instead of specifying the
service and attributes, a client may ask direcsowhat
services are available and authorized for it toeasc
This is similar to the wildcard search in many sev
discovery protocols [1]. Unlike those protocolbget
reply messages are in Bloom filter form in our nlode
The Bloom filters always fits in a single messaghile
the message lengths of the existing approachessargy
especially too many services matched to fit within
message. Since services and attributes expressed i
Bloom filter form were discussed in detail in SS[2$
we do not further discuss it here. In short, Blofiters
can express many services and attributes in a.filte
SSDS, hierarchical directories need to handle nmcte
services than in our model, thus we are not comekrn
about the performance of building and rebuilding th
Bloom filters. Unlike SSDS, queries in our modet
evaluated at the client side instead of the dirgciale.

4.5, The Detailed M echanism and Protocol

The message exchange sequence diagram of our
model is shown in Figure 6 and the protocol is shanv
Figure 7. In the first step, a client sends aiserrequest
to a user agent using a session key shared betiveen
The shared key is generated during the bootstrgppin
process that we described in Section 3.3. Thestepp 2,
the user agent sends a message asking availabkirdom
After receiving the request, a directory does a
membership test to see if any of its domains matthe
request in step 3. If the directory finds a maitctihe
Bloom filter, it creates a new Bloom filter and ttheends
the Bloom filter back in step 4. Note the diregtsets
two bits: one bit is that the directory finds ifsek a
match and the other bit is set by using anotheh has
function as we have discussed in Section 4.2.

If there is a match in step 5, the user agent
authenticates with the directory. All messages
afterwards are encrypted using a session key egelan
between the user agent and the directory. Theaggant
forwards the service request in step 6. Then iteetdry
matches the services and sends a reply messagerback
steps 7 and 8. Next, the user agent forwards the
messages to the client and lets the client seftepg 9
and 10). After the client selects a service, idsethe
request to the user agent and the user agent fiswar
with another session key to the directory (stepsadd

12). This session key is for the client and theise to
use. Next, the user agent and the directory fawhae
session key to the client and the service respaygtiv
(steps 13 and 14). Last, in steps 15 and 16, lidwet @nd
the service interact with each other.

Client User agent ‘ Directory ‘ ‘ Service ‘
@ Service Request
Are these Domains available?
@ (a Bloom filter set using a hash function)
@@ its domains
Matched domains (a new Bloom
1 Jilter set using two hash functiohs)
@ Matc@lities
6) Use directory's public key to send a session key
Session key used for all messages exchanged later
Certificate/id
Service request
@ Match)its services
@ Matched services
@ Matched services
Selecl services
11) Service selected
@ Service selected and forward a isession key
@ Forward a session ke:
Forward a session key
@ Service invocation
Service invocation

Figure 6. The PrudentExposure message
sequence diagram.

5. System Evaluation

In this section, we first analyze the mathematical
properties of our PrudentExposure model. Then, we
consider possible attacks. Last, we formally yeadtir
security protocol.

5.1. Mathematical Propertiesof the
PrudentExposure M odel

Bloom filters do not have false negative cases, as
discussed in [4]. In other words, if a user has a
credential for a domain, the relative bits in titeerf will
always be set correctly. Similarly, if a directdsythe
directory a user wants to contact, it will always bits
correctly in the reply messages. Therefore, omcem
is the false positive cases. Given a directoryas a
directory that a user wants to contact, what is the
probability that we identify that the domain is othat
the user wants to contact? The consequence ofalkis
classification is that a user agent sends its @bedy
credential to the directory. The directory, howevis
not able to decrypt and thus the communication sstop
Alternatively, given a user does not have a cradefar

Notation:

Cis aclient; U is a user agent; D is a direct@ys a service.
M is a message is a timestamp that X attachesy R a
random number that X generates.

SR is a service request. MS is a matched sengteiS is a
service the client picks. ¥ is a symmetric encryption key
shared between X and Y.)" is X's signature using its
signing private key. (kx is an encryption using the public
encryption key of X.

(kxvy is an encryption using a symmetric key K shared
between X and Y. UBF is a Bloom filter represegtihe
domains that a user belongs. DBF is a Bloom filter
representing the domain a directory in charge of.

Step Sndr/Revr | Message In F&y.
1 c-u: (SR, B)xuc 1
2 U-D: UBF, Ry, ty 2
3 D-U DBF, R, ty 4
4 U-D (Kup, ty) ko» (U, 1y, Kyp) 6

ku % (SR, b)kup
5 D-U: (MS, 1, tb)kup 8
6 U-C: (MS, 1y, to)kuc 9
7 C-U: (PS, ta tuz)kuc 11
8 U-D: (PS, b, Kcgkup 12
9 D-S: (Kes th2)kos 13
10 U-C: (Kes teakuc 14
11 C-S: (My, tegkes 15
12 S.C: (My, teadkes 16

Figure 7. The PrudentExposure protocol.

a domain, what is the probability that we identtfat the
user has a credential? The consequence is that a
directory participates in one round of wasteful
computation and communication.

Now we look at the false positive cases
guantitatively. In this subsection, the discussifrthe
probability of false positive is based on both usgents
and directories are honest. (We will discuss nalis
users and directories in Section 5.2.) A user @gen
calculates its credentials using one hash funamhsets
the relative bits in a Bloom filter. Given the Bl filter
with L bits and a user has C credentials, a bit bél set
to one with probability:

p(match|nonmember= {1—(1—3 } (1)

where(l_gjis the probability that a bit is zero after one
L
credential is calculated and inserted, a(ggljﬁs the

L
probability that a bit is zero after all necessary
credentials are calculated and inserted. The false
positive probability for each domain of a directasy
exactly(1). In Figure 8 (a), we show the probability of
false positive using one hash function on various
numbers of credentials. The Bloom filter lengtlbits is

less than the maximum length of an Ethernet packet
(12,000 bits). One way to reduce the probabilftfatse
positive is to use more than one hash functiorgure 8
(b) shows the probability of false positive usimgthash

functions, which
1€ 2
IS: p(match| nonmember=|1-|1-= :
L
False positive using one hash function

H.%

120%
2
Eﬂ %
2 —e—10
I —— ||
> am S g}
= —_—
o
3 4 A
iy

2.0% 4

& — &
0.0% T v T -
200 4000 g00 0000
Length
(a) ¢
False positive rate using two hash functions

70%

6.0%
2
B 50%
g 0 —— 10
E 4.0% 50
2 30% ——1m
T ———280
5 20%
o

10%

0.0%

2000 4000 gooa 10000
(b Length

Figure 8. The probability of false positive of the
PrudentExposure model at the directory side.
(a). Using one hash function. (b). Using two
hash functions

After a directory finds a match, it returns a Bioo
filter, which has up to two bits set. The first igi the bit
that the directory finds as a match, and the setiinid
set by using another hash function. The probgbdit
false positive of each credential for a user agent

p(match| nonmember= (L x%, which is very low.

For example, for a 2K bits Bloom filter with 250
credentials encoded, the false positive rate isutabo
0.0001. Thus, a user is quite confident when theie
match. It is not necessary to send the entire iBléler
back to the client because there are only twodats A
message that indicates which two bits are setasigm

If an owner has multiple domains that match a gser’
request, the bits for each domain are indicateatder in

a message. Furthermore, including one more rodnd o
message exchange will dramatically decrease the

probability of false positive. The probabilitie$ false
positive at the directory side and the user agieiet are

1.1

p(match| nonmembeér= (1) ><I ><E and

1. 1.1

p(match| nonmembgr= (1) x T x T x T respectively.

More than one round of message exchanging is
unnecessary in most cases.

The mod function, which we usensod(8192)is a
mapping function from #° space to 2 space (MD5 is
128 bits, others are 160 bits). This means theretlare
2'*° possible hash results will set the same bit incoB
filter (supposing the hash result is evenly distidal in
the 2 space). It is not worthwhile for attackers todfin
out the hash. Even if an attacker found a hadh,still
mathematically impossible to find the original doma
identity from the hash.

5.2. ThreatsAnalysis

Since a user agent knows the public keys of the
directories with which it wants to interact, all ssages it
exchanges with the directories can be encrypted, as
shown in Figure 6 step 6 and afterwards. Thusfoses
on how a user agent correctly identifies direcwrad
how a directory correctly identifies a user. Ualithe
discussion in Section 5.1 that assumes both diiesto
and user agents are honest, user agents and d&scto
might be malicious. There could be external oerimal
attackers.

Internal attackers know the credentials, so thay ca
always set the right bits in the Bloom filters retjass of
whether static or dynamic information are exchangad
user agent will believe an attacker as a directofye
attacker, however, is not able to decrypt the ngessa
which is encrypted using the directory’'s public key
Thus, no security and privacy information leakgHaer.

External attackers on the other hand will not gain
much because the steps 2-5 in Figure 6 are forea us
agent to identify the existence of the directoriésting
as a user agent, the attacker may cause a direitory
respond. In this case, the probability of falseifpoe
using one hash function for the directory is

p(falsepositve |nonmember= l\lil , M is the number of

bits set in a Bloom filter. Since the more bit$ ge
higher the false positive rate, a very high rafid's set
in a Bloom filter is suspicious. Similarly, an atker
that keeps sending Bloom filters with a majoritytbé
bits set differently is also suspicious. Direasrdo not
remember the states before authentication. Therétfie
attacks will have a limited waste of resourcestirgcas
a directory, the chance of guessing the correcvans

p(falseposilve|nonmembe)r=%- Another possible

attack is to replay reply messages heard from other
directories. Even though a user agent is fooletlsamds
back an authentication message as the step 6 umeFHgg

the attacker is still not able to decrypt the mgssa

5.3. Formal Verification

We formally verify our protocol using BAN logic [5]
and extend the logic to meet our needs. It asest®
improve our protocol. During a few rounds of desig
and verification processes, the logic helps to érslibtle
bug and helps us to make decisions. The detailed
notation may be found in [5]. As the conventiontlod
verification process, we first convert the prototmlan
idealized protocol. Next, we list all assumptionEhen,
we deduct step-by-step based on logical postulates
reach our conclusion. The deduction is quite leypgind
we omit it. We only show the idealized protocolddan
stepwise results in Table 1 and omit the detailed
discussion of the process. Step 1 is trivial. nfri®tep 4
to Step 11 is a procedure of authentication and key
distribution, thus we use the BAN logic smoothly.

Table 1. Formal verification using BAN logic.

Step | Idealized Protocol Stepwise resulfs

1 | {SR, #(SR)kuc UESR

2 | UBF D = UBF

3 | DBF U= DBF

4 {U KUD D7 #(UKUD D)} KD» {tU1 U! D |E U KUD D,
UK, D} ku ™ {SR, #(SR)keu DESR

5 | {MS, #MS)}kup UEMS

6 | {MS, #(MS)}kuc CEMS

7 | {PS, #(PS)kuc UEPS

8 | {PS, #(PS), K .S, DEPS,

— DE=C S

#(CK g S)kup | .K_CS.

9 | {CKgS: #(CK g S)kos SkcC KesS

10 | {C KsS: #(CK g S)kuc CEC KesS

11 | {C K S, #(CK g S)kcsfrom C SECEC Kes S

12 | {C K S, #(CK ¢ ShkcesfromS | C ESEC KesS

Since steps 2 and 3 are not authentication messages
the logic cannot be used directly. We extend diggclto
help us check these two steps, because the povibe of
BAN logic is its ability to check the freshness and
binding. We extend the logic constructs as follows
* (MOG): M is a member of group G, who knows the
shared secret.
* P[BF]y: P finds a match in a Bloom filter, which uses
Y as a secret. This only means that there is silpitity
that the Bloom filter generating party knows thersé

Y. The probability is as we discussed in Sectioh 5
and Section 5.2.
Y
* PooG: P shares a secret Y with a group G. In our case,
G is the group of users of the domain P.

We also add the following postulates:

Y
PG, P[BF]y P (McG) |~ BF, #BF) P (McG) [BF,(McG)= BF
P (McG) |~ BF PE (McG) £ BF PEBF
(e 2) 3)

The first postulate, (1), states that if P findsiatch in a
Bloom filter using secret Y, then there is a prdliigh
that one member M of group G generates the Bloom
filter. Therefore, we are clear that if the Bloditer is
generated without a time variant parameter, therfil
may be replayed. The second postulate, (2), godsef
based on the freshness of the Bloom filter. It esrto
the conclusion that the principal P believes that o
member of its user group generates the filter withain
probability. Since that member has the controlrdiie
generation of the Bloom filter, P believes the Bioo
filter (Postulate (3)). Based on these postulatescan
mechanically deduct and get the results as shown in
Table 1.

Moreover, the logic forces us to explicitly writewdn
our assumptions to clarify our design goals. Our
protocol is targeted for wired or wireless LAN
environments. If used beyond LAN environmentsggiv
that a user agent and a directory cannot direotigr h
each other's multicast or broadcast messages, the
messages may be replayed in real-time without @otic
Furthermore, the time stamp and the random number
used as the time variant parameter require accurate
internal clocks (not drift days) in the user ageatsl
directories. We do not require synchronized cloths
accurate clocks are necessary to make time staatigs v

5.4, Performance Discussion

Our model is based on the client-service-directory
model. Compared to that model, our model is more
efficient in some aspects and has overheads inr othe
aspects. Our model is more efficient that insteagry
directory replies, a directory only replies whematch is
found. However, there are three additional message
needed in comparison to the unsecured client-servic
directory model. Two messages are for the usentage
and the directory to send the session key to fleatchnd
the service, respectively. The other messagerishi®
user agent to notify the directory that a servicedlected
and to forward the session key. Other overheaglshait
user agents and directories need to calculate Bloom
filters and do membership tests (steps 2-5 in Eidi);
user agents authenticate with directories and daigu

key encryption and decryption operations (steps);5-6
and every party does some symmetric key encryption
and decryption operations (from step 6 to step 16).

Our previous experience with respect to building a
secure service discovery protocol shows that the
overhead of doing secure key operations are rather
efficient [23]. The public key operations take Hreds
of milliseconds on PCs and PDAs, while symmetrig ke
or hash operations are at dozens of milliseconds.

6. Conclusion

In this paper, we have proposed a private and user
centric service discovery model. The PrudentExpmsu
model provides an efficient way for authorized astr
discover services simply, while hiding servicesniro
unauthorized users. It automatically selects figéatr
credentials for service accesses. We protect @yitar
service information, user credentials, domain iiiexst
domain existence information, and service requegis.
have analyzed our model mathematically and have
proven the correctness of our protocol formally.

Potential devices as user agents might be Personal
Servers [20] or iButtons [24] because these devizes
handy and may be available whenever needed. Since
Personal Servers’ processing capability, network
capability, and storage capacity are as good aspap
They may serve as proxies or user agents, via wagh
processing power devices discover services. iBattn
the other hand are very small and can be wornraga
One type of the iButtons is able to process varmusic
key operations within a second [24]. We are also
working on extending our model to discover services
without presence of directories.

Acknowledgement

This research is supported in part by NSF Grants No
0334035, 0098017, 9911074, NIH Grant No. EB002238-
01, a grant from Microsoft Research, and Hong Kong
RGC Grants HKUST6161/03E and DAGO02/03.EG02.
The authors thank anonymous reviewers for their
valuable comments.

References

[1] F. Zhu, M. Mutka, and L. Ni, "Classification ddervice
Discovery in Pervasive Computing Environments," iMd@an
State University, East Lansing, available at
http://www.cse.msu.edu/~zhufeng/ServiceDiscovery&updf
MSU-CSE-02-24.

[2] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Josephd R.
Katz, "An Architecture for a Secure Service Disagv8ervice,"
presented at Fifth Annual International ConferenceMobile
Computing and Networks (MobiCom '99), Seattle, VI899.
[3] C. Ellison, "Home Network Security," Intel Temblogy
Journal, vol. 06, pp. 37-48, 2002.

[4] B. Bloom, "Space/Time Trade-offs in Hash Codingth
Allowable Errors,” Communications of ACM, pp. 4226}
1970.

10

[5] M. Burrows, M. Abadi, and R. Needham, "A Logaf
Authentication,” ACM Transactions on Computer Spwse
1990.

[6] Sun Microsystems, "Jini™ Architecture Specifioa," Sun
Microsystem, available at
http://wwws.sun.com/softwarel/jini/specs/ DecemiéQ1.

[7] Microsoft Corporation, "Universal Plug and Pl&evice
Architecture,"” Version 1.0, Microsoft Co., 2000,adsble at
http://www.upnp.org/download/UPnPDA10_20000613.htm.
[8] S. Cheshire, "Discovering Named Instances ofstAdrt
Services using DNS," Apple Computer, 2002, avadabk
http://files.dns-sd.org/draft-cheshire-dnsext-ddss.

[9] Bluetooth SIG, "Specification of the Bluetoofystem --
Core," available at
http://www.bluetooth.org/docs/Bluetooth_V11 CoreF2R01.p
df, February 22, 2001.

[10] Salutation Consortium, "Salutation Archite@ur
Specification," The Salutation Consortium Inc., i@kde at
ftp://ftp.salutation.org/salute/sa20ela21.ps Jyri9a9.

[11] E. Guttman, C. Perkins, J. Veizades, and My,D8ervice
Location Protocol, Version 2" available at
http://www.ietf.org/rfc/rfc2608.txt, June 1999.

[12] M. Nidd, "Service Discovery in DEAPspace," IEE
Personal Communications, pp. 39-45, 2001.

[13] W. Adjie-Winoto, E. Schwartz, H. Balakrishnaand J.
Lilley, "The design and implementation of an intental naming
system," presented at 17th ACM Symposium on Opwegati
Systems Principles (SOSP '99), Kiawah Island, 3091

[14] M. Balazinska, H. Balakrishnan, and D. Karger,
"INS/Twine: A Scalable Peer-to-Peer Architecturer fo
Intentional Resource Discovery," presented at Parga2002 -
International Conference on Pervasive ComputingficBuy
Switzerland, 2002.

[15] R. Rivest and B. Lampson, "SDSI---A Simple @isuted
Security Infrastructure," 1996, available at
http://theory.lcs.mit.edu/~rivest/sdsi10.html.

[16] C. Ellison, B. Frantz, B. Lampson, R. RiveBt, Thomas,
and T. Ylonen, "SPKI Certificate Theory," 1999, dable at
http://www.ietf.org/rfc/rfc2693.txt.

[17] L. Fan, P. Cao, J. Almeida, and A. Broder, rifoary
Cache: A Scalable Wide-Area Web Cache Sharing Pogto
IEEE/ACM Transactions on Networking, vol. 8, pp.12893,
2000.

[18] F. Stajano and R. Anderson, "The ResurrecBugkling:
Security Issues for Ad-hoc Wireless Networks," preed at 7th
International Workshop on Security protocols, Cadde, UK,
1999.

[19] F. Stajano and R. Anderson, "The Resurredbogkling --
what next?," presented at 8th International Workshm
Security protocols, Cambridge, UK, 2000.

[20] R. Want, T. Pering, G. Danneels, M. Kumar, $undar,
and J. Light, "The Personal Server - Changing theay \W/e
Think about Ubiquitous Computing,” presented at
International Conference on Ubiquitous Computingteborg,
Sweden, 2002.

[21] F. Stajano, Security for Ubiquitous Computidghn Wiley
& Sons, LTD, 2002.

[22] A. Menezes, P. v. Oorschot, and S. A. Vanstétendbook
of Applied Cryptography: CRC Press, 1996.

[23] F. Zhu, M. Mutka, and L. Ni, "Splendor: A SeeuPrivate,
and Location-aware Service Discovery Protocol Sump
Mobile Services," presented at 1st IEEE Annual €mice on
Pervasive Computing and Communications, Fort WoF#xas,
2003.

[24] iButton home page, available at http://wwwiion.com/.

4th

