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Abstract: Service Discovery as an essential element 
in pervasive computing environments is widely accepted.  
Much active research on service discovery has been 
conducted, but privacy has been ignored and may be 
sacrificed.  While it is essential that legitimate users 
should be able to discover services of which they have 
credentials, it is also necessary that services be hidden 
from illegitimate users.  Since service information, 
service provider’s information, service requests, and 
credentials to access services via service discovery 
protocols may be sensitive, we may want to keep them 
private.  Existing service discovery protocols do not 
solve these problems.  We present a user-centric model, 
called PrudentExposure, as the first approach designed 
for exposing minimal information privately, securely, 
and automatically for both service providers and users of 
service discovery protocols.  We analyze the 
mathematical properties of our model and formally 
verify our security protocol.  

1. Introduction 

As we are moving towards pervasive computing 
environments with billions of users, devices, and 
services, service discovery as an essential element is 
widely accepted.  Many products and standards have 
emerged and much research work has been conducted.  
Privacy, however, has been ignored and therefore may be 
sacrificed when services may be discovered or used by 
any user.  In this paper, we present a flexible, efficient, 
and scalable model, called PrudentExposure, to allow 
legitimate users to discover and use services easily, while 
it excludes others from discovering services’ existence 
for wired and wireless LAN environments.  

To help address the problems and solutions, we 
sketch a scenario of Bob discovering services at four 
places as shown in Figure 1.  Bob’s house has various 
wired and wireless computing devices.  He shares these 
devices and services with his family members.  As usual, 
he puts his PDA and MP3 player in his handbag and a 
Bluetooth earphone in his pocket and then travels to his 
office.  On the way to his office, he does not want others 
to know what’s in his bag.  Nevertheless, he may wear 
his Bluetooth earphone and use it to discover his 

Bluetooth MP3 player and listen to songs on the MP3 
player.  In his office, Bob uses his computer, PDA, and 
MP3 player.  When Bob goes to Alice’s office, they look 
at a document on their office file server simultaneously 
with their respective laptops.  The devices within his 
pocket, however should not be able to discover and use 
Alice’s personal services on the devices in her purse, and 
vice versa, unless Alice later provides credentials for him 
to access.  For example, his earphone should not discover 
Alice’s Bluetooth MP3 player until Alice allows him to 
do so. 

On the roadHome

Colleague's office

Office

 
Figure 1. A service discovery scenario. 

Envision that within pervasive environments, dozens 
to hundreds of devices and services may surround a user.  
Over time, she or he may utilize thousands of services at 
different places.  Meanwhile, the user may be an owner 
of some services and devices.  Most service discovery 
protocols do not consider security and privacy issues [1].  
Devices and services are permitted to discover each other 
freely, so that security and privacy may be violated.  
Furthermore, exposing service information and service 
provider’s information in an unrestricted manner is 
inclined to be attacked.  Secure service discovery 
protocols, such as Secure Service Discovery Service 
(SSDS) [2], manage services centrally.  Either these 
protocols may expose user and service privacy to a 
central directory or they may be appropriate for 
homogenous environments only.  In heterogeneous 
environments, it is less likely that all devices and 
services are managed centrally because these devices and 
services may belong to different owners, such as Bob’s 
MP3 player and Alice’s MP3 player in our scenario.  
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Therefore, the user needs to use different credentials to 
access different services.  As the number of credentials 
increases, manually selecting credentials during service 
discovery may be tedious.  In addition, credentials may 
be sensitive and need to be kept private.    UPnP Security 
[3] provides many authentication and authorization 
mechanisms, but the generic mechanism of automatically 
selecting services based on hashes is limited to one’s 
own services.  The approach is inefficient.  Moreover, 
one common shortcoming of these existing protocols is 
that discovery is device-centric.  Either the discovering 
device determines the discovery results, or it is assumed 
that the discovering devices have some ways to gain 
proper user credentials for certain services.  It is highly 
risky if the discovering device determines the result, 
because it may totally violate access control of the 
services.  For example, if Bob holds Alice’s PDA, it will 
disclose all of Alice’s personal services.  Meanwhile, 
simply assuming that user credentials may be gained in 
some way is not appropriate.  In order to provide security 
and privacy under this assumption, either complicated 
logic may need to be built in each discovering device or 
tedious user involvement may be necessary. 

In PrudentExposure, explicit user information is 
required before a service discovery.  Service 
management is owner-based.  Discovery is user-centric 
and is based on the user roles.  A user-centric model 
avoids the risk of the access violation in the device-
centric model.  Moreover, our PrudentExposure model 
manages user credentials centrally.  Hence, the minimum 
processing requirements for discovering devices are 
reduced and the processing logic is simplified.  We 
identify two basic goals for our model.  First, privacy 
information including service information, service 
providers’ identities and presence information, users’ 
credential information, and service query information are 
exposing prudently.  Second, an automatic scheme 
exposes only necessary credentials for the discovery 
processes.  To our knowledge, there is no service 
discovery protocol that supports user and service privacy 
and meets the requirements as we discussed above. In 
PrudentExposure, privacy is protected before and during 
authentication, authorization, service selection, and 
invocation.  Credential and service information is 
exchanged in a secure and private form, more 
specifically within Bloom filter form [4].  Further 
information exposure between a discovering party and a 
service provider is based on mutual matches within a 
step-by-step manner.  Moreover, by protecting their 
sensitive information by hiding it and by not responding 
to arbitrary queries in the first place, devices and services 
may be less likely attacked. 

We analyze the mathematical properties of our model 
and compare different design choices.  Our approach is 
complete such that users do not miss any services that 

they should discover and a service lets all legitimate 
users discover it.  Our privacy protocol is developed in a 
secure service discovery context.  It is flexible to support 
various credentials and scalable to support many 
credentials.  Moreover, we formally and mechanically 
verify our protocol by using and extending BAN logic 
[5].  The rest of the paper is as follows.  In Section 2, we 
discuss work related to secure and private service 
discovery protocols.  In Section 3, we present our service 
discovery architecture. Next in Section 4, we illustrate 
our PrudentExposure model.  Then we analyze and 
evaluate our model in Section 5.  Last in Section 6, we 
conclude and discuss our future work. 

2. Related Work 

Active service discovery research has occurred in 
both industry and academia.  Major operating system 
vendors have shipped service discovery protocols with 
their operating system products, such as Sun 
Microsystems’s Jini [6], Microsoft’s Universal Plug and 
Play (UPnP) [7], and Apple Computer’s Rendezvous [8].  
Service discovery protocols such as Bluetooth Service 
Discovery Protocol [9], Salutation [10], and Service 
Location Protocol Version 2 [11] are from different 
standardization organizations.  Some representative 
academic projects are DEAPspace [12], Intentional 
Naming System (INS) [13], and INS/Twine [14].  
Detailed comparison of these projects may be found in 
[1].  These protocols may be roughly classified as two 
models: client-service model and client-service-directory 
model.  In simple environments such as home 
environments, the client-service model may be used.  
Clients first inquire about the services’ availability.  
Comparing with the client’s queries, matched services 
return replies.  After receiving responses from services, 
clients select and contact services.  To support thousands 
of computing services, such as the services in enterprise 
environments, directories may be used to store the 
service information.  In the client-service-directory 
model, a client queries a directory for service 
information and then contacts services.  Services, on the 
other hand, register service information with directories.  
In these two service discovery models, user information 
is not considered.  Therefore, any services may be 
discovered and used by any user.  Otherwise, it is 
assumed that there are some ways to gain user 
information.  This assumption is not appropriate in 
pervasive computing environments, especially 
considering the heterogeneous capability of the devices 
that need to handle many different roles of users.  

As one of the first secure service discovery protocol, 
SSDS from UC Berkeley has many built-in security 
features [2].  In SSDS, directories, known as Service 
Discovery Service Servers, are in a hierarchical structure 
and all directories are trusted.  Clients and services 
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authenticate with the directories for service lookups and 
announcements, respectively.  Various other security 
features are considered including authorization, data and 
service privacy, and integrity.  In short, SSDS is good for 
environments, such as enterprise environments, where 
clients are willing to expose identities and service 
requests, and where services are willing to expose their 
service information to central directories.  In pervasive 
environments, however, central directories may not be 
appropriate.  For example, as a service owner, Bob may 
not be willing to register his MP3 player with the office’s 
directory.  On the other hand, the office’s directory may 
not accept a request that Alice wants to register her MP3 
player.  The situation of both Bob’s directory and the 
office’s directory coexisting is not addressed. The 
consequence might be that Bob has to supply credentials 
manually.  Thus, SSDS may not work well within 
pervasive environments and does not meet our 
requirements as discussed in the Introduction section.   

UPnP Security [3] offers many security solutions for 
environments such as home environments.   In UPnP 
Security, devices are named personally and identified by 
public keys.  Different authorization methods are 
supported, for instance, access control lists, authorization 
servers, authorization certificates, and group definition 
certificates.  UPnP Security has a generic method to 
differentiate an owner’s devices from others.  Based on 
the hash of a device’s public key, a user can decide 
whether owning the device or not.  One shortcoming of 
the approach is that all devices need to respond back to a 
client.  In our scenario, if Bob waits in a train station and 
wants to use his earphone to discover his MP3 player, 
then all MP3 players in the vicinity will reply back to the 
service discovery request.  Although Bob’s earphone will 
tell which MP3 player is Bob’s, the process is not 
efficient.  Among all services that reply, users may not 
have privileges to access many of them and should not 
even be aware of the existence of the services.     

Other work also influences our approach, such as 
SDSI [15] and SPKI [16].  We borrow the ideas of using 
public keys and hashes of public keys to represent 
principals (e.g., users and organizations).  We also use 
Bloom filters [4] extensively in our protocol because 
using Bloom filters provides a good method for 
membership tests.  In Summary Cache [17], cached web 
pages at a proxy are represented as a Bloom filter form 
and shared among neighbor proxies.  To support wide-
area service discovery in SSDS [2], service information 
is in Bloom filter form when building the hierarchical 
directory structures.  The Resurrecting Duckling security 
policy [18, 19] provided a new way for authentication in 
pervasive computing environments.  By mimicking the 
behavior of mother ducks and ducklings, the policy sets 
up a master-slave relation.  We borrow the idea to 
associate owners’ services with their directories. 

3. Service Discovery Architecture  

In our service discovery architecture, there are four 
types of components – clients, services, directories, and 
user agents.  The architecture is based on the client-
service-directory model [1].  Two discovery diagrams 
are shown in Figure 2.  Clients and services are similar to 
their counterparts in the client-service-directory model.  
Directories, however, are different from the existing 
protocols.  User agents manage credentials for users.  We 
discuss directories and user agents first.  Then, we 
discuss two bindings in bootstrapping as steps A and B 
in Figure 2.  The detailed discovery process, as 
unlabelled arrows in Figure 2, is discussed in Section 4.  

 
Figure 2. Two service discovery models. 

3.1. Owner-based Service Management 

In our model, an owner defines its domain 
represented by a public encryption key and assigns 
privileges to its users.  Directories store information of 
the devices and services that belong to their owners.  It 
may also store information of devices or services, which 
are temporarily owned by the directory’s owner.  For 
example, store rental car information in one’s directory. 

An owner may have a few domains, for instance, a 
long-term domain and a temporary domain.  The long-
term domain of a user may be used to share services with 
family members.  At the same time, the user may have a 
temporary public key to represent a temporary domain to 
share services with another user instead of creating a 
certificate or a temporary user in the long-term domain. 
Moreover, by moving the requirements onto directories, 
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owner-based service management may reduce the 
minimum security and privacy requirements on services. 

3.2. User Agent-based Service Discovery 

Users may have many digital credentials to represent 
their roles in real life.  For example, Bob may have 
credentials from work, from other family members, from 
friends, or for anonymous uses.  We think that the idea 
proposed in SDSI/SPKI that each user is a certification 
authority is attractive for pervasive computing 
environments.  Thus, a user may have many credentials.  
The user agent manages credentials centrally for the user.   

Before each discovery, a client needs to bind to a user 
agent.  The user agent supplies all credentials that are 
needed for service discovery.  In other words, when the 
same device is used by two users, the discovery results 
may be different because the user agents and therefore 
user roles are different.  Moreover, user agent-based 
service discovery also simplifies the requirements for 
clients to authenticate users. 

Various possible configuration approaches may exist 
depending on the devices on which the clients and user 
agents run.  Figure 2 (a) shows a PDA discovering 
services, while Figure 2 (b) shows a digital camera 
without a public key operation capability discovering 
services via a user agent on a Personal Server [20] (a 
powerful processing and networking handheld device).   

3.3. Bootstrapping 

Before a service discovery starts, two bindings are 
necessary: a client needs to find a user agent and services 
need to announce information to directories.  The 
binding between clients and user agents may be 
established via side channels.  Then using these side 
channels, user agents and clients may share session keys.  
Detailed discussion may be found in [21].  The binding 
between a service and a directory is long-term.  We 
borrow the master-slave relationship from the 
Resurrecting Duckling approach [18, 19], a directory as a 
mother duck (master) and services as ducklings (slaves).  
After establishing the master-slave relationship, a service 
and a directory use a secure channel for communication.  
Service information expressed in directories, however, is 
short-term and fresh.  Directories keep soft state of the 
service information.  In other words, service information 
is announced with a life span.  A service needs to 
announce its information again before expiration.  
Meanwhile, directories periodically flush out stale 
services.  We also assume that before a service access, a 
service owner has assigned privileges to users. 

4. The PrudentExposure Model 

In our model, directories provide most security and 
privacy functionalities at the service provider side 
(services and directories).  Likewise, at the discovering 

side (clients and user agents), user agents handle user 
credentials and most security and privacy information.  
Therefore, the problem is to solve the privacy and 
security issues between user agents and directories.  If 
users have valid credentials from service providers, they 
can smoothly authenticate with the directories.  Thus, the 
key problem is that user agents need to find the existing 
directories.  During this discovering process, the user 
agents need to send out credential information and the 
domains need to release the domain information for these 
two parties to build up trust relationship with each other. 

To keep this discovering process private and secure, 
user agents and directories may speak code words.  A 
user agent says a code word, and then a directory checks 
whether or not the code word is correct.  If the code word 
is correct, the directory says another code word and the 
user agent checks.  Since there may be many directories 
in the vicinity, a user agent may say many code words in 
one message.  We use a Bloom filter to represent 
directories that a user wants to contact.  The advantages 
of using Bloom filters in our case are: security and 
privacy, simple code word assessments, space efficiency, 
and scalability.  Eavesdroppers, however, may replay the 
code words, thus we use one-time code word to improve 
privacy for user agents and directories.   

Dom ain match

Authentication

Service selection

Key exchange

Invocation

[Match]

[Not m atch]

[Success]

[E lse]

[Selected]

[Else]

 
Figure 3. The PrudentExposure activity diagram. 

The PrudentExposure model has five major steps, as 
shown in Figure 3, in the following order: domain match, 
authentication, service selection, key distribution, and 
invocation.  First, a user agent looks for the domains that 
are available. After knowing the available domains, it 
selects the correct credentials to authenticate with them.  
Next, the user agent and the client ask the directories for 
service information.  After receiving service information 
from directories, the client selects one.  Then, an 
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encryption key is distributed to the selected service and 
the client.  Finally, the client uses the service.  To limit 
the information exposure, the discovery process stops, if 
either the discovering side or the service provider side 
detects that it is impossible for a service access. 

4.1. An Introduction of Bloom Filters  

Bloom filters are suggested as an efficient way to test 
membership [4].  The basic idea has two parts: Bloom 
filter generation and membership test.  To generate a 
Bloom filter, as shown in Figure 4 (a), select several 
hash functions first.  The ranges of the hash functions are 
the same.  The Bloom filter is represented as a bit array, 
whose length equals to the range of the hash functions.  
Each possible hash result is represented as a bit in the 
Bloom filter.  The filter is initially set to zero.  Given a 
set of elements, apply every hash function to each 
element.  Then using a hash result as an index, we set a 
bit in the array.  Note that a bit may be set many times 
due to different elements or due to different hash 
functions.  For a membership test of an arbitrary element, 
the process is similar, as shown in Figure 4 (b).  Apply 
every hash function to the element.  Then use each hash 
result as an index to look up in the Bloom filter; any zero 
found at the index position in the filter means non-
membership.  The Bloom filters need to be rebuilt or 
updated when the set of members change.  

 Membership tests always recognize members 
correctly, but there may be false positive cases. False 
positive cases mean that non-members are identified as 
members.  By adjusting the number of hash functions 
and the length of a Bloom filter, different false positive 
rates will occur.  The possibility of false positives in our 
case is very low and thus the waste of calculation and 
communication is very limited as we will discuss in 
Section 5.1.   

4.2. Protecting Credential Privacy 

We use Bloom filters to represent domain identities.  
Each domain identity is represented as a bit in the filter 
and a bit is a code word.  Many code words may be 
expressed in a Bloom filter.  To generate the Bloom 
filter, first we calculate the hash of the domain identity 
using the function h(domain identity).  Then, we use the 
mod function, mod(h(domain identity)), to find out the 
bit to set in the Bloom filter.1  There are two Bloom 
filters used: one generated at the user agent side and the 
other generated at the directory side.  A user agent 
generates a Bloom filter by specifying necessary 
credentials.  Then the Bloom filter is sent to directories 

                                                           
1 Note mod(h(domain identity)) is equivalent to the hash function that 
we discuss in Section 4.1, while h(domain identity) is an existing hash 
function that we utilize.  Since we may think the mod function as the 
last step of a Bloom filter hash function, we do not distinguish them 
later. 

for a membership test.  Likewise, if a directory finds a 
match, it will generate a Bloom filter indicating the 
domain that it manages and sends the Bloom filter to the 
user agent for a membership test.  The Bloom filters may 
be calculated beforehand.  Nevertheless, the filters need 
to be rebuilt, if a user has greater or fewer credentials or 
if a domain’s identity changes. 

 
Figure 4. A Bloom filter example using 3 hash 
functions. (a). Generating a Bloom filter. (b) A 

membership test. 

User agents and directories agree on hash functions 
in advance.  For example, a user agent uses hash 
function, hash1(), to create a Bloom filter, and then a 
directory uses the same hash1() to do a membership test.  
Likewise, if there is a match, the directory uses hash 
function, hash2(), to generate the other Bloom filter and 
the user agent does a membership test using the same 
hash function.  In this way, both the user agent and the 
directory know the other side has the knowledge of the 
domain identity.  The method of using hash functions 
could be more flexible by specifying the functions in the 
messages.  

We choose MD5, SHA-1 and RIPEMD-160 as our 
hash functions because of their good properties of 
preimage resistance (computationally impossible to find 
the original message from the hash result) and collision 
resistance (computationally impossible to find two 
distinct messages with the same output) [22].  By default, 
all user agents use MD5 as the hash function.  The 
RIPEMD-160 is used as an optional hash function for 
user agents to decrease the probability of false positive 
(more detail in Section 5.1).  All directories use SHA-1 
as the hash function for the reply messages.  The default 
Bloom filter length in the implementation is 8,192 bits 
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(1024 bytes).  After we calculate the hash value, we 
calculate the Bloom filter bit by hash mod 8192.  
Furthermore, compression operations may be used to 
decrease the length of the Bloom filters. 

4.3. Exchanging Dynamic Information to 
Improve Privacy 

One subtle problem of using static code words, bits in 
Bloom filters in our case, to represent domain identities 
is that an eavesdropper may physically associate bits 
with domains without finding the original identities.  The 
eavesdropper may replay those bits and check the reply 
messages to test the existence of the directories.  For 
some domains, such as public computing service in an 
office, privacy may not be important.  For personal 
domains that represent users, better privacy may be 
necessary.  Furthermore, an eavesdropper may physically 
find out who are the users of a domain by checking the 
relative bits in Bloom filters.  Therefore he may figure 
out the relative credentials that the users have. 

 

 
 
Figure 5. Using dynamic information to generate 

Bloom filters. 

In order to hide the presence of domains and protect 
user credentials, we add a time variant parameter when 
calling the hash functions, specifically hash-based 
message authentication codes as discussed in [22].  The 
detailed method of setting a Bloom filter bit is 
highlighted in Figure 5.  By adding a time variant 
parameter, a different bit may be set in the Bloom filter 
each time and a replay message can be easily detected.  
As shown in Figure 5, a domain identity is considered a 
key and the time variant parameter is considered a 
message.  (To simplify explanation, we use a domain 
identity as a secret.  Otherwise, a secret associated with 
the domain identity should be used.)  The time variant 
parameter includes a random number and a timestamp in 
our case.  A user agent generates the parameter and sends 
it along with the Bloom filter to directories.  At the 
directory side, the same calculation will be performed.  A 
match means a possibility that a user has the knowledge 
of the credential.  When a domain initially creates a user, 
it notifies the user agent to calculate dynamic Bloom 
filter bits before each discovery.  Moreover, a user agent 
uses the same time variant parameter for a discovery for 
all domains that require dynamic Bloom filters settings.  

Results of both dynamic and static (keyed and unkeyed) 
hash functions are set in the same Bloom filter in a 
message.   

4.4. Protecting Service Request Privacy 

A service request specifies a service name and 
attributes.  Nevertheless, it is not necessary to let all 
directories know the request.  In our scenario, Bob may 
not want to tell the office’s directory that he is looking 
for an MP3 player.  Thus, instead of specifying the 
service and attributes, a client may ask directories what 
services are available and authorized for it to access.  
This is similar to the wildcard search in many service 
discovery protocols [1].  Unlike those protocols, the 
reply messages are in Bloom filter form in our model.  
The Bloom filters always fits in a single message, while 
the message lengths of the existing approaches may vary, 
especially too many services matched to fit within a 
message.  Since services and attributes expressed in 
Bloom filter form were discussed in detail in SSDS [2], 
we do not further discuss it here.  In short, Bloom filters 
can express many services and attributes in a filter.  In 
SSDS, hierarchical directories need to handle much more 
services than in our model, thus we are not concerned 
about the performance of building and rebuilding the 
Bloom filters.   Unlike SSDS, queries in our model are 
evaluated at the client side instead of the directory side. 

4.5. The Detailed Mechanism and Protocol 

The message exchange sequence diagram of our 
model is shown in Figure 6 and the protocol is shown in 
Figure 7.  In the first step, a client sends a service request 
to a user agent using a session key shared between them.  
The shared key is generated during the bootstrapping 
process that we described in Section 3.3.  Then in step 2, 
the user agent sends a message asking available domains.  
After receiving the request, a directory does a 
membership test to see if any of its domains matches the 
request in step 3.  If the directory finds a match in the 
Bloom filter, it creates a new Bloom filter and then sends 
the Bloom filter back in step 4.  Note the directory sets 
two bits: one bit is that the directory finds itself as a 
match and the other bit is set by using another hash 
function as we have discussed in Section 4.2. 

If there is a match in step 5, the user agent 
authenticates with the directory.  All messages 
afterwards are encrypted using a session key exchanged 
between the user agent and the directory.  The user agent 
forwards the service request in step 6.  Then the directory 
matches the services and sends a reply message back in 
steps 7 and 8.  Next, the user agent forwards the 
messages to the client and lets the client select (steps 9 
and 10).  After the client selects a service, it sends the 
request to the user agent and the user agent forwards it 
with another session key to the directory (steps 11 and 
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12).  This session key is for the client and the service to 
use.  Next, the user agent and the directory forward the 
session key to the client and the service respectively 
(steps 13 and 14).  Last, in steps 15 and 16, the client and 
the service interact with each other. 

 

Figure 6. The PrudentExposure message 
sequence diagram. 

5. System Evaluation  

In this section, we first analyze the mathematical 
properties of our PrudentExposure model.  Then, we 
consider possible attacks.  Last, we formally verify our 
security protocol. 

5.1. Mathematical Properties of the 
PrudentExposure Model 

Bloom filters do not have false negative cases, as 
discussed in [4].  In other words, if a user has a 
credential for a domain, the relative bits in the filter will 
always be set correctly.  Similarly, if a directory is the 
directory a user wants to contact, it will always set bits 
correctly in the reply messages.  Therefore, our concern 
is the false positive cases.  Given a directory is not a 
directory that a user wants to contact, what is the 
probability that we identify that the domain is one that 
the user wants to contact?  The consequence of this false 
classification is that a user agent sends its encrypted 
credential to the directory.  The directory, however, is 
not able to decrypt and thus the communication stops.  
Alternatively, given a user does not have a credential for 

a domain, what is the probability that we identify that the 
user has a credential?  The consequence is that a 
directory participates in one round of wasteful 
computation and communication.   

Now we look at the false positive cases 
quantitatively.  In this subsection, the discussion of the 
probability of false positive is based on both user agents 
and directories are honest.  (We will discuss malicious 
users and directories in Section 5.2.)  A user agent 
calculates its credentials using one hash function and sets 
the relative bits in a Bloom filter.  Given the Bloom filter 
with L bits and a user has C credentials, a bit will be set 
to one with probability: 





 


 −−=

C

L
nonmembermatchp

1
11)|(   (1) 

 where 


 −
L

1
1 is the probability that a bit is zero after one 

credential is calculated and inserted, and C

L



 −
1

1
is the 

probability that a bit is zero after all necessary 
credentials are calculated and inserted.  The false 
positive probability for each domain of a directory is 
exactly (1).  In Figure 8 (a), we show the probability of 
false positive using one hash function on various 
numbers of credentials.  The Bloom filter length in bits is 

Figure 7. The PrudentExposure protocol. 

Notation:  
C is a client; U is a user agent; D is a directory; S is a service. 
M is a message.  tX is a timestamp that X attaches.  RX is a 
random number that X generates. 
SR is a service request. MS is a matched service list.  PS is a 
service the client picks.  KXY is a symmetric encryption key 
shared between X and Y.  ( )KX

−1 is X’s signature using its 
signing private key.  ( )KX is an encryption using the public 
encryption key of X.   
( )KXY  is an encryption using a symmetric key K shared 
between X and Y.  UBF is a Bloom filter representing the 
domains that a user belongs.  DBF is a Bloom filter 
representing the domain a directory in charge of.   

Step Sndr/Rcvr Message In Fig. 6 
1 C→U: (SR, tC)KUC 1 
2 U→D: UBF, RU, tU 2 
3 D→U: DBF, RU, tU 4 
4 U→D: (KUD, tU) KD, (U, tU, KUD) 

KU 
−1, (SR, tU)KUD 

6 

5 D→U: (MS, tU, tD)KUD 8 
6 U→C: (MS, tU2, tC)KUC 9 
7 C→U: (PS, tC2, tU2)KUC 11 
8 U→D: (PS, tD, KCS)KUD 12 
9 D→S: (KCS, tD2)KDS 13 
10 U→C: (KCS, tC2)KUC 14 
11 C→S: (M1, tC3)KCS 15 
12 S→C: (M2, tC3)KCS 16 

 



8 

less than the maximum length of an Ethernet packet 
(12,000 bits).  One way to reduce the probability of false 
positive is to use more than one hash function.  Figure 8 
(b) shows the probability of false positive using two hash 
functions, which 

is:
22

1
11)|( 



 


 −−=

C

L
nonmembermatchp . 

 

 
Figure 8. The probability of false positive of the 
PrudentExposure model at the directory side.   
(a). Using one hash function.  (b). Using two 

hash functions 

 After a directory finds a match, it returns a Bloom 
filter, which has up to two bits set.  The first bit is the bit 
that the directory finds as a match, and the second bit is 
set by using another hash function.  The probability of 
false positive of each credential for a user agent is 

L
nonmembermatchp

1
)1()|( ×= , which is very low.  

For example, for a 2K bits Bloom filter with 250 
credentials encoded, the false positive rate is about 
0.0001.  Thus, a user is quite confident when there is a 
match.  It is not necessary to send the entire Bloom filter 
back to the client because there are only two bits set.  A 
message that indicates which two bits are set is enough.  
If an owner has multiple domains that match a user’s 
request, the bits for each domain are indicated in order in 
a message.  Furthermore, including one more round of 
message exchange will dramatically decrease the 

probability of false positive.  The probabilities of false 
positive at the directory side and the user agent side are 

LL
nonmembermatchp

11
)1()|( ××=  and 

LLL
nonmembermatchp

111
)1()|( ×××= , respectively.   

More than one round of message exchanging is 
unnecessary in most cases. 

 The mod function, which we use is mod(8192), is a 
mapping function from 2128 space to 213 space (MD5 is 
128 bits, others are 160 bits).  This means that there are 
2115 possible hash results will set the same bit in a Bloom 
filter (supposing the hash result is evenly distributed in 
the 2128 space).  It is not worthwhile for attackers to find 
out the hash.  Even if an attacker found a hash, it is still 
mathematically impossible to find the original domain 
identity from the hash. 

5.2. Threats Analysis 

Since a user agent knows the public keys of the 
directories with which it wants to interact, all messages it 
exchanges with the directories can be encrypted, as 
shown in Figure 6 step 6 and afterwards.  Thus, we focus 
on how a user agent correctly identifies directories and 
how a directory correctly identifies a user.  Unlike the 
discussion in Section 5.1 that assumes both directories 
and user agents are honest, user agents and directories 
might be malicious.  There could be external or internal 
attackers.   

Internal attackers know the credentials, so they can 
always set the right bits in the Bloom filters regardless of 
whether static or dynamic information are exchanged.  A 
user agent will believe an attacker as a directory.  The 
attacker, however, is not able to decrypt the message, 
which is encrypted using the directory’s public key.  
Thus, no security and privacy information leaks further. 

External attackers on the other hand will not gain 
much because the steps 2-5 in Figure 6 are for a user 
agent to identify the existence of the directories.  Acting 
as a user agent, the attacker may cause a directory to 
respond.  In this case, the probability of false positive 
using one hash function for the directory is 

L

M
nonmemberivefalsepositp =)|( , M is the number of 

bits set in a Bloom filter.  Since the more bits set the 
higher the false positive rate, a very high ratio of 1’s set 
in a Bloom filter is suspicious.  Similarly, an attacker 
that keeps sending Bloom filters with a majority of the 
bits set differently is also suspicious.  Directories do not 
remember the states before authentication.  Therefore the 
attacks will have a limited waste of resources.  Acting as 
a directory, the chance of guessing the correct answer is 

L
nonmemberivefalsepositp

1
)|( = .  Another possible 
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attack is to replay reply messages heard from other 
directories.  Even though a user agent is fooled and sends 
back an authentication message as the step 6 in Figure 6, 
the attacker is still not able to decrypt the message. 

5.3. Formal Verification 

We formally verify our protocol using BAN logic [5] 
and extend the logic to meet our needs.  It assists us to 
improve our protocol.  During a few rounds of design 
and verification processes, the logic helps to find a subtle 
bug and helps us to make decisions.  The detailed 
notation may be found in [5].  As the convention of the 
verification process, we first convert the protocol to an 
idealized protocol.  Next, we list all assumptions.  Then, 
we deduct step-by-step based on logical postulates to 
reach our conclusion.  The deduction is quite lengthy and 
we omit it.  We only show the idealized protocol and 
stepwise results in Table 1 and omit the detailed 
discussion of the process.  Step 1 is trivial.  From Step 4 
to Step 11 is a procedure of authentication and key 
distribution, thus we use the BAN logic smoothly.  

Table 1. Formal verification using BAN logic. 

Step Idealized Protocol Stepwise results 
1 {SR, #(SR)}KUC U≡ SR 
2 UBF D≡ UBF 
3 DBF U≡ DBF 
4 {U

UDK D, #( U
UDK D)} KD, {tU, U, 

U
UDK D}  KU 

−1, {SR, #(SR )}KCU 

D≡ U
UDK D,  

D≡ SR 

5 {MS, #(MS)}KUD U≡ MS 
6 {MS, #(MS)}KUC C≡ MS 
7 {PS, #(PS)}KUC U≡ PS 
8 {PS, #(PS), C

CSK S,  

#(C
CSK S)}KUD 

D≡ PS,  
D≡ C

CSK S 

9 {C
CSK S,  #(C

CSK S)}KDS S≡ C
CSK S 

10 {C
CSK S,  #(C

CSK S)}KUC C≡ C
CSK S 

11 {C
CSK S,  #(C

CSK S)}KCS from C S≡ C≡ C
CSK S 

12 {C
CSK S,  #(C

CSK S)}KCCS from S C≡ S≡ C
CSK S 

 
Since steps 2 and 3 are not authentication messages, 

the logic cannot be used directly.  We extend the logic to 
help us check these two steps, because the power of the 
BAN logic is its ability to check the freshness and 
binding.  We extend the logic constructs as follows:  
• (M⊂⊂⊂⊂G): M is a member of group G, who knows the 

shared secret. 
• P[BF]Y: P finds a match in a Bloom filter, which uses 

Y as a secret.  This only means that there is a possibility 
that the Bloom filter generating party knows the secret 

Y.  The probability is as we discussed in Section 5.1 
and Section 5.2. 

• P
Y

∞ G: P shares a secret Y with a group G.  In our case, 
G is the group of users of the domain P. 
 
We also add the following postulates: 

The first postulate, (1), states that if P finds a match in a 
Bloom filter using secret Y, then there is a probability 
that one member M of group G generates the Bloom 
filter.  Therefore, we are clear that if the Bloom filter is 
generated without a time variant parameter, the filter 
may be replayed.  The second postulate, (2), goes further 
based on the freshness of the Bloom filter.  It comes to 
the conclusion that the principal P believes that one 
member of its user group generates the filter with certain 
probability.  Since that member has the control over the 
generation of the Bloom filter, P believes the Bloom 
filter (Postulate (3)).  Based on these postulates, we can 
mechanically deduct and get the results as shown in 
Table 1.   

Moreover, the logic forces us to explicitly write down 
our assumptions to clarify our design goals.  Our 
protocol is targeted for wired or wireless LAN 
environments.  If used beyond LAN environments, given 
that a user agent and a directory cannot directly hear 
each other’s multicast or broadcast messages, the 
messages may be replayed in real-time without notice.  
Furthermore, the time stamp and the random number 
used as the time variant parameter require accurate 
internal clocks (not drift days) in the user agents and 
directories.  We do not require synchronized clocks, but 
accurate clocks are necessary to make time stamps valid.   

5.4. Performance Discussion 

Our model is based on the client-service-directory 
model.  Compared to that model, our model is more 
efficient in some aspects and has overheads in other 
aspects.  Our model is more efficient that instead every 
directory replies, a directory only replies when a match is 
found.  However, there are three additional messages are 
needed in comparison to the unsecured client-service-
directory model.  Two messages are for the user agent 
and the directory to send the session key to the client and 
the service, respectively.  The other message is for the 
user agent to notify the directory that a service is selected 
and to forward the session key.  Other overheads are that 
user agents and directories need to calculate Bloom 
filters and do membership tests (steps 2-5 in Figure 6); 
user agents authenticate with directories and do public 
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key encryption and decryption operations (steps 5-6); 
and every party does some symmetric key encryption 
and decryption operations (from step 6 to step 16).   

Our previous experience with respect to building a 
secure service discovery protocol shows that the 
overhead of doing secure key operations are rather 
efficient [23].  The public key operations take hundreds 
of milliseconds on PCs and PDAs, while symmetric key 
or hash operations are at dozens of milliseconds.   

6. Conclusion 

In this paper, we have proposed a private and user 
centric service discovery model.  The PrudentExposure 
model provides an efficient way for authorized users to 
discover services simply, while hiding services from 
unauthorized users.  It automatically selects the right 
credentials for service accesses.  We protect privacy for 
service information, user credentials, domain identities, 
domain existence information, and service requests.  We 
have analyzed our model mathematically and have 
proven the correctness of our protocol formally.   

Potential devices as user agents might be Personal 
Servers [20] or iButtons [24] because these devices are 
handy and may be available whenever needed.  Since 
Personal Servers’ processing capability, network 
capability, and storage capacity are as good as laptops.  
They may serve as proxies or user agents, via which less 
processing power devices discover services.  iButtons on 
the other hand are very small and can be worn as a ring.  
One type of the iButtons is able to process various public 
key operations within a second [24].  We are also 
working on extending our model to discover services 
without presence of directories. 
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