
1

PrudentExposure: A Private and User-centric Service Discovery Protocol

Feng Zhu1 Matt Mutka1 Lionel Ni2
1Dept. of Computer Science and Engineering

 Michigan State University
East Lansing, Michigan, USA

{zhufeng, mutka}@cse.msu.edu

2Dept. of Computer Science
Hong Kong University of Science and Technology

Kowloon, Hong Kong, China
{ni}@cs.ust.hk

Abstract: Service Discovery as an essential element
in pervasive computing environments is widely accepted.
Much active research on service discovery has been
conducted, but privacy has been ignored and may be
sacrificed. While it is essential that legitimate users
should be able to discover services of which they have
credentials, it is also necessary that services be hidden
from illegitimate users. Since service information,
service provider’s information, service requests, and
credentials to access services via service discovery
protocols may be sensitive, we may want to keep them
private. Existing service discovery protocols do not
solve these problems. We present a user-centric model,
called PrudentExposure, as the first approach designed
for exposing minimal information privately, securely,
and automatically for both service providers and users of
service discovery protocols. We analyze the
mathematical properties of our model and formally
verify our security protocol.

1. Introduction

As we are moving towards pervasive computing
environments with billions of users, devices, and
services, service discovery as an essential element is
widely accepted. Many products and standards have
emerged and much research work has been conducted.
Privacy, however, has been ignored and therefore may be
sacrificed when services may be discovered or used by
any user. In this paper, we present a flexible, efficient,
and scalable model, called PrudentExposure, to allow
legitimate users to discover and use services easily, while
it excludes others from discovering services’ existence
for wired and wireless LAN environments.

To help address the problems and solutions, we
sketch a scenario of Bob discovering services at four
places as shown in Figure 1. Bob’s house has various
wired and wireless computing devices. He shares these
devices and services with his family members. As usual,
he puts his PDA and MP3 player in his handbag and a
Bluetooth earphone in his pocket and then travels to his
office. On the way to his office, he does not want others
to know what’s in his bag. Nevertheless, he may wear
his Bluetooth earphone and use it to discover his

Bluetooth MP3 player and listen to songs on the MP3
player. In his office, Bob uses his computer, PDA, and
MP3 player. When Bob goes to Alice’s office, they look
at a document on their office file server simultaneously
with their respective laptops. The devices within his
pocket, however should not be able to discover and use
Alice’s personal services on the devices in her purse, and
vice versa, unless Alice later provides credentials for him
to access. For example, his earphone should not discover
Alice’s Bluetooth MP3 player until Alice allows him to
do so.

On the roadHome

Colleague's office

Office

Figure 1. A service discovery scenario.

Envision that within pervasive environments, dozens
to hundreds of devices and services may surround a user.
Over time, she or he may utilize thousands of services at
different places. Meanwhile, the user may be an owner
of some services and devices. Most service discovery
protocols do not consider security and privacy issues [1].
Devices and services are permitted to discover each other
freely, so that security and privacy may be violated.
Furthermore, exposing service information and service
provider’s information in an unrestricted manner is
inclined to be attacked. Secure service discovery
protocols, such as Secure Service Discovery Service
(SSDS) [2], manage services centrally. Either these
protocols may expose user and service privacy to a
central directory or they may be appropriate for
homogenous environments only. In heterogeneous
environments, it is less likely that all devices and
services are managed centrally because these devices and
services may belong to different owners, such as Bob’s
MP3 player and Alice’s MP3 player in our scenario.

2

Therefore, the user needs to use different credentials to
access different services. As the number of credentials
increases, manually selecting credentials during service
discovery may be tedious. In addition, credentials may
be sensitive and need to be kept private. UPnP Security
[3] provides many authentication and authorization
mechanisms, but the generic mechanism of automatically
selecting services based on hashes is limited to one’s
own services. The approach is inefficient. Moreover,
one common shortcoming of these existing protocols is
that discovery is device-centric. Either the discovering
device determines the discovery results, or it is assumed
that the discovering devices have some ways to gain
proper user credentials for certain services. It is highly
risky if the discovering device determines the result,
because it may totally violate access control of the
services. For example, if Bob holds Alice’s PDA, it will
disclose all of Alice’s personal services. Meanwhile,
simply assuming that user credentials may be gained in
some way is not appropriate. In order to provide security
and privacy under this assumption, either complicated
logic may need to be built in each discovering device or
tedious user involvement may be necessary.

In PrudentExposure, explicit user information is
required before a service discovery. Service
management is owner-based. Discovery is user-centric
and is based on the user roles. A user-centric model
avoids the risk of the access violation in the device-
centric model. Moreover, our PrudentExposure model
manages user credentials centrally. Hence, the minimum
processing requirements for discovering devices are
reduced and the processing logic is simplified. We
identify two basic goals for our model. First, privacy
information including service information, service
providers’ identities and presence information, users’
credential information, and service query information are
exposing prudently. Second, an automatic scheme
exposes only necessary credentials for the discovery
processes. To our knowledge, there is no service
discovery protocol that supports user and service privacy
and meets the requirements as we discussed above. In
PrudentExposure, privacy is protected before and during
authentication, authorization, service selection, and
invocation. Credential and service information is
exchanged in a secure and private form, more
specifically within Bloom filter form [4]. Further
information exposure between a discovering party and a
service provider is based on mutual matches within a
step-by-step manner. Moreover, by protecting their
sensitive information by hiding it and by not responding
to arbitrary queries in the first place, devices and services
may be less likely attacked.

We analyze the mathematical properties of our model
and compare different design choices. Our approach is
complete such that users do not miss any services that

they should discover and a service lets all legitimate
users discover it. Our privacy protocol is developed in a
secure service discovery context. It is flexible to support
various credentials and scalable to support many
credentials. Moreover, we formally and mechanically
verify our protocol by using and extending BAN logic
[5]. The rest of the paper is as follows. In Section 2, we
discuss work related to secure and private service
discovery protocols. In Section 3, we present our service
discovery architecture. Next in Section 4, we illustrate
our PrudentExposure model. Then we analyze and
evaluate our model in Section 5. Last in Section 6, we
conclude and discuss our future work.

2. Related Work

Active service discovery research has occurred in
both industry and academia. Major operating system
vendors have shipped service discovery protocols with
their operating system products, such as Sun
Microsystems’s Jini [6], Microsoft’s Universal Plug and
Play (UPnP) [7], and Apple Computer’s Rendezvous [8].
Service discovery protocols such as Bluetooth Service
Discovery Protocol [9], Salutation [10], and Service
Location Protocol Version 2 [11] are from different
standardization organizations. Some representative
academic projects are DEAPspace [12], Intentional
Naming System (INS) [13], and INS/Twine [14].
Detailed comparison of these projects may be found in
[1]. These protocols may be roughly classified as two
models: client-service model and client-service-directory
model. In simple environments such as home
environments, the client-service model may be used.
Clients first inquire about the services’ availability.
Comparing with the client’s queries, matched services
return replies. After receiving responses from services,
clients select and contact services. To support thousands
of computing services, such as the services in enterprise
environments, directories may be used to store the
service information. In the client-service-directory
model, a client queries a directory for service
information and then contacts services. Services, on the
other hand, register service information with directories.
In these two service discovery models, user information
is not considered. Therefore, any services may be
discovered and used by any user. Otherwise, it is
assumed that there are some ways to gain user
information. This assumption is not appropriate in
pervasive computing environments, especially
considering the heterogeneous capability of the devices
that need to handle many different roles of users.

As one of the first secure service discovery protocol,
SSDS from UC Berkeley has many built-in security
features [2]. In SSDS, directories, known as Service
Discovery Service Servers, are in a hierarchical structure
and all directories are trusted. Clients and services

3

authenticate with the directories for service lookups and
announcements, respectively. Various other security
features are considered including authorization, data and
service privacy, and integrity. In short, SSDS is good for
environments, such as enterprise environments, where
clients are willing to expose identities and service
requests, and where services are willing to expose their
service information to central directories. In pervasive
environments, however, central directories may not be
appropriate. For example, as a service owner, Bob may
not be willing to register his MP3 player with the office’s
directory. On the other hand, the office’s directory may
not accept a request that Alice wants to register her MP3
player. The situation of both Bob’s directory and the
office’s directory coexisting is not addressed. The
consequence might be that Bob has to supply credentials
manually. Thus, SSDS may not work well within
pervasive environments and does not meet our
requirements as discussed in the Introduction section.

UPnP Security [3] offers many security solutions for
environments such as home environments. In UPnP
Security, devices are named personally and identified by
public keys. Different authorization methods are
supported, for instance, access control lists, authorization
servers, authorization certificates, and group definition
certificates. UPnP Security has a generic method to
differentiate an owner’s devices from others. Based on
the hash of a device’s public key, a user can decide
whether owning the device or not. One shortcoming of
the approach is that all devices need to respond back to a
client. In our scenario, if Bob waits in a train station and
wants to use his earphone to discover his MP3 player,
then all MP3 players in the vicinity will reply back to the
service discovery request. Although Bob’s earphone will
tell which MP3 player is Bob’s, the process is not
efficient. Among all services that reply, users may not
have privileges to access many of them and should not
even be aware of the existence of the services.

Other work also influences our approach, such as
SDSI [15] and SPKI [16]. We borrow the ideas of using
public keys and hashes of public keys to represent
principals (e.g., users and organizations). We also use
Bloom filters [4] extensively in our protocol because
using Bloom filters provides a good method for
membership tests. In Summary Cache [17], cached web
pages at a proxy are represented as a Bloom filter form
and shared among neighbor proxies. To support wide-
area service discovery in SSDS [2], service information
is in Bloom filter form when building the hierarchical
directory structures. The Resurrecting Duckling security
policy [18, 19] provided a new way for authentication in
pervasive computing environments. By mimicking the
behavior of mother ducks and ducklings, the policy sets
up a master-slave relation. We borrow the idea to
associate owners’ services with their directories.

3. Service Discovery Architecture

In our service discovery architecture, there are four
types of components – clients, services, directories, and
user agents. The architecture is based on the client-
service-directory model [1]. Two discovery diagrams
are shown in Figure 2. Clients and services are similar to
their counterparts in the client-service-directory model.
Directories, however, are different from the existing
protocols. User agents manage credentials for users. We
discuss directories and user agents first. Then, we
discuss two bindings in bootstrapping as steps A and B
in Figure 2. The detailed discovery process, as
unlabelled arrows in Figure 2, is discussed in Section 4.

Figure 2. Two service discovery models.

3.1. Owner-based Service Management

In our model, an owner defines its domain
represented by a public encryption key and assigns
privileges to its users. Directories store information of
the devices and services that belong to their owners. It
may also store information of devices or services, which
are temporarily owned by the directory’s owner. For
example, store rental car information in one’s directory.

An owner may have a few domains, for instance, a
long-term domain and a temporary domain. The long-
term domain of a user may be used to share services with
family members. At the same time, the user may have a
temporary public key to represent a temporary domain to
share services with another user instead of creating a
certificate or a temporary user in the long-term domain.
Moreover, by moving the requirements onto directories,

4

owner-based service management may reduce the
minimum security and privacy requirements on services.

3.2. User Agent-based Service Discovery

Users may have many digital credentials to represent
their roles in real life. For example, Bob may have
credentials from work, from other family members, from
friends, or for anonymous uses. We think that the idea
proposed in SDSI/SPKI that each user is a certification
authority is attractive for pervasive computing
environments. Thus, a user may have many credentials.
The user agent manages credentials centrally for the user.

Before each discovery, a client needs to bind to a user
agent. The user agent supplies all credentials that are
needed for service discovery. In other words, when the
same device is used by two users, the discovery results
may be different because the user agents and therefore
user roles are different. Moreover, user agent-based
service discovery also simplifies the requirements for
clients to authenticate users.

Various possible configuration approaches may exist
depending on the devices on which the clients and user
agents run. Figure 2 (a) shows a PDA discovering
services, while Figure 2 (b) shows a digital camera
without a public key operation capability discovering
services via a user agent on a Personal Server [20] (a
powerful processing and networking handheld device).

3.3. Bootstrapping

Before a service discovery starts, two bindings are
necessary: a client needs to find a user agent and services
need to announce information to directories. The
binding between clients and user agents may be
established via side channels. Then using these side
channels, user agents and clients may share session keys.
Detailed discussion may be found in [21]. The binding
between a service and a directory is long-term. We
borrow the master-slave relationship from the
Resurrecting Duckling approach [18, 19], a directory as a
mother duck (master) and services as ducklings (slaves).
After establishing the master-slave relationship, a service
and a directory use a secure channel for communication.
Service information expressed in directories, however, is
short-term and fresh. Directories keep soft state of the
service information. In other words, service information
is announced with a life span. A service needs to
announce its information again before expiration.
Meanwhile, directories periodically flush out stale
services. We also assume that before a service access, a
service owner has assigned privileges to users.

4. The PrudentExposure Model

In our model, directories provide most security and
privacy functionalities at the service provider side
(services and directories). Likewise, at the discovering

side (clients and user agents), user agents handle user
credentials and most security and privacy information.
Therefore, the problem is to solve the privacy and
security issues between user agents and directories. If
users have valid credentials from service providers, they
can smoothly authenticate with the directories. Thus, the
key problem is that user agents need to find the existing
directories. During this discovering process, the user
agents need to send out credential information and the
domains need to release the domain information for these
two parties to build up trust relationship with each other.

To keep this discovering process private and secure,
user agents and directories may speak code words. A
user agent says a code word, and then a directory checks
whether or not the code word is correct. If the code word
is correct, the directory says another code word and the
user agent checks. Since there may be many directories
in the vicinity, a user agent may say many code words in
one message. We use a Bloom filter to represent
directories that a user wants to contact. The advantages
of using Bloom filters in our case are: security and
privacy, simple code word assessments, space efficiency,
and scalability. Eavesdroppers, however, may replay the
code words, thus we use one-time code word to improve
privacy for user agents and directories.

Dom ain match

Authentication

Service selection

Key exchange

Invocation

[Match]

[Not m atch]

[Success]

[E lse]

[Selected]

[Else]

Figure 3. The PrudentExposure activity diagram.

The PrudentExposure model has five major steps, as
shown in Figure 3, in the following order: domain match,
authentication, service selection, key distribution, and
invocation. First, a user agent looks for the domains that
are available. After knowing the available domains, it
selects the correct credentials to authenticate with them.
Next, the user agent and the client ask the directories for
service information. After receiving service information
from directories, the client selects one. Then, an

5

encryption key is distributed to the selected service and
the client. Finally, the client uses the service. To limit
the information exposure, the discovery process stops, if
either the discovering side or the service provider side
detects that it is impossible for a service access.

4.1. An Introduction of Bloom Filters

Bloom filters are suggested as an efficient way to test
membership [4]. The basic idea has two parts: Bloom
filter generation and membership test. To generate a
Bloom filter, as shown in Figure 4 (a), select several
hash functions first. The ranges of the hash functions are
the same. The Bloom filter is represented as a bit array,
whose length equals to the range of the hash functions.
Each possible hash result is represented as a bit in the
Bloom filter. The filter is initially set to zero. Given a
set of elements, apply every hash function to each
element. Then using a hash result as an index, we set a
bit in the array. Note that a bit may be set many times
due to different elements or due to different hash
functions. For a membership test of an arbitrary element,
the process is similar, as shown in Figure 4 (b). Apply
every hash function to the element. Then use each hash
result as an index to look up in the Bloom filter; any zero
found at the index position in the filter means non-
membership. The Bloom filters need to be rebuilt or
updated when the set of members change.

 Membership tests always recognize members
correctly, but there may be false positive cases. False
positive cases mean that non-members are identified as
members. By adjusting the number of hash functions
and the length of a Bloom filter, different false positive
rates will occur. The possibility of false positives in our
case is very low and thus the waste of calculation and
communication is very limited as we will discuss in
Section 5.1.

4.2. Protecting Credential Privacy

We use Bloom filters to represent domain identities.
Each domain identity is represented as a bit in the filter
and a bit is a code word. Many code words may be
expressed in a Bloom filter. To generate the Bloom
filter, first we calculate the hash of the domain identity
using the function h(domain identity). Then, we use the
mod function, mod(h(domain identity)), to find out the
bit to set in the Bloom filter.1 There are two Bloom
filters used: one generated at the user agent side and the
other generated at the directory side. A user agent
generates a Bloom filter by specifying necessary
credentials. Then the Bloom filter is sent to directories

1 Note mod(h(domain identity)) is equivalent to the hash function that
we discuss in Section 4.1, while h(domain identity) is an existing hash
function that we utilize. Since we may think the mod function as the
last step of a Bloom filter hash function, we do not distinguish them
later.

for a membership test. Likewise, if a directory finds a
match, it will generate a Bloom filter indicating the
domain that it manages and sends the Bloom filter to the
user agent for a membership test. The Bloom filters may
be calculated beforehand. Nevertheless, the filters need
to be rebuilt, if a user has greater or fewer credentials or
if a domain’s identity changes.

Figure 4. A Bloom filter example using 3 hash
functions. (a). Generating a Bloom filter. (b) A

membership test.

User agents and directories agree on hash functions
in advance. For example, a user agent uses hash
function, hash1(), to create a Bloom filter, and then a
directory uses the same hash1() to do a membership test.
Likewise, if there is a match, the directory uses hash
function, hash2(), to generate the other Bloom filter and
the user agent does a membership test using the same
hash function. In this way, both the user agent and the
directory know the other side has the knowledge of the
domain identity. The method of using hash functions
could be more flexible by specifying the functions in the
messages.

We choose MD5, SHA-1 and RIPEMD-160 as our
hash functions because of their good properties of
preimage resistance (computationally impossible to find
the original message from the hash result) and collision
resistance (computationally impossible to find two
distinct messages with the same output) [22]. By default,
all user agents use MD5 as the hash function. The
RIPEMD-160 is used as an optional hash function for
user agents to decrease the probability of false positive
(more detail in Section 5.1). All directories use SHA-1
as the hash function for the reply messages. The default
Bloom filter length in the implementation is 8,192 bits

6

(1024 bytes). After we calculate the hash value, we
calculate the Bloom filter bit by hash mod 8192.
Furthermore, compression operations may be used to
decrease the length of the Bloom filters.

4.3. Exchanging Dynamic Information to
Improve Privacy

One subtle problem of using static code words, bits in
Bloom filters in our case, to represent domain identities
is that an eavesdropper may physically associate bits
with domains without finding the original identities. The
eavesdropper may replay those bits and check the reply
messages to test the existence of the directories. For
some domains, such as public computing service in an
office, privacy may not be important. For personal
domains that represent users, better privacy may be
necessary. Furthermore, an eavesdropper may physically
find out who are the users of a domain by checking the
relative bits in Bloom filters. Therefore he may figure
out the relative credentials that the users have.

Figure 5. Using dynamic information to generate

Bloom filters.

In order to hide the presence of domains and protect
user credentials, we add a time variant parameter when
calling the hash functions, specifically hash-based
message authentication codes as discussed in [22]. The
detailed method of setting a Bloom filter bit is
highlighted in Figure 5. By adding a time variant
parameter, a different bit may be set in the Bloom filter
each time and a replay message can be easily detected.
As shown in Figure 5, a domain identity is considered a
key and the time variant parameter is considered a
message. (To simplify explanation, we use a domain
identity as a secret. Otherwise, a secret associated with
the domain identity should be used.) The time variant
parameter includes a random number and a timestamp in
our case. A user agent generates the parameter and sends
it along with the Bloom filter to directories. At the
directory side, the same calculation will be performed. A
match means a possibility that a user has the knowledge
of the credential. When a domain initially creates a user,
it notifies the user agent to calculate dynamic Bloom
filter bits before each discovery. Moreover, a user agent
uses the same time variant parameter for a discovery for
all domains that require dynamic Bloom filters settings.

Results of both dynamic and static (keyed and unkeyed)
hash functions are set in the same Bloom filter in a
message.

4.4. Protecting Service Request Privacy

A service request specifies a service name and
attributes. Nevertheless, it is not necessary to let all
directories know the request. In our scenario, Bob may
not want to tell the office’s directory that he is looking
for an MP3 player. Thus, instead of specifying the
service and attributes, a client may ask directories what
services are available and authorized for it to access.
This is similar to the wildcard search in many service
discovery protocols [1]. Unlike those protocols, the
reply messages are in Bloom filter form in our model.
The Bloom filters always fits in a single message, while
the message lengths of the existing approaches may vary,
especially too many services matched to fit within a
message. Since services and attributes expressed in
Bloom filter form were discussed in detail in SSDS [2],
we do not further discuss it here. In short, Bloom filters
can express many services and attributes in a filter. In
SSDS, hierarchical directories need to handle much more
services than in our model, thus we are not concerned
about the performance of building and rebuilding the
Bloom filters. Unlike SSDS, queries in our model are
evaluated at the client side instead of the directory side.

4.5. The Detailed Mechanism and Protocol

The message exchange sequence diagram of our
model is shown in Figure 6 and the protocol is shown in
Figure 7. In the first step, a client sends a service request
to a user agent using a session key shared between them.
The shared key is generated during the bootstrapping
process that we described in Section 3.3. Then in step 2,
the user agent sends a message asking available domains.
After receiving the request, a directory does a
membership test to see if any of its domains matches the
request in step 3. If the directory finds a match in the
Bloom filter, it creates a new Bloom filter and then sends
the Bloom filter back in step 4. Note the directory sets
two bits: one bit is that the directory finds itself as a
match and the other bit is set by using another hash
function as we have discussed in Section 4.2.

If there is a match in step 5, the user agent
authenticates with the directory. All messages
afterwards are encrypted using a session key exchanged
between the user agent and the directory. The user agent
forwards the service request in step 6. Then the directory
matches the services and sends a reply message back in
steps 7 and 8. Next, the user agent forwards the
messages to the client and lets the client select (steps 9
and 10). After the client selects a service, it sends the
request to the user agent and the user agent forwards it
with another session key to the directory (steps 11 and

7

12). This session key is for the client and the service to
use. Next, the user agent and the directory forward the
session key to the client and the service respectively
(steps 13 and 14). Last, in steps 15 and 16, the client and
the service interact with each other.

Figure 6. The PrudentExposure message
sequence diagram.

5. System Evaluation

In this section, we first analyze the mathematical
properties of our PrudentExposure model. Then, we
consider possible attacks. Last, we formally verify our
security protocol.

5.1. Mathematical Properties of the
PrudentExposure Model

Bloom filters do not have false negative cases, as
discussed in [4]. In other words, if a user has a
credential for a domain, the relative bits in the filter will
always be set correctly. Similarly, if a directory is the
directory a user wants to contact, it will always set bits
correctly in the reply messages. Therefore, our concern
is the false positive cases. Given a directory is not a
directory that a user wants to contact, what is the
probability that we identify that the domain is one that
the user wants to contact? The consequence of this false
classification is that a user agent sends its encrypted
credential to the directory. The directory, however, is
not able to decrypt and thus the communication stops.
Alternatively, given a user does not have a credential for

a domain, what is the probability that we identify that the
user has a credential? The consequence is that a
directory participates in one round of wasteful
computation and communication.

Now we look at the false positive cases
quantitatively. In this subsection, the discussion of the
probability of false positive is based on both user agents
and directories are honest. (We will discuss malicious
users and directories in Section 5.2.) A user agent
calculates its credentials using one hash function and sets
the relative bits in a Bloom filter. Given the Bloom filter
with L bits and a user has C credentials, a bit will be set
to one with probability:





 


 −−=

C

L
nonmembermatchp

1
11)|((1)

 where 


 −
L

1
1 is the probability that a bit is zero after one

credential is calculated and inserted, and C

L



 −
1

1
is the

probability that a bit is zero after all necessary
credentials are calculated and inserted. The false
positive probability for each domain of a directory is
exactly (1). In Figure 8 (a), we show the probability of
false positive using one hash function on various
numbers of credentials. The Bloom filter length in bits is

Figure 7. The PrudentExposure protocol.

Notation:
C is a client; U is a user agent; D is a directory; S is a service.
M is a message. tX is a timestamp that X attaches. RX is a
random number that X generates.
SR is a service request. MS is a matched service list. PS is a
service the client picks. KXY is a symmetric encryption key
shared between X and Y. ()KX

−1 is X’s signature using its
signing private key. ()KX is an encryption using the public
encryption key of X.
()KXY is an encryption using a symmetric key K shared
between X and Y. UBF is a Bloom filter representing the
domains that a user belongs. DBF is a Bloom filter
representing the domain a directory in charge of.

Step Sndr/Rcvr Message In Fig. 6
1 C→U: (SR, tC)KUC 1
2 U→D: UBF, RU, tU 2
3 D→U: DBF, RU, tU 4
4 U→D: (KUD, tU) KD, (U, tU, KUD)

KU
−1, (SR, tU)KUD

6

5 D→U: (MS, tU, tD)KUD 8
6 U→C: (MS, tU2, tC)KUC 9
7 C→U: (PS, tC2, tU2)KUC 11
8 U→D: (PS, tD, KCS)KUD 12
9 D→S: (KCS, tD2)KDS 13
10 U→C: (KCS, tC2)KUC 14
11 C→S: (M1, tC3)KCS 15
12 S→C: (M2, tC3)KCS 16

8

less than the maximum length of an Ethernet packet
(12,000 bits). One way to reduce the probability of false
positive is to use more than one hash function. Figure 8
(b) shows the probability of false positive using two hash
functions, which

is:
22

1
11)|(



 


 −−=

C

L
nonmembermatchp .

Figure 8. The probability of false positive of the
PrudentExposure model at the directory side.
(a). Using one hash function. (b). Using two

hash functions

 After a directory finds a match, it returns a Bloom
filter, which has up to two bits set. The first bit is the bit
that the directory finds as a match, and the second bit is
set by using another hash function. The probability of
false positive of each credential for a user agent is

L
nonmembermatchp

1
)1()|(×= , which is very low.

For example, for a 2K bits Bloom filter with 250
credentials encoded, the false positive rate is about
0.0001. Thus, a user is quite confident when there is a
match. It is not necessary to send the entire Bloom filter
back to the client because there are only two bits set. A
message that indicates which two bits are set is enough.
If an owner has multiple domains that match a user’s
request, the bits for each domain are indicated in order in
a message. Furthermore, including one more round of
message exchange will dramatically decrease the

probability of false positive. The probabilities of false
positive at the directory side and the user agent side are

LL
nonmembermatchp

11
)1()|(××= and

LLL
nonmembermatchp

111
)1()|(×××= , respectively.

More than one round of message exchanging is
unnecessary in most cases.

 The mod function, which we use is mod(8192), is a
mapping function from 2128 space to 213 space (MD5 is
128 bits, others are 160 bits). This means that there are
2115 possible hash results will set the same bit in a Bloom
filter (supposing the hash result is evenly distributed in
the 2128 space). It is not worthwhile for attackers to find
out the hash. Even if an attacker found a hash, it is still
mathematically impossible to find the original domain
identity from the hash.

5.2. Threats Analysis

Since a user agent knows the public keys of the
directories with which it wants to interact, all messages it
exchanges with the directories can be encrypted, as
shown in Figure 6 step 6 and afterwards. Thus, we focus
on how a user agent correctly identifies directories and
how a directory correctly identifies a user. Unlike the
discussion in Section 5.1 that assumes both directories
and user agents are honest, user agents and directories
might be malicious. There could be external or internal
attackers.

Internal attackers know the credentials, so they can
always set the right bits in the Bloom filters regardless of
whether static or dynamic information are exchanged. A
user agent will believe an attacker as a directory. The
attacker, however, is not able to decrypt the message,
which is encrypted using the directory’s public key.
Thus, no security and privacy information leaks further.

External attackers on the other hand will not gain
much because the steps 2-5 in Figure 6 are for a user
agent to identify the existence of the directories. Acting
as a user agent, the attacker may cause a directory to
respond. In this case, the probability of false positive
using one hash function for the directory is

L

M
nonmemberivefalsepositp =)|(, M is the number of

bits set in a Bloom filter. Since the more bits set the
higher the false positive rate, a very high ratio of 1’s set
in a Bloom filter is suspicious. Similarly, an attacker
that keeps sending Bloom filters with a majority of the
bits set differently is also suspicious. Directories do not
remember the states before authentication. Therefore the
attacks will have a limited waste of resources. Acting as
a directory, the chance of guessing the correct answer is

L
nonmemberivefalsepositp

1
)|(= . Another possible

9

attack is to replay reply messages heard from other
directories. Even though a user agent is fooled and sends
back an authentication message as the step 6 in Figure 6,
the attacker is still not able to decrypt the message.

5.3. Formal Verification

We formally verify our protocol using BAN logic [5]
and extend the logic to meet our needs. It assists us to
improve our protocol. During a few rounds of design
and verification processes, the logic helps to find a subtle
bug and helps us to make decisions. The detailed
notation may be found in [5]. As the convention of the
verification process, we first convert the protocol to an
idealized protocol. Next, we list all assumptions. Then,
we deduct step-by-step based on logical postulates to
reach our conclusion. The deduction is quite lengthy and
we omit it. We only show the idealized protocol and
stepwise results in Table 1 and omit the detailed
discussion of the process. Step 1 is trivial. From Step 4
to Step 11 is a procedure of authentication and key
distribution, thus we use the BAN logic smoothly.

Table 1. Formal verification using BAN logic.

Step Idealized Protocol Stepwise results
1 {SR, #(SR)}KUC U≡ SR
2 UBF D≡ UBF
3 DBF U≡ DBF
4 {U

UDK D, #(U
UDK D)} KD, {tU, U,

U
UDK D} KU

−1, {SR, #(SR)}KCU

D≡ U
UDK D,

D≡ SR

5 {MS, #(MS)}KUD U≡ MS
6 {MS, #(MS)}KUC C≡ MS
7 {PS, #(PS)}KUC U≡ PS
8 {PS, #(PS), C

CSK S,

#(C
CSK S)}KUD

D≡ PS,
D≡ C

CSK S

9 {C
CSK S, #(C

CSK S)}KDS S≡ C
CSK S

10 {C
CSK S, #(C

CSK S)}KUC C≡ C
CSK S

11 {C
CSK S, #(C

CSK S)}KCS from C S≡ C≡ C
CSK S

12 {C
CSK S, #(C

CSK S)}KCCS from S C≡ S≡ C
CSK S

Since steps 2 and 3 are not authentication messages,

the logic cannot be used directly. We extend the logic to
help us check these two steps, because the power of the
BAN logic is its ability to check the freshness and
binding. We extend the logic constructs as follows:
• (M⊂⊂⊂⊂G): M is a member of group G, who knows the

shared secret.
• P[BF]Y: P finds a match in a Bloom filter, which uses

Y as a secret. This only means that there is a possibility
that the Bloom filter generating party knows the secret

Y. The probability is as we discussed in Section 5.1
and Section 5.2.

• P
Y

∞ G: P shares a secret Y with a group G. In our case,
G is the group of users of the domain P.

We also add the following postulates:

The first postulate, (1), states that if P finds a match in a
Bloom filter using secret Y, then there is a probability
that one member M of group G generates the Bloom
filter. Therefore, we are clear that if the Bloom filter is
generated without a time variant parameter, the filter
may be replayed. The second postulate, (2), goes further
based on the freshness of the Bloom filter. It comes to
the conclusion that the principal P believes that one
member of its user group generates the filter with certain
probability. Since that member has the control over the
generation of the Bloom filter, P believes the Bloom
filter (Postulate (3)). Based on these postulates, we can
mechanically deduct and get the results as shown in
Table 1.

Moreover, the logic forces us to explicitly write down
our assumptions to clarify our design goals. Our
protocol is targeted for wired or wireless LAN
environments. If used beyond LAN environments, given
that a user agent and a directory cannot directly hear
each other’s multicast or broadcast messages, the
messages may be replayed in real-time without notice.
Furthermore, the time stamp and the random number
used as the time variant parameter require accurate
internal clocks (not drift days) in the user agents and
directories. We do not require synchronized clocks, but
accurate clocks are necessary to make time stamps valid.

5.4. Performance Discussion

Our model is based on the client-service-directory
model. Compared to that model, our model is more
efficient in some aspects and has overheads in other
aspects. Our model is more efficient that instead every
directory replies, a directory only replies when a match is
found. However, there are three additional messages are
needed in comparison to the unsecured client-service-
directory model. Two messages are for the user agent
and the directory to send the session key to the client and
the service, respectively. The other message is for the
user agent to notify the directory that a service is selected
and to forward the session key. Other overheads are that
user agents and directories need to calculate Bloom
filters and do membership tests (steps 2-5 in Figure 6);
user agents authenticate with directories and do public

10

key encryption and decryption operations (steps 5-6);
and every party does some symmetric key encryption
and decryption operations (from step 6 to step 16).

Our previous experience with respect to building a
secure service discovery protocol shows that the
overhead of doing secure key operations are rather
efficient [23]. The public key operations take hundreds
of milliseconds on PCs and PDAs, while symmetric key
or hash operations are at dozens of milliseconds.

6. Conclusion

In this paper, we have proposed a private and user
centric service discovery model. The PrudentExposure
model provides an efficient way for authorized users to
discover services simply, while hiding services from
unauthorized users. It automatically selects the right
credentials for service accesses. We protect privacy for
service information, user credentials, domain identities,
domain existence information, and service requests. We
have analyzed our model mathematically and have
proven the correctness of our protocol formally.

Potential devices as user agents might be Personal
Servers [20] or iButtons [24] because these devices are
handy and may be available whenever needed. Since
Personal Servers’ processing capability, network
capability, and storage capacity are as good as laptops.
They may serve as proxies or user agents, via which less
processing power devices discover services. iButtons on
the other hand are very small and can be worn as a ring.
One type of the iButtons is able to process various public
key operations within a second [24]. We are also
working on extending our model to discover services
without presence of directories.

Acknowledgement

This research is supported in part by NSF Grants No.
0334035, 0098017, 9911074, NIH Grant No. EB002238-
01, a grant from Microsoft Research, and Hong Kong
RGC Grants HKUST6161/03E and DAG02/03.EG02.
The authors thank anonymous reviewers for their
valuable comments.

References
[1] F. Zhu, M. Mutka, and L. Ni, "Classification of Service
Discovery in Pervasive Computing Environments," Michigan
State University, East Lansing, available at
http://www.cse.msu.edu/~zhufeng/ServiceDiscoverySurvey.pdf
MSU-CSE-02-24.
[2] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph, and R.
Katz, "An Architecture for a Secure Service Discovery Service,"
presented at Fifth Annual International Conference on Mobile
Computing and Networks (MobiCom '99), Seattle, WA, 1999.
[3] C. Ellison, "Home Network Security," Intel Technology
Journal, vol. 06, pp. 37-48, 2002.
[4] B. Bloom, "Space/Time Trade-offs in Hash Coding with
Allowable Errors," Communications of ACM, pp. 422-426,
1970.

[5] M. Burrows, M. Abadi, and R. Needham, "A Logic of
Authentication," ACM Transactions on Computer Systems,
1990.
[6] Sun Microsystems, "Jini™ Architecture Specification," Sun
Microsystem, available at
http://wwws.sun.com/software/jini/specs/ December, 2001.
[7] Microsoft Corporation, "Universal Plug and Play Device
Architecture," Version 1.0, Microsoft Co., 2000, available at
http://www.upnp.org/download/UPnPDA10_20000613.htm.
[8] S. Cheshire, "Discovering Named Instances of Abstract
Services using DNS," Apple Computer, 2002, available at
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt.
[9] Bluetooth SIG, "Specification of the Bluetooth System --
Core," available at
http://www.bluetooth.org/docs/Bluetooth_V11_Core_22Feb01.p
df, February 22, 2001.
[10] Salutation Consortium, "Salutation Architecture
Specification," The Salutation Consortium Inc., available at
ftp://ftp.salutation.org/salute/sa20e1a21.ps June 1, 1999.
[11] E. Guttman, C. Perkins, J. Veizades, and M. Day, "Service
Location Protocol, Version 2," available at
http://www.ietf.org/rfc/rfc2608.txt, June 1999.
[12] M. Nidd, "Service Discovery in DEAPspace," IEEE
Personal Communications, pp. 39-45, 2001.
[13] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J.
Lilley, "The design and implementation of an intentional naming
system," presented at 17th ACM Symposium on Operating
Systems Principles (SOSP ’99), Kiawah Island, SC, 1999.
[14] M. Balazinska, H. Balakrishnan, and D. Karger,
"INS/Twine: A Scalable Peer-to-Peer Architecture for
Intentional Resource Discovery," presented at Pervasive 2002 -
International Conference on Pervasive Computing, Zurich,
Switzerland, 2002.
[15] R. Rivest and B. Lampson, "SDSI---A Simple Distributed
Security Infrastructure," 1996, available at
http://theory.lcs.mit.edu/~rivest/sdsi10.html.
[16] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen, "SPKI Certificate Theory," 1999, available at
http://www.ietf.org/rfc/rfc2693.txt.
[17] L. Fan, P. Cao, J. Almeida, and A. Broder, "Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol,"
IEEE/ACM Transactions on Networking, vol. 8, pp. 281-293,
2000.
[18] F. Stajano and R. Anderson, "The Resurrecting Duckling:
Security Issues for Ad-hoc Wireless Networks," presented at 7th
International Workshop on Security protocols, Cambridge, UK,
1999.
[19] F. Stajano and R. Anderson, "The Resurrecting Duckling --
what next?," presented at 8th International Workshop on
Security protocols, Cambridge, UK, 2000.
[20] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar,
and J. Light, "The Personal Server - Changing the Way We
Think about Ubiquitous Computing," presented at 4th
International Conference on Ubiquitous Computing, Goteborg,
Sweden, 2002.
[21] F. Stajano, Security for Ubiquitous Computing: John Wiley
& Sons, LTD, 2002.
[22] A. Menezes, P. v. Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography: CRC Press, 1996.
[23] F. Zhu, M. Mutka, and L. Ni, "Splendor: A Secure, Private,
and Location-aware Service Discovery Protocol Supporting
Mobile Services," presented at 1st IEEE Annual Conference on
Pervasive Computing and Communications, Fort Worth, Texas,
2003.
[24] iButton home page, available at http://www.ibutton.com/.

