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Abstract—The involvement of only the necessary users and service providers for service discovery in pervasive computing

environments is challenging. Without prudence, users’ and service providers’ requests or service information, their identities, and their

presence information may be sacrificed. We identify that the problem may be as difficult as a chicken-and-egg problem, in which both

users and service providers want the other parties to expose sensitive information first. In this paper, we propose a progressive and

probabilistic approach to solve the problem. Users and service providers expose partial information in turn and avoid unnecessary

exposure if there is any mismatch. Although 1 or 2 bits of information are exchanged in each message, we prove that the process

converges and that the false-positive overhead decreases quickly. Experiments and hypothesis tests show that security properties

hold. We implemented the approach and the performance measurements show that the approach runs efficiently on PDAs.

Index Terms—Authentication, pervasive computing, privacy, probabilistic, security.
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1 INTRODUCTION

IN pervasive computing environments, intelligent devices
are ubiquitously embedded within our personal belong-

ings, homes, offices, and even public environments. These
devices provide us various network services (services for
short). Via service discovery protocols, these services are
discovered just in time. Client devices and services
automatically configure themselves without users’ involve-
ment. Much research has been conducted on service
discovery, as reviewed in [1]. However, the problem of
involving only necessary service providers and users in a
service discovery session has not been well addressed. If
unnecessary users and service providers are involved, then
security and privacy may be sacrificed. Services may be
illegally discovered or accessed and personal privacy may
be exposed and inferred.

For traditional network service accesses, it is not difficult
to involve only necessary and legitimate service providers
and users. Usually, a user explicitly specifies a service and
supplies a credential such as a username and password pair
to authenticate with a service provider. Then, the service
provider verifies the user and checks the user’s privilege.
The user has prior knowledge of the service, service
provider, credential, and relationship among them. Never-
theless, in pervasive computing environments, a user may
not have such knowledge.

Challenges arise when environments change. First, a
user may interact with many more services and service

providers in pervasive computing environments than in
conventional computing environments. For instance, a
room may be saturated with hundreds of devices and
services. Furthermore, everyone may become a service
provider. For example, if Bob shares his MP3 player with
Alice, then Bob becomes a service provider. A significant
growth in the number of services and service providers
makes it difficult to memorize the relationships among
the services, service providers, and credentials. Second,
pervasive computing environments are extremely dy-
namic. Devices and services may be unattended, services
are added and removed, service providers’ mobility causes
the devices that they wear and carry to move, and partial
failures cause services to be inaccessible. The dynamic
property of pervasive computing hinders users to have
complete knowledge of the relationship among services,
service providers, and credentials.

Without such knowledge, the problem to involve only
necessary service providers and users becomes difficult
when users and service providers have privacy concerns. If
a user is too cautious to interact with a service provider,
then a user may miss the opportunity to access a service and
a service provider misses an opportunity to serve a user.
However, unnecessary interaction between a user and a
service provider may expose a user’s intent (what service a
user is looking for), his credentials, and presence informa-
tion. Similarly, a service provider may unnecessarily expose
his service information, identity, and presence information.

Many service discovery protocols have been proposed,
but it seems that no protocol addresses the problem without
sacrificing security, privacy, or convenience. Several proto-
cols and their security extensions adopt the traditional
approach such that users start service discovery by
supplying credentials together with service discovery
requests [2], [3], [4], [5], [6], [7]. Although service providers
attain security and privacy, users unavoidably experience
inconvenience, unnecessary privacy exposure, and missed
opportunities to access services. In the trusted central server
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approach [8], service providers announce their service
information to a central server system and users discover
services via the server system. The design is secure and only
involves necessary users and service providers besides the
server system. Nevertheless, both users and service provi-
ders expose their privacy to the central server system. In
PrudentExposure [9], only users and service providers that
share secrets discover and communicate with each other,
but there is still a privacy leak among insiders. For example,
if Bob only shares an MP3 player with Alice, then it is
unnecessary to contact Bob when Alice discovers an
electronic book.

We classify privacy concerns into four cases, as shown in
Fig. 1. The four cases are the combinations resulting from
whether a user and a service provider have privacy
concerns. Since there is no privacy concern in Case 1, we
may directly apply authentication and authorization to
secure services. In Case 2, service providers may announce
their service information first because they do not have
privacy concerns. Note that service providers can announce
service information in an encrypted form, so only users who
can decrypt messages will understand service information.
If a service provider does not provide a desired service,
then a user may keep silent and therefore protect the user’s
privacy. Similarly, in Case 3, users send their requests first.
If a service provider provides the required service, and the
user has privilege, then the service provider contacts the
user. Otherwise, the service provider keeps silent. Never-
theless, we identify that Case 4 is as difficult as a chicken-
and-egg problem. That is, neither users nor service
providers want to expose their information first when both
parties have privacy concerns. Thus, users and service
providers may not even want to communicate with each
other. To the best of our knowledge, this is a new problem,
and we have not yet seen any solution.

In this paper, we propose a progressive approach to
solve the chicken-and-egg problem. Users and service
providers exchange partial and encrypted forms of their
identities and service information. They establish mutual
trust over multiple rounds of communication. Any mis-
match during the procedure stops the communication and
indicates that further interaction is unnecessary. Because
only partial information is exposed in the unnecessary
cases, sensitive information is not exposed in an under-
standable way to inappropriate participants. Via simple
strategies, users and service providers know the number of
communication rounds and the number of bits to exchange
in each round to reach mutual trust.

We modeled the progressive approach as a Markov
chain. Mathematical analysis shows that our approach
converges, although only a few bits of information are
exchanged in each message. False-positive cases (unneces-
sary cases) happen due to the few bits of information

exchange, but mathematical analysis further shows that our
approach addresses those cases efficiently and the prob-
abilities of false-positive matches are known in each state.
Moreover, we generated billions of test cases and did
hypothesis tests to verify that exchanging partial informa-
tion has the desired security properties. Additionally, we
implemented the approach. Performance measurements
showed that our approach is efficient. It only introduces
very limited overhead and it takes up to 100 ms for a user
and a service provider to determine necessary exposure
between them on PDAs.

The rest of the paper is structured as follows: In Section 2,
we discuss related work. Then, we present a formal
problem specification in Section 3. Section 4 illustrates our
progressive exposure design. In Section 5, we justify our
claims through analysis and experimentation. In Section 6,
we outline our future work and conclude our contribution.

2 RELATED WORK

In this section, we discuss some representative service
discovery protocols that provide security and privacy
features. Then, we discuss other related research. For a
wider survey of service discovery protocols, refer to our
survey paper published elsewhere [1].

Existing secure and private service discovery protocols
may be classified into three categories:

Traditional authentication and authorization solutions. In this
category, a user or a device is responsible for supplying
correct credentials to discover and access services, for
example, Universal Plug and Play (UPnP) Security [6], [7]
and Bluetooth Security [5]. UPnP Security provides many
authorization methods including access control lists, author-
ization servers, authorization certificates, and group defini-
tion certificates, and users are assumed to supply correct
credentials. In the trusted discovery mode of Bluetooth
Security, services only interact with a device that shares a
common secret. In this category, service providers may
easily protect their privacy. If a user does not have the
privilege to discover and access a service, then a service
provider can remain silent. Users usually have to expose
their identities and service requests to service providers.
Therefore, users may unnecessarily expose their sensitive
information when service providers do not provide the
requested services. Moreover, users need to memorize the
relation among services, service providers, and credentials.
Otherwise, they may not be able to supply correct credentials
and, thus, they lose opportunities to access services. Since
memorizing the relation causes very poor usability in
pervasive computing environments, users may bypass
security and privacy features.

Trusted central servers. In Secure Service Discovery
Service (SSDS) [8], servers are in a hierarchical structure.
A server at the leaf level controls services at a place,
whereas a server at a higher level aggregates information on
the lower level servers. A user uses his public key to
authenticate with a local server and discover services.
Service providers specify user privileges and register
services with local servers. Furthermore, communication
among the parties is encrypted. With the help from the
servers, only proper and necessary users and service
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providers will be involved in a service discovery session.
The approach provides good usability because a user may
only need one credential (his public key) to discover
services. Using one credential, however, is also a disadvan-
tage because a credential broken in an application will
jeopardize other applications. Moreover, users and service
providers expose their sensitive information to the central
server system. The system knows where the service
providers are and what they have. Similarly, the system
knows where the users are and their intents. Unlike the
trusted central server approach, we assume that each
service provider manages his own services and decides
whether to expose sensitive information.

Automated service provider discovery and credential manage-
ment. In our previous work, PrudentExposure [9] users do
not need to actively identify existing services and service
providers. Instead, a user’s program discovers service
providers from whom he acquires credentials via code
words. Specifically, code words are in the Bloom filter
format [10]. Such a format enables users and service
providers to identify each other in one round of message
exchange, even if there are hundreds of service providers
that a user may interact with. After identifying each other, a
user and a service provider establish an encrypted channel
to exchange requests and service information. The approach
involves only users and service providers that share secrets,
but a privacy leak still occurs when service providers do not
provide requested services or users do not have privileges
to access services. For example, Alice does not need to
contact Bob when she is discovering electronic books if Bob
does not share electronic books with her. In such cases,
users’ intents and presence information and service
providers’ identities and presence information are exposed,
respectively. Although users and service providers share
secrets, such exposure is not necessary. The progressive
approach proposed in this paper distinguishes and avoids
these unnecessary exposures during mutual partial expo-
sures. Unlike the PrudentExposure approach, exposure in
the progressive approach is based on both identities and
service information.

Other work also influences our approach. Automated
trust negotiation systems such as [11], [12], and [13]
establish mutual trust between strangers on the Internet.
Two parties, in turn, disclose part of their access control
polices and submit required credentials until they reach
mutual trust. For example, one party may require credit
card information, whereas the other party may require
seeing a certificate from a Good Business Bureau first. The
systems protect not only the resources but also sensitive
attributes and exposure policies during negotiation [14],
[15]. A negotiation process will proceed, and further
requirements will be exchanged when both parties meet
the other party’s requirement in the current round. Never-
theless, the systems cannot establish trust when both parties
want the other party to expose certain information first (the
chicken-and-egg problem). Our approach has a stronger
assumption that a user and a service provider share a secret
for service discovery. Thus, a user and a service provider
understand encrypted partial identity and service informa-
tion. In addition, automated trust negotiation systems focus

on establishing mutual trust among strangers over the

Internet, whereas we target users and service providers

within a vicinity.
Expressing knowledge of a secret in a sequence of

messages in Port Knocking [16] inspires our work. In order

to connect to a service on a server, a client “knocks” on the

server’s firewall in a special sequence based on a shared

secret between them. The knocking sequence is a serial of

connection messages to different closed ports on the

firewall. Another innovative approach is authentication on

untrustworthy public Internet access points [17]. The

authentication requires a user to correctly recognize a

sequence of personal photos in a reasonable time. In our

approach, a user and a service provider establish trust via a

sequence of mutual authentication.
The challenge and response procedure in Zero-Knowl-

edge proofs [18] and our approach are similar: authentica-

tion over multiple rounds and probabilistic. In Zero-

Knowledge proofs, one specifies its identity and then

answers a set of authentication questions that a verifier

asks. Similar to public-key-based authentication, verifiers

know how they can verify answers, but they do not know

how they can generate answers. Zero-Knowledge proofs

cannot be used to solve our problem. Because users and

service providers must specify their identities initially, they

sacrifice privacy. Otherwise, they do not know what

authentication questions to ask. In addition, in our ap-

proach, a user and a service provider share a secret, but in

Zero-Knowledge proofs, sharing a secret is unacceptable

because their major goal is to avoid impersonation.
Much research addresses personal privacy when passive

RFID tags are pervasively associated with personal belong-

ings [19], [20], [21]. With limited gates available to security

functionalities on RFID tags, light weighted cryptographic

functions such as hashes are used to generate encrypted

IDs. Only an RFID reader that shares a secret with a tag

understands the encrypted ID or triggers a tag to send its

encrypted ID. Our progressive approach not only prevents

eavesdroppers to acquire privacy information but also

avoids unnecessary exposure among users and service

providers that share secrets.

3 PROBLEM DEFINITION

In this paper, we focus on the chicken-and-egg problem and

use the following formal model to discuss and analyze our

exposure approach. We assume that a user and a service

provider share a secret before they interact with each other.

We also assume that each service has a standard name:

. A user, U , shares unique secrets with a set of service
providers, fSkgk2N . A service provider, S, may have
a set of users, fUlgl2N .

. When a user wants to discover a service, a set of

service providers, fSmgm�0, is in the vicinity. For a

service provider, Sa 2 fSmg, it is possible that

Sa 62 fSkg. In addition, it is possible that, at different

times, fS0mg 6¼ fSmg because service providers may

move around.
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. A service provider in the vicinity has a subset of
services, fVngn2N , which matches a user’s request at
the discovery moment. The set fVng may change
at any time because of the dynamic property in
pervasive computing environments. For example,
new services are added and granted access to a user
or partial failures cause services to be inaccessible.

. Service providers and users have privacy concerns.
They want to protect their identities, existence
information, service information, and service re-
quests. We define that a user is legitimate if the user
shares a secret with the service provider and the
user has privilege to access the service. Similarly, a
service provider is legitimate if the service provider
shares a secret with a user and provides the
requested service. Note that, even if a user and a
service provider share a secret, they may not be
legitimate and exposure is not necessary. This
situation is not addressed in existing solutions.

The constraints are that users and service providers
want to interact with each other, whereas their privacy is
protected. Fig. 2 shows our design goal from a user’s
perspective: Find Case D, in which a service provider
provides the service that a user is looking for, and
they share a secret. That is, for some service providers,
S � fSkg \ fSmg 6¼ �, and for those S, fV ng 6¼ � (from a
service provider’s perspective, the diagram is similar). In
addition, when the numbers of elements in fSkg, fUlg, and
fVng are large, Case D still needs to be identified efficiently.

4 A PROGRESSIVE EXPOSURE APPROACH

To solve the chicken-and-egg problem (find Case D), users
and service providers expose partial (several bits of)
encrypted information in turn, as shown in Fig. 3. Users
partially provide their identities and service requests, and
service providers partially provide their identities and
service information. During each round of message ex-
change, both the user and service provider verify the partial
information. If there is a mismatch, then the communication
stops. If matches repeatedly occur, then at some point, the
service provider and the user believe that the other party is
legitimate with high probability. Finally, the two parties
establish a connection for service usage.

During each round, the progressive protocol identifies
and excludes unnecessary exposures (Cases A, B, and C).
For those cases, sensitive information is preserved because

only a few bits of sensitive information are exposed. A
service provider usually provides a small set of services in
comparison to all different types of services. Suppose that a
unique ID represents each type of service and all IDs have
the same length. On the average, each bit of a service ID
excludes half of the types of services provided by a service
provider. Thus, an unnecessary exposure is identified in
several bits of service information exchange. However, to
learn the requested service and available services, the whole
IDs are needed.

Moreover, when a mismatch is found in a message,
neither a user nor a service provider is certain about the
true reason of the mismatch. That is, neither users nor
service providers can discern Case A, Case B, or Case C in
Fig. 2. For example, a user finds a match on identity
information and a mismatch on service information, but
maybe the true reason is a false-positive match on the
identity information and a mismatch on the service
information. Thus, in this case, the mismatch looks like
Case B, but it is Case A.

In the remainder of this section, we first discuss how we
can exchange encrypted sensitive information, so users and
service providers that do not share secrets do not even
acquire partial sensitive information. Then, we present the
message formats and the security protocol. Next, we
illustrate that unnecessary exposure can be quickly detected
by exchanging a few bits. An analysis of the unnecessary
exposure in terms of the probabilities is given. The
probabilities are known for each state in the communica-
tion. Last, we show the strategies that users and service
providers use to expose their information.

4.1 Exchange Identity Information in the
Code Word Form

Users and service providers exchange code words without
explicitly specifying their identities in the messages. A code
word is generated from a unique secret shared between a
user and a service provider. A user says several bits of a
code word, and a service provider checks this. If the service
provider does not recognize the code word, he keeps silent.
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Otherwise, he says another several bits of the code word
and the user checks this. Via the interaction over multiple
rounds, a user identifies existing service providers within
the vicinity (for all S, S � fSkg \ fSmg), and a service
provider identifies a user ðUiÞ. Eavesdroppers, however, do
not understand who is talking to whom.

To protect against replay attacks, a user and a service
provider speak one-time code words. During the code word
generation, we use a time-variant parameter (TVP), which
consists of a time stamp and a random number. A TVP is
transmitted from a user to a service provider in the first
message. Thus, each time, a user and a service provider
speak a different code word and a replay attack can be
easily detected (our approach requires loosely synchro-
nized clocks).

Fig. 4a illustrates the generation of a code word. A TVP
and a unique secret shared between a user and a service
provider are the two inputs to a hash function. Specifically,
we use hash-based message authentication codes (HMACs),
as proposed in [22]:

hðSecret; XOR padding1; hðSecret; XOR padding2;

T ime V ariant ParameterÞÞ:

Therefore, a code word is the hash result.
The nature of the HMAC ensures that it is computation-

ally difficult to find the shared secret from the hash results
[18]. Thus, only a user and a service provider who share a
secret can correctly generate and verify the code words. For
any service provider, Sa 62 fSkg, the user does not know
who the service provider is, even if false-positive matches
happen. Similarly, for any user, Ub 62 fUlg, a service
provider does not know who the user is.

4.2 Exchange Encrypted Service Requests and
Available Services

Services are identified by unique IDs with the same length.
Users and service providers use one-time secrets to protect
service requests and service information, respectively. The
generation of a one-time secret is shown in Fig. 4b. Unlike a
code word that uses bits of the hash result, in each message,
a user and a service provider use a byte to encrypt and
decrypt the service information. To be precise, the encryp-
tion is cipher ¼ service � one-time secret, and the decryp-
tion is service ¼ cipher � one-time secret. The encryption
method is known as the Vernam cipher [18]. According to
[18], if the bytes (generated one-time secrets) that we use to
encrypt service information are random, then our encoding
method is computationally secure. We prove that the bytes

are random and follow the uniform distribution over the

integer set in Section 5.4.
Users and service providers exchange service requests

and service information in the encrypted form. Thus, users

and service providers who share secrets understand service

requests and available services. Among those users and

service providers, only a subset of users and service

providers whose requests match available services will find

the subset fVng.
At a service provider’s side, since partial information is

exchanged, more than one type of service with the same

initial bits may match a user’s request. For example, if a

user requests a service 10001, a service provider has two

services: 10001 and 10101. If a user says the first 2 bits, 10,

then the service provider will find two services starting

with 10. To inform the user that there is more than one

service that matches his request, we encode the possible

combinations of 1 and 2 bits, as shown in Tables 1a and 1b,

respectively. In this example, if the service provider replies

with 1 bit of service information, then he will send the

coding 10. If the service provider replies with 2 bits of

service information, then he will send the coding 0101.

4.3 The Message Formats

In a discovery message, users and service providers

exchange several bits of code words and service informa-

tion. Only if the bits of a code word and service information

match would one provide more bits.
A user starts a discovery process. Without knowledge of

the existing services and service providers, he may specify

all code words and the encrypted service request, along

with a TVP. Fig. 5a shows the message format. In the

following messages, a user and service provider exchange 1

or 2 more bits of the code word and service information, as

shown in Fig. 5b (the number of bits in the messages will be

discussed in detail in Section 4.5).
The first message is sent as a broadcast message or a

User Datagram Protocol (UDP) multicast message for the

minimum configuration overhead. The following messages

between a user and a service provider are sent via

Transmission Control Protocol (TCP) unicast to guarantee
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delivery. In addition, a service provider indicates the code
word for which he finds the match in the second message.

The discussion so far is based on the condition that a user
and a service provider share a unique secret. When a user
interacts with many service providers and a service
provider has many users, false-positive matches are very
likely to happen because only several bits are exchanged
initially. The problem might be addressed for a service
provider by sharing a secret among all users. The shared
secret, however, is difficult to revoke from an individual
user. Our solution is that service providers and users may
use two types of shared secrets: domain secrets and user
secrets. A domain secret is used in the first message to
identify a service provider. A user secret is used in the
following messages to identify a user within a service
provider. Fig. 5c shows that a service provider specifies a
list of code words generated from user secrets in the second
message along with a TVP that he selects. Afterward, the
user indicates the matched code word and the two parties

exchange bits of information, as shown in Fig. 5b. To revoke

a user’s service discovery privilege, the user secret is

invalidated by the service provider, whereas updating the

domain secret may not be imminent.

4.4 The Detailed Security Protocols

Fig. 6 shows the protocol that uses a domain secret and a

user secret. After the first three messages, a user and a

service provider send messages in the same format, as

shown in message 4. The process continues until either a

mismatch is found or legitimacy reaches a high probability.

If a mismatch is found, a message indicating that the

communication stops is sent to the other party. If high

legitimacy is found, the service provider instructs the user

to prepare for service access.

4.5 Predictable Exposure

In this section, we discuss the exposure from a service

provider’s point of view. From a user’s point of view, the
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exposure is similar. (We use “not user” and “user” to denote

Ub 62 fUlg and Uc 2 fUlg, respectively.) When verifying code

word bits, a service provider finds either a match or a

mismatch. If a mismatch occurs, then he knows that the

other party does not know the shared secret. If a match

happens, then he does not know whether the match is a

false-positive match because only part of a code word is

compared. Therefore, given that a match is found in a

message, a service provider is interested in the probability

pðnot user j matchÞ; that is, what is the probability that the

other party does not know the shared secret? It depends on

two probabilities: the probability of false-positive matches

pðmatch j not userÞ and the probability that a message

comes from a user who knows the shared secret pðuserÞ.
The first probability pðmatch j not userÞ depends on our

design: the number of code words that a user has and the

number of bits exposed so far. Assuming that the last

several bits of the code words follow the uniform

distribution over an integer set, the probability in the first

message is

pðmatch j not userÞ ¼

1� 1� 1

2number of bits

� �number of code words
:

ð1Þ

Given that a message is from one who does not know the

shared secret, we want to control the false-positive match

rates. Thus, we may set the limit to 25 percent. A user may

simply select the number of bits to expose according to

Table 2 based on the number of credentials that he has. A

service provider examines the number of code words in the

first message and the number of bits in a code word to learn

the initial false-positive rate. Afterward, the false-positive

rate will decrease by half for each additional bit exchanged.
The second probability pðuserÞ is service provider

dependent. It might be related to the environment and

the mobility of a service provider. Based on history

information, a service provider learns the probability that

a discovery message is from his users, that is

pðuserÞ ¼ pðmatchÞ � pðmatch j not userÞ
1� pðmatch j not userÞ ;

where pðmatchÞ is the rate where the service provider finds

a match in the first message, and pðmatch j not userÞ in the

first message is approximately 25 percent, as we discussed

above. Before a service provider accumulates enough

history information, he may use a conservative strategy,

for example, at least exchange five rounds of messages.
From the preceding two probabilities, we have

pðnot user j matchÞ ¼
pðmatch j not userÞ � ð1� pðuserÞÞ

pðmatch j not userÞð1� pðuserÞÞ þ pðuserÞ :

Fig. 7 shows that, as the number of bits exchanged

increases, pðnot user j matchÞ decreases quickly. Moreover,

a service provider with certain pðuserÞ knows the prob-

ability of pðnot user j matchÞ in each round based on the

number of bits exchanged.

Similarly, we calculate pðnot service j matchÞ (match

means that a service provider or a user finds matches on

the partial service information and “not service” means that

either a service provider does not provide the service or a

user does not have privilege). It depends on three facts: the

probability that the service provider has the service

pðserviceÞ, the probability of false-positive matches

pðmatch j not serviceÞ, and the number of services that the

service provider has. A user may not know how many

services are provided by a service provider since available

services may change from time to time. Thus, the user, by

default, sends 4 bits of the service request in the first

message. The probability pðnot service j matchÞ is calcu-

lated at the service provider’s side. It is similar to the

calculation of pðnot user j matchÞ. In addition, a service

provider learns the pðserviceÞ from history information.

We graph the relation between pðnot service j matchÞ
and the number of bits exchanged after the first message for

a service provider with 320 services, as shown in Fig. 8. If a

service provider has 160 (or 640) services, then he needs to

exchange one less (or more) message to reach the same

probability.
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the Number of Credentials that a User Has

Fig. 7. pðnot user j matchÞ decreases as the number of code word bits exposure increases after the first message.



Therefore, in each round, a service provider knows the
probability that a user is legitimate. Based on these
probabilities, we design our exposure strategies.

4.6 The Exposure Strategies

Initially, a service provider chooses critical values for
pðnot user j matchÞ and pðnot service j matchÞ, for example,
5 percent for both probabilities. If the probabilities are less
than the critical values during a discovery process, then the
service provider considers that the user’s legitimacy is high
enough and therefore instructs the user to prepare for
service access.

A service provider does not need to calculate the
probabilities to determine whether the legitimacy of a user
reaches a high probability. Instead, he only needs to perform
table lookups. Tables 3a and 3b list the number of bits
required to reach the critical values for pðnot user j matchÞ
and pðnot service j matchÞ, respectively. For example, if a
service provider has 80 services, pðuserÞ is 0.016 and
pðserviceÞ is 0.032; then, he needs to exchange 10 bits of
the code word and 12 bits of service information. The
numbers of bits in the tables are derived from the calculation
results of the probabilities, as discussed in Section 4.5.

The general exposure strategy is that a service provider
and a user exchange 1 or 2 bits of a code word and 1 or
2 bits of service information in one message, that is,
specifically three combinations: 1/1, 1/2, and 2/1. In each

combination, the first number is the number of code word
bits and the second number is the number of service
information bits. Exposing 1 or 2 bits at a time is for two
reasons. First, when mismatches occur, exchanging a few
bits exposes minimal sensitive information. Second, a
service provider may use different combinations to
synchronize the convergence for pðnot user j matchÞ and
pðnot service j matchÞ to reach the critical values at the
same time. The disadvantage of the progressive exposure
process is that the number of messages required to reach
critical values may be large. However, our experiments
show that one message only takes about 4 ms on a PDA.
Thus, the communication overhead may not be a concern.

A service provider decides an exposure strategy for each
discovery session based on the two numbers of bits. A
user’s strategy is to expose the same number of bits of the
code word and service information as a service provider
does. For example, if a service provider needs to exchange
10 bits of a code word and 12 bits of service information
with a user, then he may use the strategy 1/2, 1/1, 1/1, 1/1,
and 1/1. After receiving a message, the user exposes the
same number of bits that a service provider exposes. Thus,
the interaction between a user and a service provider is 1/2,
1/2, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1, and 1/1.

Up to now, the design of the strategies is from the service
provider’s perspective. From the user’s perspective, he may
trust a service provider’s strategy for the following reasons:
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Fig. 8. pðnot service j matchÞ decreases as the number of service information bits exchanged increases after the first message (the graph shows a

service provider with 320 services).

TABLE 3
Number of Bits to Exchange to Reach a Critical Value (Less Than 5 Percent)
for pðnot user j matchÞ and pðnot service j matchÞ in (a) and (b), Respectively



First, if a service provider does not know the shared secret,
then false-positive matches occur and the service provider
does not know the user’s identity and does not understand
the user’s service request. The service provider wastes
energy and processing power if he exchanges messages
more than necessary. Second, if a service provider knows
the shared secret and provides the requested service, then
exchanging messages more than necessary does not offer
him any better payoff. Conversely, if the service provider
exchanges messages less than necessary, then he does not
have enough confidence whether instructing a user for
service access is necessary. Third, if a service provider
knows the shared secret but he does not provide the
requested service, then he knows the user’s identity and
service request more accurately by exchanging messages
more than necessary. However, the service provider also
exposes his identity more precisely. If a service provider
cheats, then it can be easily detected via wild card search,
which is available in many service discovery protocols.

5 SYSTEM EVALUATION

In this section, we first discuss three mathematical proper-
ties of our approach, namely, the false-positive overhead,
code word conflicts, and convergence. Next, we present
hypothesis tests to verify that security properties hold. Last,
we measure the performance of our protocol.

5.1 False-Positive Overhead Decreases
Exponentially

To analyze the false-positive overhead, we redraw the
interaction between a user and a service provider (Fig. 3) as
a Markov chain, as illustrated in Fig. 9. States “0” to “k” are
transient states and “Quit” and “Establish” are recurrent
states. If both the bits of a code word and service
information match, then the process goes to the next state
(exchange more bits). Otherwise, the process goes to the
absorbing state “Quit.” If both parties are legitimate, then
they always reach the “Establish” state. If at least one party
is not legitimate (the exposure is unnecessary), then the
process should go to the “Quit” state. Since there are false-
positive matches, the process may go to the next state.

Supposing that an exposure is unnecessary, the prob-
ability that the process goes to the next state is pi and the

probability that the process goes to the “Quit” state is qi.
We calculate pi from

pi¼
pðmatch\not userÞ�pðmatch\not serviceÞþpðmatch\userÞ�pðmatch\not serviceÞ

pðnot userÞþpðuser\not serviceÞ :

Based on the calculation of the mean time spent in
transient states [23], we calculate the probabilities that the
Markov chain makes a transition into state “i,” given that it
starts from state “0”:

S ¼ ðI � PT Þ�1; where S is a matrix of values of si;j; the

time periods in state j; given that it starts in i;

f0;j ¼
s0;j � �0;j

sj;j
; where f0;j is the probability in state j; given

that it starts in 00000;

�0;0 ¼ 1 and �0;j ¼ 0 when j 6¼ 0:

Therefore, the false-positive rates are known for all
states. The false-positive rates decrease very quickly as
more bits are exchanged. For example, if a service provider
has 80 services, pðuserÞ is 0.016, and pðserviceÞ is 0.032, then
the strategy is 1/2, 1/2, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1,
and 1/1. We calculate f0;j. As shown in Table 4, false-
positive rates decrease exponentially.

5.2 Code Word Conflicts

In Section 4.5, we suggest that a user specifies several bits of
the code words in the first message. The code words for
different service providers may have the same first several
bits, called code word conflicts. The probability of a conflict
is very high, but the expected numbers of conflicts are
small. For example, if there are 50 code words and the first
8 bits of the code words are sent in the first message, then
there are about 4.5 code words that have conflicts with other
code words. Therefore, when generating code words, if a
user finds that the first several bits of a code word are
already used for a service provider, then he uses another
TVP to generate code words again. In almost all cases, using
two TVPs make the partial code words unique.

We prove that the expected value of code word
conflicts is

Eðcodeword conflictsÞ ¼ m� 1� 1� 1

n

� �m� �
� n;

where m is the number of codewords and n is 2number of bits:

Proof. Let Xm be the number of distinctive partial code
words (the first several bits of the code words in the first
message) after we generate m code words. To find the
expected number of code word conflicts, we have
Eðcodeword conflictsÞ ¼ m� EðXmÞ:

EðXmÞ ¼EðXm jY ¼ y1Þ � pY ðy1Þ þ EðXm jY ¼ y2Þ � pY ðy2Þ;

ZHU ET AL.: PRIVATE AND SECURE SERVICE DISCOVERY VIA PROGRESSIVE AND PROBABILISTIC EXPOSURE 9

Fig. 9. Message exchange process expressed as a Markov chain.

TABLE 4
Probabilities that the Process Goes to the Next State, Given that an Exposure Is Not Necessary



where y1 is the event that the first several bits of the
mth code word is the same as some of the code words
that have generated and y2 is the event that the first
several bits of the mth code word are different from all
code words that have been generated. Thus,

pY ðy1Þ ¼
EðXm�1Þ

n

� �
; pY ðy2Þ ¼

n�EðXm�1Þ
n

� �
; and

EðXm jY ¼y1Þ ¼ EðXm�1Þ; EðXm jY ¼ y2Þ ¼ EðXm�1Þ þ 1:

Therefore,

EðXmÞ ¼ EðXm�1Þ �
EðXm�1Þ

n

� �
þ ðEðXm�1Þ þ 1Þ

� n� EðXm�1Þ
n

� �
¼ n� 1

n

� �
�EðXm�1Þ þ 1:

Since EðX1Þ ¼ 1, we have EðXmÞ ¼ ð1� ð1� 1
nÞ
mÞ � n

after solving the recursive equation. Thus,

Eðcodeword conflictsÞ ¼ m� 1� 1� 1

n

� �m� �
� n:

tu
Similarly, the expected code word conflicts for different

users of a service provider can be expressed in a similar
formula and handled in the same way.

5.3 The Progressive Approach Converges

We prove the most complex case that many service
providers coexist in a place, each service provider has
many users, and a user and a service provider exchange 1 or
2 bits of information in each message.

Proposition 1. The discovery process converges.

Proof. First, we consider a discovery process between a user
and one service provider, called a session. Since a service
provider generates unique code words from user secrets
(Section 5.2), a user and a service provider may establish
up to one session. Each message exchanged in a session
may be considered as a state in a Markov chain, as shown
in Fig. 9. If there is a mismatch, then one party quits. If
both the code word and the service information match,
then one more message is exchanged. Each state transi-
tion causes the false-positive rate to decrease because
more bits of information are exchanged. After a finite
number of state transitions, the probability is high
enough so that only legitimate parties can generate the
code words and, then, a service access is established
(move to the “Establish” state). The states “Quit” and
“Establish” are recurrent because, once the discovery
process enters either state, the process ends. The other
states are transient because, if the process is in state “i,” it
may only go to “Quit,” the next state, or “Establish” and
will not reenter state “i.” Thus, a discovery session
converges [23]. Second, we consider that n service
providers coexist. Since code words in the first message
are unique, a service provider may find up to one
matched code word. Therefore, there are up to n sessions.
Since each session converges, the discovery process
converges. tu

5.4 Hash Results Follow the Uniform Distribution
over the Integer Set

In Section 4, we assumed that the last dozens of bits of one-
time code words and one-time secrets follow the uniform
distribution over an integer set, respectively. We rely on
these assumptions to protect identities and service informa-
tion from those who do not know the shared secrets. If the
one-time secrets do not follow the uniform distribution over
an integer set, then our encryption method for service
information may not be computationally secure. Moreover,
if the assumption does not hold, then the probabilities
pðmatch j not userÞ, pðnot user j matchÞ, and pðuserÞ are
affected. Therefore, exposures may not be predicted well.

The null hypothesis of our first test is that the last dozens
of bits in code words follow the uniform distribution over
the integer set, and the null hypothesis of our second test is
that the last 5 bits of every byte in a one-time secret follow
the uniform distribution over an integer set.

We use the chi-square goodness-of-fit test to determine if
the data can be adequately modeled by the uniform
distribution over an integer set [24]. For the first hypothesis
test, there are 2n possible outcomes (n is the number of bits).
For the second hypothesis test, there are 25 possible
outcomes. To test the hypotheses, we randomly generate a
secret that serves as the shared secret. Two bytes of a time
stamp and 14 1-byte random numbers are used as a TVP.
Next, we use the mechanism discussed in Section 4.1 to
generate billions of one-time code words and secrets. Then,
we count the number of occurrences for each outcome. Last,
we calculate the chi-square test statistics and select 5 percent
as the significance level. The test results do not show
evidence to reject the two hypotheses (the detail tests and
results are presented in the Appendix). Therefore, we
believe that the hash results follow the uniform distribution
over an integer set.

5.5 Performance Measurements

Portable devices such as PDAs and cell phones have good
computation capabilities. Those devices are good candi-
dates to aggregate credentials and supply credential
automatically for users. Service providers may use various
devices for authentication and authorization. Thus, we
select the Compaq iPAQs to measure the performance of
our protocol. Each PDA has an ARM SA1110 206-MHz
processor, 64-Mbyte RAM, an expansion pack, and a D-Link
DCF-650W wireless card. The wireless cards are set to the
802.11 ad hoc mode and 2 megabits per second (Mbps). Our
software is developed using Microsoft eMbedded Visual
C++ 3.0 and running on Microsoft PocketPC 3.0.

The experimental results show that our protocol is
efficient on the PDAs. Table 5 shows the measurements of
the major procedures. We repeated 100 experiments and
calculated the average execution time. When a user
generates 100 code words from domain secrets and a
service provider generates 50 code words from user secrets,
a sophisticated version that generates unique code words,
as discussed in Section 5.2, is used. The discovery process
between a user and a service provider takes up to 100 ms.
Each additional service provider involved takes another
30 ms. Therefore, within a reasonable time (a few seconds),
a user can finish the discovery process.
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6 CONCLUSION AND FUTURE WORK

In this paper, we identified that involving only the
necessary users and service providers for service discovery
in pervasive computing environments may be as difficult as
a chicken-and-egg problem. We designed a progressive and
probabilistic approach to protect sensitive information
effectively and preserve privacy for users and service
providers. Users and service providers, in turn, expose bits
of information to determine whether further exposure is
necessary. We analyze the mathematical properties, and via
experimentation and hypothesis tests, we demonstrate that
the security properties hold. Performance measurements
show that our protocol runs efficiently in most cases on
devices such as PDAs.

The progressive exposure approach might be used in
applications besides service discovery. In general, if two
parties communicate with each other and have privacy
concerns, then they might have the chicken-and-egg
problem. That is, both parties want the other party to
expose some information first before proceeding. When the
problem happens, both parties might progressively expose
partial information to reach mutual trust.

Our approach has its limitation in extreme cases. The
progressive is not efficient when many users and service
providers are present in a place, for example, a stadium. A
discovery process will cause many false-positive matches,
especially in the first reply messages, as discussed in
Section 5.1. Suppose a user’s request reaches 500 service
providers who have the same number of services, pðuserÞ,
and pðserviceÞ values, as discussed in the example in
Section 5.1. Then, the first message on the average causes
307 replies. In addition to network problems (such as
collisions), most interactions between the user and service
providers may be wasted due to false-positive matches. A
possible solution is to integrate with more precise discovery
approaches such that users and service providers can
eliminate most unnecessary exposures in the first several
messages. However, the rules to determine when using a
precise approach and when using a progressive approach
could be complex. Another possible solution is to reduce
the transmission power and restart service discovery when
collisions occur. With smaller discovery ranges, however,
users may miss opportunities to access services that are not
in ranges. Moreover, our approach is not effective when the
possible user set is small. For example, if Bob is the only
person that has access to a room, then one can tell that Bob

is in the room when any discovery message is sent from the

room without need to understand the code words.
The calculation of pðuserÞ and pðserviceÞ is based on

history information and we are working on providing

detailed algorithms for updating them. Service providers

who move around frequently may only use recent dis-

covery information for the calculation, whereas mobile

service providers who do not move around often may use

more history information for the calculation.
In addition, our current approach does not support

discovery by service attributes. We are evaluating a data

structure to express multiple service attributes as a hash

result. The challenge is to design an algorithm to express

available services progressively and an efficient algorithm

to update each user’s available services in the hash form.
We are exploring other exposure strategies and analyz-

ing the strategies in terms of privacy risk and benefit,

efficiency, and security. Under the current model, expo-

sures are measured in probability and we considered the

same privacy risk if the probabilities are the same. In reality,

exposing certain service information might be more serious

than others, for instance, exposing a medical device versus

exposing an MP3 player that a person carries. However,

quantifying the privacy risk may be difficult.

APPENDIX

For the first hypothesis, we generate 100,000 code words for

each n where n is from 4 to 13, 25,600,000 code words for

each n where n is from 14 to 16, and 409,600,000 code words

for each n where n is from 17 to 20. Table 6a shows the test

results. Only one test ðn ¼ 18Þ is significant. However, it

may be given a false result. Because, given that the

significance level is 5 percent, it seems reasonable that 1

out of 17 experiments is false. Then, we do 20 experiments

to test as n equals 18. Table 6b shows that only 1 of the

20 tests is significant (group number 19). Therefore, we do

not reject the null hypothesis for n from 4 to 20.
For the second hypothesis test, we generate 10,000 one-

time secrets. All last 5 bits of the 20 bytes are tested. Only

byte number 6 turns out to be significant, as shown in

Table 7a. Similarly, we generate 20 groups of 10,000 secrets

to test byte number 6 again, and no P value is significant in

the tests, as shown in Table 7b. Therefore, we do not reject

the null hypothesis.
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Performance Measurement of the Protocol
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