
1

Expose or Not? A Progressive Exposure Approach for Service Discovery in Pervasive
Computing Environments*

Feng Zhu1 Wei Zhu1 Matt W. Mutka1 Lionel Ni2

1Dept. of Computer Science and Engr
 Michigan State University

East Lansing, Michigan, USA
{zhufeng, zhuwei, mutka}@cse.msu.edu

2Dept. of Computer Science
Hong Kong University of Science and Technology

Kowloon, Hong Kong, China
ni@cs.ust.hk

Abstract

In pervasive computing environments, service
discovery facilitates users to access network services by
automating tedious manual configurations. When
network services becomes pervasive, the number of
service providers also increase dramatically. Because
of security and privacy concerns, network services are
segmented by service providers. Existing service
discovery protocols, however, do not address how to
facilitate users to properly identify and authenticate with
existing service providers. Without prudence, sensitive
information may be exposed. Conversely, with prudence
both users and service providers prefer the other party
to expose sensitive information first. We identify that
even among legitimate users and service providers,
there are privacy concerns that may be expressed as a
chicken-and-egg problem. In this paper, we propose a
progressive approach to solve the problem. Users and
service providers expose minimal sensitive information
in turn and identify necessary exposure during the
process. Theoretical analysis, simulation, and
experiments show that our approach protects sensitive
information with little overhead.

1. Introduction

In traditional secure network service accesses, a user
explicitly specifies a service’s network address and
supplies a credential (a user name and password pair or a
certificate) to authenticate with a service provider. The
user has a priori knowledge of the service, the service
provider, the credential, and the relation among them.
Imagine within pervasive computing environments, in

which network services (services for short) become
ubiquitous and embedded within our personal belongings,
homes, and offices. Every person may become a service
provider and a user. Both the number of services and
service providers with which a user interacts dramatically
increases. As a consequence, two new challenges emerge.
First, as the number of services increases, manual efforts
to configure devices for potential communications and
maintain availability of services become overwhelming.
Second, as the number of service providers increases,
memorizing the relation between services, service
providers, and credentials becomes burdensome. Service
discovery as an essential element for service access and
sharing in pervasive computing has been widely accepted
[1]. Most existing service discovery protocols provide
elegant solutions such as soft state and lease-based
mechanisms and just-in-time driver installation to meet the
first challenge [2]. Instead of tedious manual
configuration, users designate services by names and
attributes, and then protocols discover services and
configure devices. Nevertheless, the second challenge is
not well addressed.

Current service discovery solutions may be roughly
classified into four approaches. First, insecure service
discovery protocols allow anyone to discover and use
anyone else’s services [3-6]. Second, approaches may
apply traditional access control solutions to secure services
within each service provider [7-11]. Third, trusted servers
may manage authentication and authorization centrally
[12]. Fourth, a protocol may discover existing service
providers at a moment, and the software that manages a
user’s credentials for associated service providers
automatically authenticates with the service providers [13].
The first approach obviously sacrifices security and
privacy. With the second approach, a user has to
memorize services and their associated credentials. In
addition, since services and service providers may be
mobile and partial failures may happen to services, the
user has to identify the existence of service providers

————————————————————
* This research is supported in part by NSF Grant
No. 0334035, NIH Grant No. EB002238-01, Hong
Kong RGC Grants DAG02/03.EG02, and AoE/E-
01/99.

2

and/or the services. The third approach improves
usability such that a user may only need one credential
for service discovery. Nevertheless, from a service
provider’s perspective, he has to expose services to
central servers and trust servers to manage services
securely. From a user’s perspective, he has to expose
every service requests to central servers. The fourth
approach seems to solve the second challenge since it
properly identifies the legitimacy of users and service
providers. However, there are two privacy issues: both a
user and a service provider expose their presence
information; a user exposes a service request to all
recognized service providers. Both exposures may not
be necessary. For example, Bob and his colleagues may
provide each other privileges to access MP3 players,
electronic books, digital pictures, etc. When Bob
discovers services using the fourth approach, he
discovers existing service providers, and then he
authenticates and queries them for services. However,
if the service is only offered by his office, it is not
necessary for Bob to tell colleagues his service request.
Moreover, although the involved user and service
providers are all legitimate, Bob and his colleagues’
presence information can be inferred. Thus, we identify
that even among legitimate users and service providers
there are privacy concerns that do not exist in traditional
network service access.

Designing a service discovery protocol that protects
sensitive information for both users and service
providers is challenging. From users’ point of view, it is
prudent to authenticate and expose service requests only
to necessary service providers. However, identifying the
necessary service providers requires knowledge of the
current existing services and service providers and their
relations. Ideally, if service providers expose their
existence and service information first, users can choose
only necessary service providers to contact.
Nevertheless, from the service providers’ point of view,
it is not prudent to reply when a request is from an
illegitimate user or the requested service is not offered.
The act of hiding by not responding not only saves
computation power and energy, but also protects the
presence information of a service provider. Ideally, if
users expose their credentials and service requests first,
a service provider can easily make a decision.
Therefore, both users and service providers prefer that
the other party exposes information first. The conflict
between a service provider and a user becomes the
chicken-and-egg problem.

In this paper, we propose a progressive approach to
solve the conflict between users and service providers.
Users expose partial information about who they are and
what services they are seeking. Then, if service
providers find matches (recognize the users and offer the
requested services), they expose partial information

about who they are and what services are available. Users
and service providers in turn expose until they reach a
certain confidence level to authenticate for service access.
If there is any mismatch about the service or user
information during the processes, the communication
stops. We target environments in which users discover
services within their vicinity via wired or wireless
networks.

Compared to the fourth approach, the progressive
approach not only properly identifies the legitimacy of
users and service providers, but also differentiates to
which legitimate service provider that a user should expose
his sensitive information and determines whether a service
provider should expose its sensitive information to a
legitimate user. Our approach addresses these new
difficult problems:

Privacy: Communication in each round is based on
mutual matches. When mismatches are found,
communications stop and only partial information is
exposed, such that the other party receives uncertain
sensitive information.

Security: When a small amount of information is
exposed, the number of false positive matches between
foreign parties increases. Illegitimate users or service
providers may be involved in the communications.
However, our approach secures sensitive information.
Therefore, illegitimate parties do not understand the
sensitive information.

Fairness: During the exposure process, neither users
nor service providers may acquire additional sensitive
information while exposing less than a very limited
amount of sensitive information.

Adaptive: Our approach is adaptive to support users
with different numbers of credentials and service providers
with different numbers of services in different
environments. The approach requires little processing and
storage space.

We prove the mathematical properties of our
progressive exposure approach. The exposure in terms of
probability is known in each step. Our experiments show
that our approach is efficient. It introduces very limited
overhead even on mobile devices such as PDAs. We also
do simulations to test hypotheses in our model.

The rest of the paper is structured as follows. In
Section 2, we discuss related work. Section 3 presents our
progressive exposure approach. In Section 4, we
demonstrate our claims through analysis and
experimentation. In Section 5, we outline our future work
and conclude our contribution.

2. Related Work

A detailed comparison of service discovery protocols
may be found in [2], and thus we omit discussion of
insecure service discovery approaches. We discuss
representative protocols for the other three approaches.

3

Applying traditional access control solutions. In the
trusted discovery mode of Bluetooth Security [11],
service information is only exposed to a device that
shares a common secret with the service. The solution is
appropriate for Bluetooth devices that have limited
resources. However, if the solution is widely used in
pervasive computing environments, a user needs to
maintain many credentials because for each device a
different credential may be used. Moreover, identifying
the existence of a device is inevitable. Universal Plug
and Play (UPnP) Security provides many authorization
methods including access control lists, authorization
servers, authorization certificates, and group definition
certificates [7]. Our approach complements UPnP
Security and provides a mechanism to properly and
automatically supply credentials and expose existence
information.

Trusted central servers. In Secure Service
Discovery Service (SSDS) [12], servers are in a
hierarchical structure. A server at the leaf level controls
services at a place, while a server at a higher level
aggregates information on the lower level servers. Users
and services authenticate with servers for service
lookups and registration, respectively. SSDS is one of
the first secure service discovery protocols and provides
many security features. Nevertheless, privacy concerns
may hinder users and service providers to expose
information to the central servers. For example, Bob’s
MP3 player refreshes its service registration every five
minutes, and thus Bob’s daily itinerary is known to the
servers. Unlike the trusted central server approach, we
assume each service provider manages his own services
and decides whether to expose sensitive information.

Automated service provider discovery and credential
management. In our previous work, PrudentExposure
[13], users and service providers exchange one-time
code words to discover each other’s existence. By
encoding code words in a special form, a user sends one
network packet to include code words for all service
providers from who he acquires credentials. If a service
provider finds a match on a code word, he replies with
another one-time code word for the user to verify,
otherwise, the service provider keeps silent. The
procedure of exchanging code words is shown in Figure
1. More specifically, a code word is generated from a
shared secret between a user and a service provider
using a hash function. A code word is represented as
one bit in an array and it is very high in probability that
only legitimate parties can generate and verify the code
word. Based on the matched code words, proper
credentials are selected and submitted to the respective
service providers for authentication. Then, a user
queries service providers for services. In short, only
legitimate parties gain access to sensitive information.

Figure 1. A user and a service provider exchange

code words in PrudentExposure.

Similar to PrudentExposure, in this paper, a user
utilizes a program to manage all his credentials; and users
and service providers exchange code words. Thus, the
discussion of the credential management program and the
properties of code words will not be repeated in this paper.
Unlike PrudentExposure, the progressive approach uses a
different method to exchange code words and service
information. More important, it uses a stronger criterion to
protect sensitive information and avoid unnecessary
exposure to legitimate parties. Instead of authenticating
and querying all service providers that a user has
credentials, a user only authenticates with service
providers that have the service and excludes the rest of
service providers during the process. Likewise, a service
provider uses both the user’s and service’s legitimacy as
criteria when exposing his information. Figure 2
illustrates the different design goals of PrudentExposure
and the progressive approach from a service provider’s
point of view. From a user’s point of view, the diagram is
similar. PrudentExposure discovers legitimate users and
service providers. The progressive approach discovers a
smaller set: legitimate users and services or legitimate
service providers and services.

Figure 2. Different design goals of

PrudentExposure and the progressive approach
from a service provider’s point of view. (a) The
design goal of the progressive approach is to

properly find Case D. (b) The design goal
PrudentExposure is to find Case 1.

4

Other work also influences our approach.
Automated trust negotiation systems, such as [14] and
[15], establish mutual trust between strangers on the
Internet. Two parties in turn disclose part of their access
control polices and submit required credentials, until
they reach mutual trust. For example, one party may
require credit card information, while the other party
may require seeing a certificate from a Good Business
Bureau first. The systems cannot establish trust when
there is a conflict, such as the conflict that we are trying
to solve.

Expressing knowledge of a secret in a sequence of
messages in Port Knocking [16] inspires our work. In
order to connect to a service on a server, a client
“knocks” on the server’s firewall in a special sequence
based on a shared secret between them. The knocking
sequence is a serial of connection messages to different
closed ports on the firewall. Another innovative
approach is authentication on untrustworthy public
Internet access points [17]. The authentication requires
a user to correctly recognize a sequence of personal
photos in reasonable time. In our approach, a user and a
service provider establish trust via a sequence of mutual
exposures.

3. A Progressive Exposure Approach

Our approach handles the four cases (in Figure 2
(a)), which have different security and privacy
requirements. For Case A and B, a service provider’s
identity and service information need to be protected
because a user is not legitimate. For Case C and D, a
user is legitimate. Whether exposing available services
and presence information to the user is based on the
legitimacy of the service request (the service provider
offers the service to the user). Similarly, from a user’s
perspective, the legitimacy of a service provider and
whether a legitimate service provider has the requested
service need to be discerned. However, in the
beginning, neither a user nor a service provider knows
which case it will be. More importantly, we need to
solve the chicken-and-egg problem and protect the
sensitive information as we discussed in the
Introduction.

To solve the chicken-and-egg problem, a user and a
service provider expose only partial information (several
bits) in turn. During each round of message exchange,
both the user and service provider verify the partial
information. If there is a mismatch, the communication
stops. If matches repeatedly occur at both sides, the
legitimacy of the user or the service provider and the
service will reach a high probability and the
communication will stop. When a mismatch occurs,
only partial information is exposed and both parties
acquire sensitive information with uncertainty. Neither

a user nor a service provider can discern Case C from Case
A and B when a mismatch happens.

Our progressive approach specifies how users and
service providers exposed their information. We illustrate
how to protect sensitive information from illegitimate
parties. Moreover, since we also protect sensitive
information among legitimate parties via uncertainty, an
analysis of the exposure in terms of the probability is given
and the probabilities are known for each message in the
communication. Because false positive matches happen
when a discovery message turns out to be Case A, B, or C,
we will analyze the expected waste of communication for
those cases.

3.1. Expose Sensitive Information Only to
Legitimate Parties

During the discovery process, there are two parts of the
sensitive information that we protect from illegitimate
parties: a user or a service provider’s identity and service
information. To protect identities, a user and a service
provider speak one-time code words. A code word is
generated from a time variant parameter (TVP) and a
shared secret. Specifically, we use hash-based message
authentication codes (HMAC) proposed in [18]:

h(Secret, XOR padding1, h(Secret, XOR padding2,
Time Variant Parameter)), where h is MD5.

Unlike PrudentExposure in which a code word is a bit,
the code word is a sequence of bits in multiple messages,
i.e., only a partial of the hash result is exchanged in each
message. The left side of Figure 3 illustrates the
generation of a code word. The nature of the HMAC
ensures that without knowing the shared secret, it is
computationally difficult to find the hash result [19].
Thus, only a legitimate user or a legitimate service
provider can correctly generate and verify the code word.

Figure 3. Generating one-time code word to

identify existence information (left side); and
generating a one-time secret to protect service

information (right side).

Services are identified by their hash, and thus service
names have the same length. To protect a user’s service
request and available services of a service provider, a one-
time secret is generated at both sides from the shared
secret as shown on the right side of the Figure 3. In each
message, a user and a service provider use a byte to

5

encrypt or decrypt a few bits of the service information.
To be precise, encryption is

secretone-timeservicecipher ⊕= and

decryption is ecretone-time scipherservice ⊕= .

The encryption method is known as the Vernam cipher
[19]. According to [19], if the bytes that we use to
encrypt service information is random, our encoding
method is computationally secure. We show our tests of
the hypothesis in Section 4.1.

3.2. The Protocol

We start with a simplified case that a user interacts
with one service provider. The exposure process is
shown in Figure 4. First, a user generates one-time code
words and secrets. Next, he sends a piece of the code
word and service request to a service provider along
with a TVP. Then, the service provider generates the
code word and secret. If the service provider does not
find a match on the code word, he keeps silent.
Otherwise, the service provider checks whether there is
a match for the service. If he does not find a match, he
keeps silent. Unless he finds both matches, the service
provider returns 1 or 2 bits of the code word and 1 or 2
bits of available services. Similarly, if there are matches
for the code word and the service, the user sends another
fraction of the code word and the requested services.
The process continues until either a mismatch is found
or legitimacy reaches a high probability. If a mismatch
is found, a message indicating that the communication
stops is sent to the other party. If high legitimacy is
found, the service provider instructs the user to
authenticate for service access. The numbers of the
initial bits and subsequent bits are described in Section
3.3 and 3.4, respectively.

User
Service provider

Check code word bits

Quit[not match]

Check service information bits
[not match]

[match]

1st message

Check code word bits

[match]

ith message
Quit

[match]

[not match]

Check service bits

[not match] [match]

[legitimacy high in probability]

(i+1)th
message

[continue verification]

Authenticate

Generate one-time
code words and secrets

Generate the one-time
code word and secret

Figure 4. The activity diagram of the discovery
process between a user and a service provider.

At a service provider’s side, more than one service
hashes may match the first several bits of the requested
service hash. Therefore, it is possible that the next bit or
two bits may be more than one possibility. For example,
the service information is 0100 in a user’s request; a
service provider has two services that start with 0100 and
the following bit is 0 for one service and 1 for the other.
To inform the user that there are more than one service
matches his requested service bit sequence, we encode the
possible combinations of the bits as shown in Table 1. If a
service provider replies with more than one possible
service, a user in his message should indicate which bit or
two bits match together with the next bit or two bits.

Table 1. The encoding scheme for service
information.

Next single bit Coding Next 2 bits Coding
0 00 00 0000
1 01 01 0001
0 and 1 10 10 0010
 11 0011
 00 and 01 0100
 00 and 10 0101
 00 and 11 0110
 01 and 10 0111
 01 and 11 1000
 10 and 11 1001
 00, 01, and 10 1010
 00, 01, and 11 1011
 00, 10, and 11 1100
 01, 10, and 11 1101
 00, 01, 10, and 11 1110

Figure 5. Message formats.

Without knowledge of the existing services and service
providers, a user may specify all code words and encrypted
service information in the first message. Figure 5 (a)
shows the message format. Since a code word and a
service request occupies up to 3 bytes, a user may include
hundreds of pairs of code words and service information in
one network packet. Then, the message may be sent as a
broadcast message or as a multicast message for minimum
configuration overhead. The following message between a

6

user and a service provider may be sent via TCP unicast
to guarantee message delivery. Figure 5 (b) illustrates
the format for the following messages, three bits for
code word and five bits for service information. Only
the last five bits are encrypted using a one-time secret.

Figure 6 shows the protocol. After first round, a user
and a service provider send messages in the same format
as message 3 and 4 in Figure 6, respectively. When the
discovery process ends, either message A or B is sent to
indicate the discovery results.

Since only several bits are exchanged in the
beginning, the code words for different service providers
may have the same last several bits, called code word
conflicts. The probability of a conflict is very high, but
the expected numbers of the conflicts are small. It can
be proved that:

.2))
2

1
1(1(

) (

bitsnumber of codewordsofnumber
bitsofnumber

-

code wordsnumber of conflictscodeword E

×−−

=

When generating code words, if a user finds the last
several bits of a code word is already used for a service
provider, he uses another TVP to generate code words
again. In almost all cases, using two TVPs make the
code words unique.

3.3. Predictable Exposure

We now examine matches of the code words quantitatively
during the discovery process. When verifying code word
bits, a service provider finds either a match or a mismatch.
If a mismatch occurs, he knows the user is illegitimate. If
a match happens, he does not know whether the user is
legitimate or a false positive match occurs. A service
provider is interested in the probability that given a match
is found in a message, what is the probability that the
message comes from an illegitimate user,
namely)| (matchusernotp . It depends on two

probabilities: the probability of false positive
matches,) |(usernotmatchp , and the probability that a

message comes from a legitimate user,)(userp .

The first probability,) |(usernotmatchp , depends on

the design of our approach: the number of code words a
user has and the number of bits exposed so far. Assuming
that the hash results of the last several bits follow the
Integer distribution (all possible values are equally likely),
the probability in the first message is:

codewordsofnumber
bitsofnumber

usernotmatchp

)
2

1
1(1) |(−−=

Given a message is not from a legitimate user, we want to
control the false positive match and still preserve the
uncertainty. Thus, we may set the limit to 25%. A user
may simply select the number of bits to expose from Table
2 based on the number of credentials that he has. A
service provider examines the number of code words in the
first message and the number of bits in a code word to
learn the initial false positive rate. Afterwards, the false
positive rate will decrease by half for each message.

Table 2. Number of bits to expose in a code word
vs. the number of credentials a user has.

No. of bits 4 5 6 7 8 9 10
Number of
credentials

<5 <10 <19 <37 <74 <148 <295

The second probability,)(userp , is service provider

dependent. It might be related to the environment and the
mobility of a service provider. Based on history
information, a service provider learns the probability that a
discovery message is from his users, that is

) |(1
) |()(

)(
usernotmatchp

usernotmatchpmatchp
userp

−
−=

where)(matchp is the rate that the service provider finds

a match in the first message; and) |(usernotmatchp in

the first message is approximately 25%. Before a service
provider accumulate enough history information, he may
use a fixed strategy, for example, always exchange up to 5
message rounds.

From the preceding two probabilities, we have Figure 6. The protocol.

Notation:
U is a user; S is a service provider.
KUS is a secrect shared between U and S.
KUSI is a secret that U and ith S use to encrypt and
decrypt messages.
tX is a timestamp that X attaches.
RX is a random number that X generates.
SRBJ is bits of the requested service information in
the Jth message.
SABJ is bits of the available service information in the
Jth message.
CBJ

SUI is bits of a code word shared between U and
the ith S in the Jth message.
KSUI is a symmetric encryption key generated at U and
the ith S. {}N is a set of N elements.
Q is a message indicates the communication stops.
A is a message instructs a user to authenticate.
No. Sdr/Rvr Message
1 U→S: RU, tU, {CB1

SUI, (SRB1) KUSI}
N

2 S→U: RU, tU, CB1
SU, CB2

SU,
(SAB2) KUS

3 U→S: RU, tU, CB3
SU, (SRB3) KUS

4 S→U: RU, tU, CB4
SU, (SAB4) KUS

A U→S:
or S→U:

RU, tU, Q

B S→U: RU, tU, A

7

)())(1)(|(

))(1() |(
)| (

userpuserpusernotmatchp

userpusernotmatchp
matchusernotp

+−
−×=

Figure 7 shows that as the number of bits exchanged
increases,)| (matchusernotp decreases quickly.

Moreover, a service provider with certain)(userp

knows the probability of)| (matchusernotp in each

round based on the number of bits exchanged.
Similarly, we calculate)| (matchservicenotp .

(Note the match here means that a service provider finds
matches on the service information.) It depends on three
facts: the probability that the service provider has the
service,)(servicep , the probability of false positive

matches,)| (matchservicenotp , and the number of

services a service provider has. Since a user does not
know how many services a service provider has at the
discovery moment, the user may by default send four
bits of the service information.)| (matchservicenotp

may be calculated at the service provider’s side and is
very similar to the calculation of)| (matchusernotp .

In addition, a service provider learns the)(servicep

from history information.

p(user)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of bits exchanged after 1st message

p(
no

t u
se

r|m
at

ch
) 0.001

0.002

0.004

0.008

0.016
0.032
0.064
0.128

0.256

0.512

0.75

Figure 7.)| (matchusernotp decreases as the
number of code word bits exposure increase

after the 1 st message.

p(service)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of bits exchanged after the 1st message

p(
no

t s
er

vi
ce

|m
at

ch
) 0.001

0.002
0.004
0.008
0.016
0.032
0.064
0.128
0.256
0.512
0.75

Figure 8.)| (matchservicenotp decreases as

the number of service information bits
exchanged increases after the 1 st message. (A

service provider with 320 services.)

We graph the relation between
)| (matchservicenotp and number of bits exchanged

after the first four bits for a service provider with 320
services in Figure 8. If a service provider has 160 (or 640)
services, he needs to exchange one less (or more) message
to reach the same probability.

Therefore, in each round a service provider knows the
probability of legitimacy of a user and a service request.
Moreover, a service provider may choose critical values
for)| (matchusernotp and)| (matchservicenotp , for

example 5% for both probabilities. During a discovery
process, if the probabilities are less than the critical values,
the service provider thinks that legitimacy is high enough
and therefore finishes the discovery process.

3.4. The Exposure Strategies

During a discovery process, a service provider does not
need to calculate the probabilities to determine whether the
legitimacy of a user and the user’s service request reaches
a high probability. Instead he only needs to perform table
lookups. Because once the critical values are decided, the
numbers of bits that are necessary to reach the critical
values are derived directly from the calculation results as
we discussed in Section 3.3. Table 3 (a) lists the number
of bits for different)(userp values, and Table 3 (b) lists

the number of bits for different)(servicep values and

different number of services for critical values at 5%. For
example, if a service provider has 80 services,)(userp is

0.016, and)(servicep is 0.032, then he needs to

exchange 10 bits of the code word and 12 bits of service
information. When the number of registered
services,)(userp , or)(servicep changes, a service

provider performs a table lookup.

Table 3. Number of bits to exchange to reach a
critical value (less than 5%) for

)| (matchusernotp and)| (matchservicenotp
in (a) and (b), respectively.

The general exposure strategy is that a service provider

and a user exchange 1 or 2 bits of a code word and 1 or 2
bits of service information in one message, specifically
four combinations: 1/1, 1/2, 2/1, and 2/2 (the first number
is the number of code word bits and the second number is

8

the number of service information bits). Exposing 1 or 2
bits at a time is for the following three reasons. First,
when mismatches occur, exchanging few bits exposes
minimal sensitive information. Second, a service
provider may use different combinations to synchronize
the convergence for)| (matchusernotp

and)| (matchservicenotp to reach the critical values at

the same time. Third, 2/2 is used to make the
convergence of the discovery process quicker when the
two numbers of bits are large. The disadvantage of the
progressive exposure process is that the number of
messages required to reach critical values may be large.
For example, 20 bits require at least 10 messages to be
exchanged. However, our experiments show one
message only takes about 4 milliseconds on a PDA.

A service provider decides an exposure strategy for
each discovery session based on the two numbers of
bits. A user’s strategy is to expose the same number of
bits of the code word and service information as a
service provider does. For example, if a service
provider needs to exchange 10 bits of a code word and
12 bits of service information with a user, he may use
the strategy 1/2, 1/1, 1/1, 1/1 and 1/1. After receiving a
message, the user knows how many bits to exchange in a
reply message. Thus, the interaction between a user and
a service provider is 1/2, 1/2, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1,
1/1, and 1/1.

Up to now, the design is from the service provider’s
perspective. From the user’s perspective, he may trust a
service provider’s strategy. If a service provider is
illegitimate, false positive matches occur and the service
provider does not know the user’s identity and does not
understand the user’s service request. The service
provider wastes energy and processing power if he
exchanges messages more than necessary. If a service
provider is legitimate and provides the requested
service, exchanging messages more than necessary does
not offer him any better payoff. Conversely, if the
service provider exchanges messages less than
necessary, he does not have enough confidence that
authentication (his identity exposure) is necessary. If a
service provider is legitimate but he does not provide the
requested service, he knows the user’s identity and the
service request more accurately by exchanging messages
more than necessary. However, the service provider
also exposes his identity more precisely. Moreover, to
learn more about user’s sensitive information, he needs
to claim that he has the service by correctly guessing the
next 1 or 2 bits of service information or claim that he
has multiple services that match the initial sequence of
the service hash bits. The behavior pattern can be
detected if the service provider does it many times.

3.5. False Positive Match Overhead

The overhead of false positive matches can be
calculated from the probabilities that we discussed in
Section 3.3. Consider the exposure process as a Markov
chain illustrated in Figure 9. For each transient state (state
“0” to “k”), if both the bits of a code word and service
information match, the process goes to the next state.
Otherwise, the process goes to the absorbing state, “Quit” .
Given that a discovery message is not legitimate (the user
is illegitimate or the user is legitimate but the service
provider does not have the service), the process should go
to the “quit” state. Since there are false positive matches,
the process may go to the next state.

Figure 9. Message exchange process expressed

as a Markov chain.

Suppose given a discovery message is illegitimate, the
probability of the process goes to the next state is pi and
the probability of the process goes to the “Quit” state is qi.
We calculate pi from the following formula:

)) () (()) (

) () ((

servicenotpusernotpservicenotmatchp

servicenotmatchpusernotmatchppi

+÷−
×=

I

II

 Moreover, based on the calculation of the mean time
spent in transient states, we calculate the probabilities that
the Markov chain makes a transition into state “i” given it
starts from state “0” [20]:

rts in i.ven it stastate j gieriods in the time p

, svalues of matrix of awhere S isPIS i,jT)(1−−=

". tarts in "given it sn state j bability iis the pro and f

 when j and δwhere δ
s

s
f

,j

,j,
jj

j,j
j

0

,001

0

000
,

,00
,0 ≠==

−
=

δ

For example, if a service provider has 80 services,
)(userp is 0.016, and)(servicep is 0.032, and he

selects the strategy 1/2, 1/2, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1

and 1/1, jf ,0 is shown in Table 4. Thus, the false

positive match overhead decreases quickly.

Table 4. Probability in states given a discovery
message is not legitimate.

9

4. System Evaluation

In this section, we first show tests of hypotheses
upon which our approach is based. Then, we measure
the performance of our protocol.

4.1. Hash Results Follow the Integer
Distribution

Throughout the discussion in Section 3, we assume
that the last dozens of bits of hash results follow the
Integer distribution. For service information, we may
encode services to evenly distribute among the first
several bits. For code words, however, the good
security properties are important and should be retained.
On the other hand, the probability of

) |(usernotmatchp is based on the Integer

distribution assumption. Moreover,
)| (matchusernotp and)(userp are based

on) |(usernotmatchp . If the assumption does not

hold, the abovementioned probabilities are affected.
Therefore, exposures may not be predicted well. In
addition, we also assume that the last 5 bits of each byte
in the one-time secrets follow the Integer distribution.
Otherwise, our encryption method for service
information may not be computationally secure. Thus,
the null hypothesis of the first test is that the last dozens
of bits in code words follow the Integer distribution and
the null hypothesis of the second test is that the last 5
bits of every byte in a one-time secret follow the Integer
distribution.

We use the chi-square goodness-of-fit test to
determine if the data can be adequately modeled by the
Integer distribution [21]. For the first hypothesis test,
there are 2n possible outcomes (n is the number of bits).
For the second hypothesis test, there are 25 possible
outcomes. To test the hypotheses, we randomly
generate a secret that serves as the shared secret. Two
bytes of a timestamp and 14 one-byte random numbers
are used as a time variant parameter. Next, we use the
mechanism that was discussed in Section 3.1 to generate
a large number of one-time code words and secrets.
Then, we count the number of occurrence for each
outcome. Last, we calculate the chi-square test statistics
and select 5% as the significance level.

For the first hypothesis test, we generate 100,000
code words for each n, where n is from 4 to 13,
25,600,000 code words for each n, where n is from 14 to
16, and 409,600,000 code words for each n, where n is
from 17 to 20. Only one test (n=18) is significant.
However, it may be given a false result. Because given
the significance level is 5%, it seems reasonable that 1
out of 17 experiments is false. Then, we do 20
experiments to test as n equals 18 and one of the 20 tests
is significant. Therefore, we do not reject the null

hypothesis for n from 4 to 20. For the second hypothesis
test, we generate 10,000 one-time secrets. All last 5 bits of
the 20 bytes are tested. Only byte number 6 turns out to
be significant. Similarly, we generate 20 groups of 10,000
secrets to test byte number 6 again and no p-value is
significant in the tests. Therefore, we do not reject the null
hypothesis.

4.2. Experimental Results

Users and service providers may access or provide
services via portable devices, which have limited
computing power and energy. Thus, we measure the
performance of our protocol on Compaq iPAQs. Each
PDA has an ARM SA1110 206 MHz processor, 64MB
RAM, an expansion pack, and a D-Link DCF-650W
wireless card. The wireless cards are set to the 802.11 ad
hoc mode and 2Mbps. Our software is developed using
Microsoft eMbedded Visual C++ 3.0 and running on
Microsoft PocketPC 3.0.

The experimental results show that our protocol is
efficient on the PDAs. Table 5 shows the measurements
of the major procedures. We repeated 100 experiments
and calculated the average time. When a user generates
100 code words, a sophisticated version that generates
unique code words as we discussed in Section 3.2 is used.
The discovery process between a user and a legitimate
service provider who provides the service takes about 100
milliseconds. Therefore, within reasonable time, a user
can finish the discovery process.

Table 5. Performance measurement of the
protocol.

Party Operation Time
User Generating 100 one-time code

words and secrets, and sending
discovery messages

55.64ms

User Waiting time from sending
the first message to receiving
the first reply

6.62ms

Service
provider

Generating the code word
and secret, verifying all code
words and secrets

2.96ms

Service
provider
and user

Each message after the first
two messages, (from verifying
the code word and service
information, sending the
message, to the other
party receives)

3.58ms

5. Conclusion and Future Work

In this paper, we identified that during service
discovery in pervasive computing environments, sensitive
information not only needs to be protected from

10

illegitimate parties to access, but also should be exposed
only to necessary legitimate parties. We designed a
progressive approach to secure sensitive information and
determine necessary exposures. We presented the
analysis of the mathematical properties, and
performance measurement of the protocol.

Currently, a secret is shared between a service
provider and his users. We are working on supporting a
secret that is shared between a service provider and an
individual user. Thus, fine-grained access control rules
may integrate with the discovery process. However,
supporting a shared secret at the user level causes the
processing at a service provider’s side to be more
complex. Multiple code word matches may be found for
different users in the first message and might cause the
process to diverge. We are also working on a revocation
mechanism. Revocation of shared secrets from a user
may not be simple, because a new secret needs to be
distributed to other users.

Our approach does not have a specific mechanism
for situations when many users and service providers are
in a given place, for example, a stadium. A discovery
process will cause many false positive matches and
waste computation resources and energy. Moreover, our
approach may be inefficient when a user knows the
existence of a service and its associated service provider,
such as repeated discoveries in a short time period. We
would like to improve our design to support these
situations. A possible solution is to integrate with more
precise discovery approaches, such as the approach used
in PrudentExposure. However, the rules to determine
when to use a precise approach and when to use a
progressive approach could be complex.

The calculation of)(userp and)(servicep is based

on history information, and we are working on providing
detailed algorithms for updating them. Service
providers, who move around frequently, may only use
recent discovery information for the calculation, while
less mobile service providers may use more history
information for the calculation.

Acknowledgments

We thank Lyudmila Sakhanenko for formal proof of the
expected number of code word conflicts described in
Section 3.2, and James Stapleton for discussing the
hypothesis testing approaches described in Section 4.1.

References
[1] T. Kindberg and A. Fox, "System Software for
Ubiquitous Computing," IEEE Pervasive Computing,
January-March, pp. 70-81, 2002.
[2] F. Zhu, M. Mutka, and L. Ni, "Classification of
Service Discovery in Pervasive Computing Environments,"
Michigan State University, East Lansing MSU-CSE-02-
24,available at

http://www.cse.msu.edu/~zhufeng/ServiceDiscoverySurvey.pd
f, 2002.
[3] Microsoft Corporation, "Universal Plug and Play
Device Architecture," Version 1.0 ed: Microsoft Co., 2000.
[4] M. Nidd, "Service Discovery in DEAPspace," IEEE
Personal Communications, August, pp. 39-45, 2001.
[5] M. Balazinska, H. Balakrishnan, and D. Karger,
"INS/Twine: A Scalable Peer-to-Peer Architecture for
Intentional Resource Discovery," presented at Pervasive 2002 -
International Conference on Pervasive Computing, Zurich,
Switzerland, 2002.
[6] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and
J. Lilley, "The design and implementation of an intentional
naming system," presented at 17th ACM Symposium on
Operating Systems Principles (SOSP ’99), Kiawah Island, SC,
1999.
[7] C. Ellison, "Home Network Security," Intel
Technology Journal, vol. 06, Issue 04, pp. 37-48, 2002.
[8] Salutation Consortium, "Salutation Architecture
Specification," The Salutation Consortium Inc.available at
ftp://ftp.salutation.org/salute/sa20e1a21.ps, 1999.
[9] E. Guttman, C. Perkins, J. Veizades, and M. Day,
"Service Location Protocol, Version 2," available at
http://www.ietf.org/rfc/rfc2608.txt, 1999.
[10] Bluetooth SIG, "Specification of the Bluetooth
System -- Core," available at
http://www.bluetooth.org/docs/Bluetooth_V11_Core_22Feb01
.pdf, 2001.
[11] Bluetooth SIG Security Expert Group, "Bluetooth
Security White Paper," available at
http://grouper.ieee.org/groups/1451/5/Comparison%20of%20P
HY/Bluetooth_24Security_Paper.pdf, 2002.
[12] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph, and
R. Katz, "An Architecture for a Secure Service Discovery
Service," presented at Fifth Annual International Conference
on Mobile Computing and Networks (MobiCom '99), Seattle,
WA, 1999.
[13] F. Zhu, M. Mutka, and L. Ni, "PrudentExposure: A
Private and User-centric Service Discovery Protocol,"
presented at 2nd IEEE Annual Conference on Pervasive
Computing and Communications, Orlando, Florida, 2004.
[14] P. Bonatti and P. Samarati, "Regulating service
access and information release on the Web," presented at 7th
ACM conference on Computer and communications security,
Athens, Greece, 2000.
[15] T. Yu and M. Winslett, "A Unified Scheme for
Resource Protection in Automated Trust Negotiation,"
presented at 2003 IEEE Symposium on Security and Privacy,
Oakland, CA, 2003.
[16] M. Krzywinski, "Port Knocking: Network
Authentication Across Closed Ports," in SysAdmin Magazine,
vol. 12, 2003, pp. 12-17.
[17] T. Pering, M. Sundar, J. Light, and R. Want,
"Photographic Authentication through Untrusted Terminals,"
IEEE Pervasive Computing, January-March, pp. 30-36, 2003.
[18] M. Bellare, R. Canettiy, and H. Krawczykz, "Keying
Hash Functions for Message Authentication," presented at
Advances in Cryptology–CRYPTO ’96 (LNCS 1109), 1996.
[19] A. Menezes, P. v. Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography: CRC Press, 1996.
[20] S. Ross, Introduction to Probability Models, eighth
ed: Academic Press, 2003.
[21] J. Rice, Mathematical Statistics and Data Analysis,
Second ed: Duxbury Press, 1995.

