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Abstract 
 We propose a novel entity authentication 

approach for pervasive computing environments.  A 
person uses a single device, the Master Key, which 
aggregates all his digital forms of access tokens for 
entity authentication.  The Master Key discovers and 
selects proper tokens for its owner.  With an 
emphasis on usability, the Master Key secures 
authentication, protects privacy information from 
outsiders and insiders, and supports various 
claimant-verifier relations.  We analyze privacy and 
security properties of our approach and protocols, 
and we investigate the overhead.  Performance 
measurements show that our protocols are efficient.   

1. Introduction 
We prove our identities everyday by showing the 

possession of access tokens.  Using a key to open a 
lock may be the most common form, which has about 
4000 years of history since ancient Egypt [1].  As one 
may access many locks, traditional master keys were 
designed to enable accessing multiple locks with a 
single key.  Nevertheless, master keys are not widely 
used.  Instead, people carry multiple access tokens 
for entity authentications, e.g., keys, magnetic stripe 
cards, smart cards, RFID tags, and other tokens.  We 
propose the Master Key, which is a novel approach 
for digital access tokens to have the advantages of 
master keys and multiple access tokens.    

Traditional master keys are convenient.  One does 
not need to carry many keys and memorize 
relationships between keys and locks.  However, 
traditional master keys have fatal problems that are 
not suitable for everyone’s daily usage.  For example, 
the delegation of a master key equals delegating 
access to all locks that one has privilege to access.  
Revocation of the privilege of accessing one lock 

from a master key is costly because the lock and the 
keys of other owners need to be replaced.  In 
addition, if an intruder acquires a master key, then the 
intruder may access many locks.  Moreover, locks 
that support master keys are vulnerable to the 
malicious insider who has a normal key [2].     

The use of multiple access tokens does not have 
the fatal delegation and revocation problems as 
traditional master keys have because one token 
usually matches one lock.  Similarly, if a key-lock 
pair is compromised, it does not put other locks at 
risk.  Issues concerning delegation and revocation are 
further addressed by replacing keys with modern 
access tokens, e.g., a hotel room key in the form of a 
magnetic stripe card or a smart card.  With the 
encoding of privileges within a digital form, the 
delegation and revocation of the privileges are 
simple.   Moreover, modern access tokens improve 
usability in a wide variety of applications, e.g., 
unlocking a car using a remote control; accessing an 
enterprise facility using a smart card badge; entering 
a parking facility using a RFID gate card; opening a 
hotel room using a magnetic stripe card; or locking 
and unlocking a computer by wearing a token [3].  
Additional token designs are emerging as well as 
their applications.  Nevertheless, the management of 
access tokens and memorizing the token-lock 
relationships become inconvenient and difficult as 
the number of tokens increases. 

In pervasive computing environments, entity 
authentications might be ubiquitously necessary.  An 
intuitive question is how to achieve both the 
advantages of traditional master keys and multiple 
access tokens while avoiding their disadvantages.  
The Master Key that we propose aggregates the 
digital forms of all access tokens that its owner has.  
The tokens on the Master Key and their respective 
locks maintain their original relationships (one token 
matches one lock).  Therefore the advantages of 
using multiple access tokens are retained.  The goal 
of this paper is to design an approach that properly 
selects access tokens for entity authentications and 
therefore achieves the convenience of traditional 
master keys.  From now on, we refer to keys as the 
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digital access tokens and locks as the target 
resources.   

The Master Key is invoked when the owner 
pushes a lock or unlock button.  At that time, the 
Master Key discovers the right key for a lock and 
authenticates with the lock.  During the procedure, 
the Master Key needs to address the following 
challenging issues.   
• Privacy.  Privacy information includes the key 

owners’ credentials and their presence information.  
Most security protocols only protect sensitive 
information from outsiders but not from insiders.  
However, the concern of privacy may be very 
important among insiders, namely the concerns 
among key owners or between a key owner and a 
lock.  For situations when the exposure of presence 
information is unnecessary, the Master Key 
protects privacy information from both insiders and 
outsiders.   

• Security.  As an entity authentication approach, the 
Master Key should prevent illegitimate keys to 
open locks.  Mutual authentication is employed in 
the Master Key to properly identify key owners 
and locks and verify their legitimacy.  

• Scalability and efficiency.  Potentially, one may 
interact with many locks, and a lock may interact 
with many key owners.  During lock discovery 
using the Master Key, one may specify hundreds of 
potential locks and a lock may specify hundreds of 
potential key owners within one network packet.  
Our protocols require only three messages to 
discover locks, identify a key owner, and finish 
mutual authentication.     

We analyze privacy exposure in terms of 
probabilities and address the relative overhead 
incurred to preserve privacy.  Different exposure 
strategies and their respective advantages and 
disadvantages are discussed.  Three representative 
protocols are presented for key-lock relationships, 
which have different privacy concerns.  The 
protocols are implemented, and measurements on 
PDAs show that our approach is efficient.  A protocol 
run between the Master Key and a lock is less than a 
half second.     

The rest of the paper is structured as follows.  In 
Section 2, we discuss related work.  Section 3 
presents our Master Key design and protocols.  We 
demonstrate our claims through analysis and 
experimentation in Section 4.  We discuss some 
related issues in Section 5.  Last, in Section 6, we 
outline our future work. 

2. Related Work 
In this section, we first survey several 

technologies that are widely used and embedded in 

small devices for entity authentication.  Then, we 
discuss other research work that inspire our work. 

Magnetic stripe technology is now widely used as 
access tokens [4]. For example, hotel guestroom 
locks and employee badges use the technology, while 
the most common usage is for bankcards.  Most 
magnetic stripe cards contain three tracks on which 
data or even PIN numbers are encoded and stored.  
Since magnetic stripe cards are relatively easy to 
forge, the annual loss in the UK alone due to 
counterfeit cards is about £130 million in 2004 [5].   

Due to the smart cards’ computational and storage 
capabilities and better security features, they are 
considered the replacement for many magnetic stripe 
card applications [6].  Smart cards are also used as 
prepaid transit cards, ID cards, health cards, or are 
even embedded within passports [7].  Smart cards 
may be classified as contact or contactless cards.  The 
former type of cards needs physical contact with 
readers, while the latter conveniently works over 
radio frequency links.  A smart card may support 
multiple applications or authentication purposes.  Our 
Master Key approach complements multifunctional 
smart cards and provides an approach to select the 
correct credentials privately during authentication. 

RFID tags (i.e., passive and active tags) are used 
as authentication tokens, such as in [8, 9], 
respectively.  However, RFID tags can be tracked by 
reading tag IDs from their messages and thus they are 
not appropriate for entity authentication when 
privacy is a concern.  Several solutions are proposed 
to improve privacy for RFID tags in some situations 
[10, 11], but the privacy problem is not entirely 
solved.  Moreover, passive RFID tags do not have 
processing capabilities to perform cryptographic 
operations.  The MIT Card System uses magnetic 
stripe and passive RFID technologies.  The usage of 
passive RFID tags on the cards introduces several 
new vulnerabilities [12], which makes the cards even 
less secure than their old magnetic stripe ID cards.   

Remote Keyless Entry systems are commonly 
installed on new automobiles and garage-doors.  On a 
typical Remote Keyless Entry system [13], when its 
owner pushes a button, the remote control sends a 
message (8 or 16 bytes) to the receiver.  The message 
contains a “rolling code” for authentication [14].   
The “rolling code” is a pseudo-random number that is 
generated both at the controller and the receiver by 
using the same seed.  The seed is computationally 
difficult to find from the pseudo-random numbers. 

iButtons are used as keys, e-cash, and asset 
management devices.  For instance, in New York 
City over 200,000 iButton owners are using iButtons 
to access over 10,000 buildings [15].  Interestingly, 
memory and processor chips in the iButtons are 
encapsulated within stainless steel cans.  The cans 
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serve as the iButton’s network interface when 
iButtons touch readers.  Some iButtons support 
password protected memory data, challenge-response 
authentication, or even public key encryptions.  
Moreover, large memories on iButtons allow an 
owner to store many keys and certificates for various 
applications.  Our approach may complement 
iButtons when multiple credentials are stored on 
them and may prudently select and expose sensitive 
credential information. 

If one aggregates all his credentials on one 
device, he may justify having a more powerful 
device, which has better processing capability, 
memory size, power, and user interface, and has the 
authentication and tamper-resistant features that are 
used on iButtons or smartcards.  On a powerful 
device, an owner may audit his authentication 
processes.  In addition, having a richer user interface 
also enables much more information sent to owners.  
For instance, when unlocking a car, an owner may be 
notified that the tire pressure is low.   

Recent implementation and experimentation show 
that public key operations, such as elliptic curve 
cryptography, take only several seconds to run on the 
8-bit Berkeley/Crossbow Mica2 mote platform [16].  
Energy consumption due to cryptographic operations 
and wireless communication on those embedded 
devices are low [17].  These tiny devices are 
expected to cost as little as a dollar in a few years 
[18].  Imagine that within pervasive computing 
environments, such devices may be embedded in 
locks and other commodities with simplified key 
delegation and revocation.  Together with the Master 
Keys, locks may further differentiate key owners and 
provide services accordingly.     

Location-based or proximity-based authentication 
also inspires our work.  Improving usability is a 
major goal of these approaches.  For example, the 
Active Badge, a pioneer location sensing system, 
may be used as a remote control to start a user’s X 
window display on the nearest computer, and then a 
user pushes buttons on the badge to control the 
display [19].  Based on relative location context, 
content of the applications and displays may be 
adapted.  When a user leaves, applications and the 
display are automatically closed.   With location or 
even orientation information, the Master Key design 
could be further improved and unnecessary 
computation and communication overhead will be 
reduced.   

In another example, Zero-Interaction 
Authentication (ZIA), an owner wears a token to 
secure his laptop without actively locking or 
unlocking his laptop [3].  When the owner leaves, all 
file systems on the laptop are protected via 
encryption.  When detecting that the owner returns 

(i.e., the token is nearby), the laptop fetches 
decryption keys from the token and restores itself to 
the state before the owner left.  Since there is no 
owner’s involvement in an authentication, ZIA 
achieves optimal usability.  XyLoc uses a similar idea 
for automatically locking and unlocking a PC [20].  
However, these approaches may not be suitable for 
applications that are beyond trustworthy locks and 
key owners.  If an owner wears tokens for all his 
authentication tasks, a malicious insider (a lock or 
other key owner) might query a token to track the 
owner without the owner’s knowledge.         

Biometric recognition, such as fingerprint, iris, 
hand geometry, and voice recognition, is used in 
various authentication applications including keys to 
open locks [21].  As a proof of “who you are”, 
biometric recognition has several advantages over 
other authentication approaches such as token-based 
(“what you have”) or password-based (“what you 
know”).  While other approaches may not be 
appropriate, biometric authentication can be used for 
negative authentication (prove the person who he 
denies being) [21].  Nevertheless, biometrics may not 
be suitable to serve as a master key because not all 
service providers are trustworthy and will keep the 
biometric information secure and private.  Biometric 
is difficult or even impossible to revoke and delegate.  
If it is broken in one application, other applications 
may be jeopardized.  However, biometric recognition 
seems to be a good approach to secure the Master 
Key, for instance a fingerprint may be used to 
activate the Master Key. 

In PrudentExposure [22], a similar data structure, 
namely the Bloom Filter [23], is used during service 
discovery processes to find legitimate service 
providers and users.  By exchanging precise code 
words, service providers and users discover each 
other’s existence in one round.  The authentication 
approach discussed in PrudentExposure does not 
protect privacy information from malicious insiders. 

The Bloom filter has wide applications in 
database and networking [24], and recently it has 
some applications in security [22, 25].   The Bloom 
filter is a compression method to express 
memberships.  It has the efficiency advantages of 
storage space and computational time, while paying 
the price of false positive cases in membership tests.  
In many applications, the tradeoff is worthwhile [24].  
The Master Key not only utilizes its time and space 
advantages but also utilizes false positive cases to 
preserve privacy.  Unlike other applications in which 
each element in a Bloom filter has the same length, 
elements in the Master Key may have different 
lengths.  Short elements are used to preserve privacy 
because of their high false positive rates, while long 
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elements are used for their time and space 
advantages.  

Beaufour and Bonnet proposed to use Personal 
Servers as digital keys [26].  In their design, a lock 
actively looks for devices to make a connection.  
Once a connection is established, a lock identifies 
itself.  If the device is a Personal Server with digital 
keys, it identifies and proves itself to the lock.  
Otherwise, the lock marks the device as an invalid 
key device.  Sure enough, a lock that initiates an 
authentication process simplifies the design such that 
a Personal Server can easily select the key for the 
lock.  Nevertheless, it is irrational for some devices to 
take the initiative because most processing and 
communication efforts are wasted.  Such waste on a 
car’s Remote Keyless Entry system for example, 
drains the same battery that the car uses to start the 
engine.  If a car is parked for several weeks, the 
battery in the car may become completely drained.  

Abadi and Fournet proposed two private 
authentication protocols for ad hoc networks [27].  
The protocols enable two principals to authenticate 
and establish a secure communication channel 
without explicitly specifying their identities.  
Assuming that the public keys of the principals are 
known, authentication messages are encrypted using 
the other principals’ public keys, and thus only the 
one that holds the private key understands the 
messages.  Unlike protocols in which the target 
principal is assumed to be known in the vicinity, the 
target lock in our case needs to be discovered.  
Moreover, their protocols do not offer protection 
from malicious insiders.  A principal either exposes 
or refuses to expose, and therefore they are not 
suitable to discover locks.  The Master Key uses 
different exposure strategies to protect privacy 
information from insiders, unless it is necessary to 
expose. 

3. The Master Key Design 
The Master Key initiates an authentication 

process by sending a broadcast message, as shown in 
Figure 1.  It queries a set of locks for which it has 
keys.  If a lock finds itself in the set, it replies back.  
Then the Master Key supplies a key to operate the 
lock.   

The Master Key

Lock
Lock Lock

1

1 1

2 3

1. Broadcast message:  any lock in this set nearby?
2. Unicast message:  this lock is nearby.
3. Unicast message:  this is the key.

Figure 1. An authentication process between 
the Master Key and a lock. 

3.1. Protect Privacy Information from 
Outsiders – Private Authentication 

Unlike standard authentication protocols that send 
identifications in clear text, our authentication 
process exchanges only code words.  A code word is 
generated at both the Master Key side and a lock’s 
side.   It is calculated from a shared secret between 
the Master Key and lock.  One sends a code word for 
authentication, while the other verifies.  Since only a 
party who knows the shared secret understands a 
code word, identifications are protected from being 
exposed to outsiders.  Thus, private authentication is 
achieved. 

Code words in our design have two formats: the 
hash format and the Bloom filter format.  The hash 
format is used when the key and lock has a one-to-
one relation, for example after the Master Key has 
discovered the target lock. The Bloom filter format is 
used when keys and locks have one-to-many 
relationships.  For instance, the Master Key queries a 
set of potential locks, or a lock needs to identify a 
key owner among many key owners.   

The top half of Figure 2 illustrates the generation 
of a code word in the hash format.  A time variant 
parameter (TVP) and the shared secret are the two 
inputs to h(*), which is the hash-based message 
authentication codes proposed in [28].  The Hash 
function, MD5 or SHA-1, is used in the place of h().
The hash result is the hash format code word.  The 
preimage resistance and collision resistance 
properties of MD5 and SHA-1 ensure that it is 
computationally difficult to find the shared secret 
from the hash result [29].  The TVP and hash result 
are sent to the other party for verification.   

h(Shared Secret, XOR padding1, h(Shared Secret, XOR padding2, TVP))

... ChunkChunkChunkChunk

Time Variant 
Parameter (TVP) Shared secret

Hash result

Bloom filter

12 11 10 9 8 71314 6 5 4 3 2 1 015

0 0 0 0 1 000 1 0 0 1 0 0 00

Bit

Generate a 
code word in 

the hash format Generate a 
code word in 
the Bloom 
filter format

Figure 2. The generation of a code word. 

For a code word in the Bloom filter format, a hash 
result as we discussed above is first generated.   
Then, the hash result is further separated into chunks 
as shown in Figure 2.  The size of the chunks 
depends on the length of the Bloom filter, which is an 
array of 2X bits.  (To be fit in a network packet, a 
Bloom filter is equal or less than 213 = 8192 bits.)  If 
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the Bloom filter is 213 bits, then the chunk size is 13 
bits.  Since the hash result is 128 bits for MD5 and 
160 bits for SHA-1, a hash result is separated into at 
least 10 chunks.  All bits in a Bloom filter are 
initially set to zero.  The value of a chunk serves as 
an index to a Bloom filter and the corresponding bit 
is set to one.  A code word is represented by a 
combination of several bits that are indexed by the 
chunks.  For example, in Figure 2, bits 8, 6, and 3 
represent a code word.   

For all potential locks that the Master Key wants 
to discover, it repeats the above process using the 
same TVP and sets the code word bits in the same 
Bloom filter.  Then, the Bloom filter and the TVP are 
broadcasted to query the locks in the vicinity.   

If a lock and each of its key owners share a 
unique secret, the lock may generate code words for 
all its key owners in a Bloom filter via the same 
process.  Then, the lock sends the Bloom filter and 
requests the key owner who sends the discovery 
message to identify himself.  

The probability of finding a hash result from a 

Bloom filter is )
)!(

!/(1
km

m
−

, where k is a code word 

length and m is the number of bits set in a Bloom 
filter.  The denominator is the number of 
permutations of k bits from m bits, that is, select k 
bits from m bits and then make arrangements of the k 
chunks to guess a hash result.  Only part of the hash 
result might be found if the code word is generated 
by part of the chunks.  Even if the hash result is 
found, it is still computationally difficult to find the 
shared secret as in the situation of the hash format 
code words.  

The Bloom filter format of code words is 
scalable.  Hundreds of code words may be expressed 
in a Bloom filter.  For instance, if the Master Key 
uses a 213-bit Bloom filter, of which 50% are set, and 
on average each code word is 5 bits, then at least 
213×50%÷5=819 code words may be set in a 
discovery message.  The result (819 code words) is a 
lower bound, which is calculated from the extreme 
case that no two code words set the same bit.   

Code word verification in the Bloom filter format 
is efficient and independent of the number of code 
words in a Bloom filter.  A party calculates the hash 
results, as we discussed above, and then verifies 
whether the bits indexed by the chunks in a Bloom 
filter are set to one.  If any bit is not one, then the 
code word does not match.  A property of Bloom 
filters ensures that if two hash results match, the 
Bloom filter format of the code words match [23].  It 
is possible that a party may find false positive 
matches, and we will discuss the probability of false 

positive cases in Section 3.3 and the relative 
overhead in Section 4.1. 

3.2. Secure the Authentication Process 
Figure 3 shows the generic protocol for the 

authentication process.  In the first and second 
messages, both the Master Key and a lock post 
challenges, TVPs, respectively; while in the second 
and third messages the other parties respond with 
code words based on the challenges.  Thus, mutual 
authentication is attained.   

The code words are one-time code words.  Based 
on TVPs, code words between the Master Key and a 
lock differ between protocol runs.  In addition, a 
replay code word can be easily detected by checking 
the freshness of a TVP.  (The clocks on the Master 
Key and locks are required to be loosely 
synchronized.)  

The total number of bits set in a Bloom filter may 
be maliciously used as a signature to track or identify 
a Master Key owner.   To counter the attack, code 
words and some random bits are mixed together to 
reach a fixed ratio of the number of bits set and total 
number of bits in a Bloom filter.  Thus, all Bloom 
filters look the same.  Moreover, code word lengths 
in the Bloom filter format are obscured.  A lock only 
indicates the last bit of the matched code word in its 
reply message, as shown in Figure 3.  Thus, every 
code word looks the same to an attacker. 

The Master Key Lock
1. TVP1 + code words (TVP1)

2. The last bit of the matched code word 
    + another code word (TVP1) + TVP 2

3. Code word (TVP2)

Figure 3. The generic interaction protocol 
shows the exchange of code words between 

the Master Key and a lock. 

3.3. Protect Privacy Information from 
Insiders 

Since the authentication process includes 
discovery of the locks and keys, unnecessary code 
words may be transmitted.  Although the Master Key 
and locks exchange code words, insiders understand 
the code words.  There might be no privacy concerns 
among insiders.  For example, Bob and his wife Alice 
are not concerned that their Master Keys speak code 
words for their cars, because only their Master Keys 
and cars understand the code words.  However, in 
some situations there are privacy concerns among 
insiders.  For example, Bob does not want other gym 
key owners to use the knowledge of the key for the 
gym to identity or track him at places other than the 
gym.   
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To address the problem, Bob’s Master Key may 
speak a partial code word for the gym door lock in a 
discovery message.  A partial code word causes an 
insider to be uncertain whether Bob has the gym key.  
If Bob is not near the gym door, his Master Key will 
not receive a reply message from the gym door lock, 
and thus Bob preserves his privacy.  A partial code 
word increases the number of false positive cases, 
which for example, the gym’s door lock may have 
communication and computation overhead to interact 
with some illegitimate key owners.  (Illegitimate key 
owners do not gain access because the code words in 
the last messages can only be generated by legitimate 
key owners.)  When there is no privacy concern, a 
precise code word should be used to avoid such 
overhead.  For example, Bob’s Master Key always 
speaks a precise code word for his car. 

The Bloom filter has the properties that meet our 
needs.  Both precise code words with low false 
positive rates and partial code words with high false 
positive rates may be specified in the same Bloom 
filter.  We first examine some mathematical 
properties of the Bloom filter for our case.  Some 
formal mathematical analysis of the false positive 
rates and the calculation of the expected false 
positive rate may be found in [24, 30].  Unlike the 
analyses, which are based on having each element in 
a Bloom filter with the same length, the Master Key 
may use various lengths for different code words.  
Moreover, the Master Key uses a fixed ratio between 
the numbers of bits set and the Bloom filter lengths.  
The false positive rate in our case is a typical 
sampling with replacement problem.  Therefore, the 
false positive rate at a lock’s side is:  

(1))|(
k

⎟
⎠
⎞⎜

⎝
⎛=

n
mownerkeynotmatchwordcodep

where n is the Bloom filter length, m is the number of 
bits set in the Bloom filter, and k is the length of a 
code word.  Thus, given an illegitimate key owner, 
the false positive rate depends on n, m, and k.  (The 
analysis of the false positive rate at the Master Key’s 
side is similar, and thus we omit it.)  

Examining equation 1, we find the property that is 
useful in our case.  When the length of a code word 
increases and the m/n ratio is fixed, the false positive 
rate decreases as shown in Figure 4.    For example, if 
the m/n ratio is at 50%, a code word of 1 bit has a 
false positive rate of 0.5, a code word of 5 bits has a 
false positive rate about 0.03, and a code word of 10 
bits has a false positive rate less than 0.001.  The m/n 
ratio at around 50% provides a good span of false 
positive rates for the code words from 1 bit to 10 bits.  
By default, 50% of the m/n ratio is used.  In 
summary, if a key-lock pair wants to achieve a low 

false positive rate, they may exchange more bits (say 
10 bits) in a code word.  If there are privacy 
concerns, they may exchange fewer bits (1, 2 or 3 
bits) of a code word. 

Figure 4. False positive rates decreases as 
the length of the code word increases. 

Long code words reduce unnecessary 
communication and processing overhead.  To further 
reduce unnecessary overhead, another hash algorithm 
or another secret may be used to generate a code 
word of 20 bits or longer.  Very long code words are 
useful for applications that require extremely low 
false positive cases, such as for Remote Keyless 
Entry systems. 

The use of partial code words changes the order 
from having the key owner first expose code words 
precisely to having locks first expose code words 
precisely.  Precise exposure later has the advantage 
when privacy is a concern.  Because when there is a 
mismatch in the code word, a party that exposes later 
may avoid the exposure.   

3.4. The Master Key Protocols 
In this section, we present three protocols to 

demonstrate that our approach is flexible for different 
types of key-lock relations.  A unique key is one that 
may be owned by one or a few owners to open a lock, 
for example a car’s Remote Keyless Entry system; a 
group key is one that a lock is able to authenticate as 
a key, but key owners are not differentiable, for 
example a gate card to entering a parking facility; and 
an individual key is one for which a specific key 
owner among a group can be identified, for example 
a badge for entering a factory.   

The initialization processes for all relationships 
are the same.  Shared secrets are delivered from locks 
to the Master Keys via secure channels.   In addition, 
locks indicate the number of bits of the code words in 
the Bloom filter format.    

All protocols have the same first message, which 
the Master Key uses to discover potential locks.  
Thus, we discuss the first message only in the 
protocol for unique keys.  In the next two messages, 
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the Master Key and a lock authenticate each other 
using their respective authentication protocol. 

3.4.1. The Unique Key 
The Master Key initiates an authentication 

process by broadcasting a Bloom filter format of 
code words with a TVP.  The TVP consists of a 
random number and a timestamp as shown in Figure 
5(a).  A lock replies only if it finds a match.  The lock 
indicates the last bit of the code word, and uses 
another hash algorithm to generate a code word in the 
hash format.  In addition, the lock posts its challenge, 
another TVP.  By default, MD5 is used for the code 
words in the Bloom filter format, while SHA-1 is 
used for the code words in the hash format.  If the 
Master Key finds the indicated last bit of the code 
word in the Bloom filter format and the hash format 
code word are correct and match, it replies back with 
another hash format code word.  It is possible that the 
Master Key may have several Bloom filter format 
code words that have the same last bit.  But 
comparison of the code words in the hash format will 
exclude the false positive cases. 

If there are several key owners, they share the 
same secret with the lock.  Usually, this type of key-
lock relation is used for owners and locks without 
privacy concerns, and thus a 10-bit code word in the 
Bloom filter format is used.  However, if key owners 
have privacy concerns, they may use a code word 
with fewer bits.  The protocol remains the same, 
while the number of bits of a code word changes.  
Alternatively, the individual key type may be used to 
address key owners’ privacy concerns. 

3.4.2. The Group Key 
The special requirement for the group key is that 

a lock should not be able to differentiate key owners 
from their keys.  This means that all owners should 
have the same key.  The same protocol as the unique 
key may be used, since the only difference between 
the group key and the unique may be the number of 
key owners.  But a key owner should only speak a 1-
bit or 2-bit code word.  A short code word ensures 
that a lock cannot differentiate among key owners.  
Because when there are two different code words of 
length 1 or 2 bits, it is very likely that the lock will 
find a false positive match and a true match in the 
first message.  The key owner is able to tell that he 
has a different key than other owners when the lock 
replies with an incorrect code word in the hash 
format.  

If the overhead caused by the false positive cases 
is large, a lock and its owners may use more bits for 
the code word in the Bloom filter format.  However, 
the code word is generated from some plain text, as 
shown in Figure 5(b).  The plain text in the message 

may be some human readable text such as “the CS 
department’s mail room” or “XYZ Company’s 
parking lot”.  The use of plain text instead of a secret 
changes the order of who first expresses knowledge 
of a secret.  Since the lock expresses its knowledge 
first, the Master Key knows that it shares the same 
secret as other key owners.  If there is more than one 
secret, the lock may provide an incorrect code word 
in the second message.  Moreover, the plain text is 
easy for key owners to verify that code words in the 
Bloom filter format are generated from some 
meaningful and reasonable text.   

Notation:  
L is a lock. M is the Master Key.  
tX is a timestamp that X attaches.   
RX is a random number that X generates.   
A tX and a RX is a TVP. 
( )KX

−1 is X’s signature using its signing private key.  
BFP(y, S) is a code word in a Bloom filter that P 

generates from a shared secret, S, and a TVP, y.   
HashP(y, S) is a code word in the hash format that P 

generates from a shared secret, S, and a TVP, y. 
MBP is the last bit of a code word that a party, P, 

finds the match.    

Msg No. Sndr/Rcvr Message 
1 M→L: BFM(RM, tM, SUnique), RM, tM

2 L→M: RM, tM, MBL, RL, tL,
HashL(RM, tM, SUnique)

3 M→L: RL, tL, HashM(RL, tL, SUnique)
(a). The protocol for the unique key. 

Msg No. Sndr/Rcvr Message 
1 M→L: BFM(RM, tM, SPlainText), RM, tM

2 L→M: RM, tM, MBL, RL, tL,
HashL(RM, tM, SGroup)

3 M→L: RL, tL, HashM(RL, tL, SGroup)
(b). The protocol for the group key. 

Msg No. Sndr/Rcvr Message 
1 M→L: BFM(RM, tM, Sdomain), RM, tM,
2 L→M: RM, tM, MBL,

HashL(RM, tM, Sdomain),  
(HashL(RM, tM, Sdomain))KL

−1,
BFL(RL, tL, Sindividual), RL, tL

3 M→L: RL, tL, MBM,
HashM(RL, tL, Sindividual)

(c). The protocol for the individual key. 

Figure 5. The Master Key protocols. 

3.4.3. The Individual Key 
A key owner of the individual key can be 

identified among the group of key owners.  A secret 
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that the lock shares with a key owner is different 
from the secrets that it shares with other key owners.  
Thus, each key-lock pair has an individual secret.  
However, the individual secret is not used to generate 
the Bloom filter format of a code word in the first 
message.  Since the Master Key may specify many 
code words in the first message and a lock may have 
many key owners, many false positive cases may 
happen.  To address such a situation, another domain 
secret is shared among all key owners and is used in 
the first message to identify the lock.  Figure 5(c) 
shows the protocol for the individual key.  

In the reply message, the lock proves its 
knowledge of the domain secret in the hash format.  
If the key owners are concerned that the reply 
message may come from another key owner who 
impersonates the lock, a digital signature may be 
used in place to counter the attack.  As shown in 
Figure 5(c), the lock signs the hash format code 
word. 

The lock sends another Bloom filter in the second 
message that encodes code words for every key 
owner.  The code words are generated from the 
individual secrets.  Furthermore, the lock may set 
some random bits in the Bloom filter to hide the 
number of key owners that it has.  In the third 
message, the Master Key indicates its identity by 
specifying the matched code word in the Bloom filter 
and proves its knowledge of the individual secret.   

Revocation methods are different for the three 
key types.  Invalidating the unique secret revokes a 
unique key.  To revoke an individual key from a key 
owner, a lock invalidates the individual secret, while 
notification of a new domain secret to other key 
owners may not be imminent.  However, to revoke a 
group key from a key owner, all other key owners 
need to update their group keys.  This is an open 
problem in our solution.  If an owner updates his key 
when he finds that the key has expired, the lock 
system may be able to determine the owner’s identity 
because he has just updated his key.  We are 
designing an approach, which is similar to sending 
email to a group of recipients, so that a new group 
key is dispatched to all key owners at the same time.    

4. System Analysis and Evaluation 
In this section, the effectiveness of privacy 

protection against insiders and its relative overhead 
are discussed.  Performance measurement of our 
protocols shows our approach is efficient.   

4.1.  Analysis of Privacy Protection against 
Insiders and its Overhead  

An insider recognizes a code word in the Bloom 
filter format, but whether the code word is from a 
true key owner is a probability, 

)|( matchownerkeyp  (because there are false 
positive cases).  This probability may be calculated 
from equation 2, where )( ownerkeyp  is the 
percentage of key owners among all people who send 
discovery messages at a place, and 

)|( ownerkeynotmatchp is the false positive rate 
of a code word in the Bloom filter format.  

)|( ownerkeymatchp  is one because there is no 
false negative case for code words in the Bloom filter 
format.  The numerator and the denominator on the 
right side of equation 2 are ),( matchownerkeyp
and )(matchp , respectively.   

Figure 6 illustrates the relation between the 
number of bits in a code word and 

)|( matchownerkeyp  for various 
)( ownerkeyp  values.  The false positive rates, 

)|( ownerkeynotmatchp , are based on setting 
50% of the bits in the Bloom filters.  Note 

)|( matchownerkeyp  is for one lock at a place. 
Different locks may have different 

)|( matchownerkeyp values at the same place.  

Figure 6. The relation between the number of 
bits in a Bloom filter format code word and 

)|( matchownerkeyp .

The eclipse area in Figure 6 shows the number of 
bits that a key-lock pair uses to protect privacy 
among insiders.   A lock may count successful and 
unsuccessful protocol runs (unsuccessful runs include 
false positive matched and unmatched code words in 
Bloom filters that the lock hears), and then calculate 

(2)
)()|()()|(

)()|()|(
ownerkeypownerkeymatchpownerkeynotpownerkeynotmatchp

ownerkeypownerkeymatchpmatchownerkeyp
×+×

×=
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)( ownerkeyp  over a period of time at its place.  
Nevertheless, at other places that no successful run 
happens, )( ownerkeyp is unknown to insiders.  
An insider is uncertain when he finds a match in the 
Bloom filter format of a code word because the 

)|( matchownerkeyp  falls within a wide range.  
Even if )( ownerkeyp  is known, 

)|( matchownerkeyp  is a probability that is not 
significantly true. 

The false positive overhead at the lock’s side is 
)|(1 matchownerkeyp− .  Thus, the overhead is 

high if few bits are used for a code word, while the 
overhead for a 10-bit code word is low.  A lock may 
calculate )( ownerkeyp over a period of time.  If 
the overhead is a concern, it may notify its key 
owners to adjust the length of a code word.  When a 
lock is not in the vicinity, the overhead at the Master 
Key side includes the calculation of a code word in 
the Bloom filter format and possibly the verification 
of the hash format code word in a false positive case.  
We will show in the next section that the overhead in 
terms of processing time is small. 

4.2. Performance Measurement  
Handheld devices such as cell phones or PDAs 

are good candidates for Master Keys, since people 
regularly carry them.  Locks may have diverse 
processing and communication capabilities.  Some 
may have limited processing power, while others 
may support hundreds of key owners.  We chose to 
measure our implementation on PDAs: a Compaq 
iPAQ with an ARM SA1110 206 MHz processor, 
64MB RAM, and a D-Link DCF-650W wireless card 
runs as the Master Key and a Dell AXIM X5 with 
Intel PX250 400 MHz processor, 64MB RAM, and a 
Dell TrueMobile 1180 wireless card runs as a lock.  
The PDAs run Microsoft PocketPC 3.0, and the 
wireless cards are set to 2Mbps in the 802.11 ad hoc 
mode. One protocol run takes less than a half second 
in a extreme case, in which a person specifies 820 
code words and a lock has 500 key owners.  Thus, 
our design is efficient in most cases. 

5. Discussion 
The Master Key protocols that we discussed so 

far are susceptible to the mafia fraud attack, as are 
many entity authentication protocols.  Mafia fraud 
attacks may not have countermeasures by 
cryptography alone.  Presently, there are several 
representative solutions to counter the attacks without 
physically isolating claimants (devices).  First, 
location information may be integrated into an 
authentication protocol as proposed in [31].  Second, 

measuring the transmission time between a claimant 
and a verifier, and then one can determine whether 
the distance between the two is within the 
expectation [32, 33].  Recent improvements based on 
location and time information may be found in [34].  
Third, based on the assumption that an eavesdropper 
is not able to monitor all communication channels, a 
large number of channels are simultaneously used to 
obscure some real communication channels [35].  
These approaches can be adapted and fit into our 
protocols.  For instance, if the Master Key and a lock 
know their location information, then the code words 
can be also based on the location information.  Thus, 
an attack will be easily detected from the location 
information.  Moreover, the Master Key and a lock 
may measure their upper distance bound.  Instead of 
sending a code word in the hash format in one 
message, the Master Key and a lock may send a bit at 
a time over multiple rounds and determine whether 
their distance is reasonable.   

Securing the Master Key is critical.  Losing it 
may be as serious as losing a key chain and/or a 
wallet.  Finger recognition and tamper-resistant 
features may reduce the problem.  Moreover, the 
Master Key may need multiple interfaces (physical 
contact, wired communications, and wireless 
communications) and may communicate over 
different radio frequencies to interact with various 
locks.  These problems are important, but they are out 
of the scope of this paper. 

6. Conclusion and Future Work 
In this paper, we propose the Master Key 

approach for entity authentication in pervasive 
computing environments.  Our approach improves 
usability such that a person carries one device for 
various authentication purposes while it maintains the 
favorable properties of carrying multiple access 
tokens.  The Master Key exchanges code words with 
locks securely and privately.  Sensitive information, 
including identities and presence information, is 
protected from malicious outsiders via encryption 
and from malicious insiders via a probabilistic 
approach.  

The current design of the Master Key does not 
support multiple groups of key owners.  Thus, a lock 
will find up to one code word that matches in the 
Bloom filter format.  However, if multiple groups are 
supported in a lock, the lock may find multiple code 
words that match several groups due to the false 
positive cases.  The lock could determine the false 
positive cases by establishing multiple sessions and 
exchanging messages with the Master Key, but in the 
group key type this violates the privacy feature and 
thus the Master Key owner will not be sure that his 
shared secret for the lock is the same as other owners.  
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We are designing an approach to support multiple 
groups, while the group key type still maintains its 
desirable privacy feature.  In the meantime, we are 
designing an approach to make the revocation of a 
group key easier. 

The design of exchanging a few bits to protect 
privacy as we discussed in Section 3.3 and 4.1 is 
conservative.   A more aggressive approach could be 
let a lock and its key owner exchange a code word 
with more bits when )( ownerkeyp  is small.  
However, the challenge is that a selfish lock that only 
concerns about its overhead will sacrifice its key 
owners privacy.  We are designing an approach to 
properly balance the overhead and privacy properties. 
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