Service Discovery in Pervasive Computing Environments

Presented by Jamal Lewis and Shruti Pathak

CS 570 Computer Networks
Instructor Dr. Feng Zhu
Introduction

- What is it?
 Pervasive Computing Environments integrate networked computing devices with people and their ambient environments enabling the device and the service to communicate with each other.
- Simply means that even if the network/ protocols are different; people should be able to use it with minimum interaction with the service providers.
- Few Example Service Discovery Protocols
 - MIT’s International Naming System
 - UC’s Berkeley’s Ninja Service Discovery Service
 - Salutation Protocol
Pervasive Environment Challenges

- Pervasive computing environments are dynamic and heterogeneous
- Unlike the Enterprise Environments; it is difficult to define a network scope for pervasive computers and it is also difficult for all services to be managed by a system administrator
- Unlike the Web services, pervasive environments focus on interactions among people than between services
Integration with people

- This is the most serious challenge to pervasive computing discovery
- First challenge is to protect the private data of users
- Second challenge is to determine how much knowledge a user or a service must have for service discovery

People serve two roles:
1. Users (Require less knowledge)
2. Service providers (Require special skill)

- The third challenge is to allow multiple service-providers to coexist at a single place
Integration with Environment

- How to define the environment that the service discovery targets?
- Pervasive Computing is heterogeneous in terms of hardware, software, network protocols and service providers.
- A common protocol should be established in order to facilitate the discovery of service by the user.
Service and Attribute Naming

- Two types of Service and attribute naming: **Template-based** and **Template-based and predefined**

- **Template-Based**
 - defines a format for service names and attributes
 - Example: Apple’s Rendezvous is based on Internet’s DNS which defines how service names can be composed

- **Template-Based and Predefined**
 - gives commonly used attributes and names
 - eliminates ambiguity regarding name and attributes in client, services, and directory interaction.
Initial Communication Method

Communication Method

- **Unicast**
 - Requires configuration of network addresses with prior knowledge

- **UDP Multicast**
 - After receiving few multicast messages, unicast message is determined dynamically for communication

- **Broadcast**
 - Restricts its use to single hop of wired or wireless networks
Discovery and Registration

Announcement based Approach

- Interested parties listen on a channel for the availability of a service

 Eg: Processes waiting in a queue for the processor

Query based Approach

- Party receives immediate response to a query and doesn’t need to process unrelated announcements

 Eg: Special Request to the server
Service Discovery Infrastructure

- Uses two service discovery infrastructure models
 - Directory Based Model
 - Has a dedicated component that maintains service information and processes queries announcements
 - Example of Directory Based Model would be Microsoft’s Active Directory
 - Non-Directory Based Model
 - No dedicated component
 - When a query arrives, every service processes and service that matches query responds
 - Example: Switch that broadcast a request to all systems on network in order to find where a new computer is located.
Service Information State

- Two service information states: **Soft State** and **Hard State**
 - **Soft State**
 - Most service discovery protocols maintain status as a soft state
 - Before service expiration, a client or directory polls the service or service then announces itself to renew registration lease.
 - Soft state simplifies system design and keeps service up to date.
 - **Hard State**
 - Requires fewer services and housekeeping jobs
 - Clients and services poll periodically to verify info is up to date.
Discovery Scope

- Proper discovery scopes minimize unnecessary computation on client, services, and directories.
- **Network topologies, user roles, context information, or a combination** helps to properly define service discovery scope session targets.
- Based on **Network Topology, User Roles, Context Info, or a combination of either**
 - **Network Topology**
 - Uses LAN and single hop wireless network range protocols
 - One can assume that the clients, services, and directories belong to same administrative domain
 - Setback to that is pervasive computing environments can include multiple, coexisting administrative domains as well as different underlying networks that may not be connected
Discovery Scope cont’d

- **User Roles**
 - Users authenticate with a domain or supply the designated domain as an attribute.
 - *User must have prior knowledge of target domain*
 - Implementation of this should reflect an ambient environment according to user role

- **Context Discovery Scope**
 - Defined by temporal, spatial, and user activity information
 - Proper use can save users time and effort in discovery agencies
Service Selection

The protocols select the service; this simplifies the client program ("anycast")
It also balances the load among servers

Tedious
Users might not enough
Service Invocation

- Invocation Involves
 - Level 1: Network’s Service Address
 - Level 2: Underlying Communication Mechanism
 - Level 3: Operations specific to application domain
Service Usage

- Explicit Release: A client must explicitly release a service’s resources once service usage is granted
- Lease-based mechanism: A client and the service negotiate the usage period (user can cancel/ renew it later)

This service handles dynamic conditions of the pervasive systems in a better way
Service Status Inquiry

- Used by clients to keep up with service events or status by polling or service event notifications.
- Two types of service status inquiry: **Polling** and **Service Event Notifications**
 - **Notification**
 - Clients register with a service and the service notifies client of something interesting such as an expiration date or upgrade to software
 - **Polling**
 - Used services generate events frequently or change status quickly
Security and Privacy

- Service discovery protocols must provide security and privacy to protect devices, services, and users.
- Harder to implement changes due to changing environment.
- Only current solution to environment changes is have people with special skills.
- Scope of possible intrusion is increased due to wireless networks in a pervasive computing environment.
- Clients, services, and directories should exchange sensitive information with legitimate parties.
 - What is legitimacy?
 - Refers to both valid and credentials and access privileges on services.
- Isn’t always easy to acquire.
Security and Privacy cont’d

- One way to verify legitimacy is to progressively exchange credential and information.
- Compared to service discovery functionality, support for security and privacy in existing service discovery protocols is still in its infancy stages.
- Because of different protocols being used, pervasive computing requirements cannot be met.
- But with some revisions in discovery protocols and new protocols, we are able to support more security features.
- With further research or possibly assimilating these protocols into maybe a “suite”, we can increase security and privacy.
Conclusion

- Service discovery for unfamiliar protocols needs to be addressed more
- In order to compute at anytime or anywhere, these discovery protocols must work in unfamiliar computer environments
- These must become more intelligent to compensate for user’s lack of knowledge, special skills, and unwillingness to trust the environment
References