Wizard: A Database Inference Analysis And
Detection System

Harry S. Delugach and Thomas H. Hinke

Abstract—

The database inference problem is a well-known prob-
lem in database security and information system security
in general. In order to prevent an adversary from infer-
ring classified information from combinations of unclassified
information, a database inference analyst must be able to
detect and prevent possible inferences. Detecting database
inference problems at database design time provides great
power in reducing problems over the lifetime of a database.
We have developed and constructed a system called Wiz-
ard to analyze databases for their inference problems. The
system takes as input a database schema, its constituent in-
stances (if available) and additional human-supplied domain
information, and provides a set of associations between enti-
ties and /or activities that can be grouped by their potential
severity of inference vulnerability. A knowledge acquisition
process called microanalysis permits semantic knowledge of
a database to be incorporated into the analysis using concep-
tual graphs. These graphs are then analyzed with respect to
inference-relevant domains we call facets using tools we have
developed. We can determine inference problems within sin-
gle facets as well as some inference problems between two or
more facets. The architecture of the system is meant to be
general so that further refinements of inference information
subdomains can be easily incorporated into the system.

Keywords—information security, conceptual graphs, database
inference, inference detection, inference analysis, transitive
associations.

I. INTRODUCTION

As more and more databases are made accessible to the
public, many new problems have arisen in information se-
curity. One important problem is the database inference
problem which is characterized as follows: Information
that is classified at level Ly or below can be used to infer
database information classified at level Lo where the level
Lo s etther higher than that of Ly or is not comparable to
Ly.

The problem is illustrated as follows: Suppose we wish
to keep secret the fact that the Smith Expedition is oper-
ating in a cold climate. While we may be able to prevent
an adversary from obtaining this particular fact directly,
the leader of the expedition Jane Smith may be shown in
a database as the customer to whom several zero-degree-
Fahrenheit sleeping bags were recently shipped. We could
therefore assume the expedition was operating in some lo-
cation where the temperature might reach zero degrees
Fahrenheit.

Manuscript received February 1995; revised August 1995. This work
was supported through Maryland Procurement Office Contract No.
MDA904-92-C-5146.

Harry S. Delugach and Thomas H. Hinke are with the Com-
puter Science Department of the University of Alabama in Huntsville,
Huntsville, AL 35899 U.S.A. (e-mail: delugach@cs.uah.edu); (e-mail:
thinke@cs.uah.edu).

Detecting such inference vulnerabilities is the job of the
security analyst. Although such detection is possible at
times of querying and updating the database, but we do
believe that detection at design time is valuable since per-
forming the analysis once at the start helps reduce infer-
ence vulnerabilities over the lifetime of a database. We
have developed and constructed a system called “Wizard”
to analyze databases for their inference problems. The sys-
tem takes as input a database schema, its constituent in-
stances (if available) and additional human-supplied do-
main information, and provides a set of associations be-
tween entities and/or activities that can be grouped by
the severity of their inference potential. Such associations
represent secondary inference channels and therefore rep-
resent a database vulnerability that could be exploited by
a potential adversary.

We use conceptual graphs, as popularized by Sowa [17]
as our internal representation. Conceptual graphs have
previously been used to show inference-relevant informa-
tion with semantic networks [19]. For details of conceptual
graphs, the reader is directed to [12], [17], [18]; for a concise
introduction, see [15].

Wizard supports the analysis and detection of certain
database inference problems using conceptual graphs. It
will advise the inference analyst as to whether certain spec-
ified pieces of information can be inferred from a given
database, and if so, what information was used to perform
the inference. Our goals in developing the system are as
follows. The first three goals are met in the present work;
the last two will be addressed within an inference analysis
laboratory that we are currently developing.

1. Tofacilitate the acquisition of inference-relevant knowl-
edge in the database.

2. To assist database designers and administrators in de-
termining possible inference problems in their databases.

3. To characterize different groups of inferences in a well-
defined manner using the tool.

4. To provide a “plug-in” architecture whereby new in-
ference detection tools can be easily incorporated into
an open framework.

5. To develop techniques that can optimize the detection

of inferences to improve the system’s efficiency.

This paper describes the general principles behind Wiz-
ard and how it operates. The Wizard system provides a
technique for acquiring rich database semantics, partition-

ing that knowledge into inference-relevant domains, analyz-
ing those domains for inference problems, and categorizing
the severity of the problems detected. Wizard has three
main subsystems, as shown in Fig. 1: (i) tools to support
manual knowledge acquisition for the purposes of analysis,
(ii) projection of database semantic knowledge into subdo-
mains, and (iii) inference analysis of subdomains through
automated tools. The first subsystem (knowledge acquisi-
tion) is described in [3] and [10]; the other two are described
in this paper.

Fig. 1. Wizard subsystems.

The organization of the paper is as follows. First we
briefly describe how we represent inference-relevant knowl-
edge, both from the database itself and from the domain.
Next we tell how we partition that knowledge for analysis
purposes. We then describe how the analysis is done. We
outline our prototype implementation and show excerpts
from a worked example run. Finally we discuss some open
issues and conclude the paper.

IT. CAPTURING DATABASE SEMANTICS

Analysis of database inference problems begins by ob-
taining a relational database schema and instances in ei-
ther SQL [20] or MSQL (a form of SQL with security levels
[11], although using SQL alone restricts the usefulness of
the analysis, since SQL lacks any security classification in-
formation. We use the database in three distinct ways: (4)
to provide the basis for extraction of functional dependen-
cies, automatically from primary keys, and manually where
required, (i) to form the basis for manual microanalysis by
the inference analyst in creating graphs to capture its se-
mantics, and (ii¢) to automatically instantiate the database
graphs using attribute values from the database.

We use conceptual graphs as our representation for sev-
eral reasons: (a) it is a well-known form of knowledge rep-
resentation, (b) it is one of the base representations for
the ANSI Knowledge Sharing Effort [1], and (¢) some tools
for automatically manipulating them are already being de-
veloped [4], [5]. In this work, we do not yet exploit the
full power of conceptual graphs (e.g., in reasoning and re-
trieval); in the future we intend to support knowledge ac-
quisition, an explanation facility for inference paths, and
path-trimming based on common type information.

We represent the database’s semantics in the form of
conceptual graphs, with knowledge added by the analyst
during a process we call microanalysis. This process relies
on human-aided analysis whereby each relation schema is
intensively analyzed for its meaning in the context the en-
terprise that is using the database. Such meaning is repre-
sented in one conceptual graph for each relation' schema;
we call each graph a microanalyzed knowledge chunk or

MKC.

1The words “relation” and “attribute” have two distinct meanings for
our work; each has one meaning in the relational database domain, an-
other in the conceptual graph domain. Unless the context is clear, we
will use “database relation” or “database attribute” for relational terms;
we will use “conceptual graph relation” or “CG relation”, etc. to mean a
conceptual graph relation, etc.

We then combine the MKC’s we have created and use the
Instantiator Tool to create an instance of each relation’s
schema graph from each database instance. The resulting
set of conceptual graphs are called the global ensemble of
MKC’s or GEM. Details of the knowledge acquisition pro-
cess are beyond the scope of this paper; interested readers
are referred to [3]. The general process is suggested by
Fig. 2.

Fig. 2. Microanalyzed knowledge chunks and global en-
semble.

The GEM is a combination of all the knowledge from all
subdomains. Once the GEM has been obtained, the infer-
ence analyst has available a rich semantic representation
of the database under scrutiny. Rather than analyze the
GEM 1 toto, we have found it effective to partition the
GEM into broad knowledge domains called layers and fur-
ther subdivided into specific domains called facets, both of
which we will now describe.

III. LAYER AND FACET DESCRIPTIONS

Information from the GEM is projected into three layers,
which are a set of views based upon broad partitions of
inference relevant information. There is an entity layer,
an activity layer, and a layer in between with relationships
between entities and activities. We further subdivide the
layers into facets, each of which contains information about
a subdomain of that layer. We thus have “sliced” the GEM
into subdomains. Fig. 3 summarizes these divisions; we
explain them below.

Fig. 3. Layers and their facets’ constituent relations.

Note that the layers and facets contain the same infor-
mation as in the GEM, only partitioned for easier analy-
sis; whereas the GEM was constructed from a collection
of MKC’s, the layers and facets are obtained by slicing
the GEM into domains based on the nature of their re-
lationships. The three analysis layers correspond roughly
to the inference classes identified in our previous work [2],
[8]. Figure 3 shows their general contents. The entity layer
contains knowledge of entities themselves and relationships
between entities, e.g., entity-part-of, is-a, or functionally-
determines. The activity layer contains knowledge of ac-
tivities themselves and relationships between activities |,
e.g., activity-part-of, precedes, follows, or causes. The in-
between layer contains relationships between entities and
activities, e.g., produces, consumes, or used-for.

A facetis asingle inference domain within a layer, such as
“entity composition” which comprises all the entity-part-of
relations (and the concepts they connect) within the entity
layer. Fig. 3 shows relations in other facets; e.g., a func-
dep facet (for functional dependencies), a temporal facet
(with before and after relations), etc. Later in the paper
we define each of the facets we have so far identified?.

?Earlier papers [8], [10] called these facets layers and termed the MKC

a Layered Knowledge Chunk (LKC), but the term was changed to facet
to eliminate any connotation of a hierarchical relationship.

We said that our second subsystem constructs layers and
facets. A facet 1s just a projection of the Global Ensemble
to match certain pre-defined patterns. To consider a single
facet means to effectively view the world as comprised of
only a few certain relationships (usually just one) and to
ignore all the others when performing its analysis.

Projection in this case means to view the GEM through a
kind of conceptual “polarizing lens.” Just as a light polar-
izing lens allows only light waves in a certain plane to pass
through, the conceptual “lens” allows only certain concepts
and relations to pass through. In practice, this projection is
straightforward; for example, the entity composition facet
of the entity layer is obtained by including only those con-
cepts that are subtypes of [ENTITY] and are linked to each
other via a (part-of) relation.

The rest of this section describes each layer and facet,
telling what kind of information it contains, how that in-
formation is projected from the GEM, and how the infor-
mation supports useful inferences.

A. Entity Layer

This layer comprises information about entities or rela-
tionships between two or more entities. Three facets of
this layer have been identified so far: a sub-type facet, and
functional dependency facet and a composition facet.

Entity Subtype (Is-A) Facet. For this facet, we consider
only the subtype relationship between entities; i.e., those
concepts that are entities or subtypes of entities. This in-
volves projecting from the GEM all those occurrences of
subtypes where either type is a subtype of the general type
ENTITY, e.g., EMPLOYEE < PERSON. Subtype informa-
tion is easily obtained from conceptual graphs. Inferences
in this facet are based on the fact that an instance of a sub-
type implies an instance of its supertype: knowing some
employee exists means that some person exists. Note that
the reverse is not true; all employees are persons, but not
all persons are employees. Since direction is significant
(not all associations are reflexive), we discuss it further in
Sec. 4.1.

Functional Dependency Facet. In this facet, we use the
definition of functional dependency in its general use in
relational databases (e.g., see [20]). In performing the mi-
croanalysis earlier, we supplied CG relations labeled (func-
dep) that are incorporated into the GEM. In conceptual
graph terms, this facet is obtained by projecting from the
GEM only subgraphs that can be generalized to

[T]— (func-dep) — [T]
where [T] represents any concept. This effectively pulls
out all pairs of concepts that are related by a functional
dependency.

Functional dependencies are important because (1) they
are based entirely at the database schema level and (2)
in general they can be automatically extracted from the

schema itself. From them, we can analyze the entire database

for the presence of second paths (i.e., transitively derived
functional dependencies) between pairs of attributes. The
complete approach is described in [8] and [9].

Knowledge about functional dependency originates from

any of the following:

1. Database schema with primary keys shown. We use
this to derive implicit functional dependencies between
a primary key and all other non-key attributes in its
relation.

2. Foreign key information. For the purposes of our work,
we treat foreign keys as synonyms for the primary key

to which they correspond.

3. Non-key functional dependencies.

4. Subtype information (e.g., BOOT is a subtype of SHOE).
The supertype can be considered a synonym of the
subtype (e.g., SHOE is a synonym for BOOT).

5. Populated database with instances (if available) from
which are derived empirical dependencies and cardi-

nality (see Sec. 77 below).

Items 1 and 2 are known from the database schema.
Items 3 and 4 are supplied by the inference analyst upon
consultation with the database designer(s). Ttem 5 is ob-
tained from the actual database.

Entity Composition Facet. Knowledge in this facet rep-
resents information about entities that are part of another
(composite) entity. Its information is obtained by project-
ing only subgraphs that can be generalized to

[ENTITY] — (part-of) — [ENTITY] .
Such associations support inferences as follows. If a certain
kind of secret electric coil is part of a radar unit, then know-
ing where such a radar unit was being shipped would infer
that a secret coil was also located there.

B. Activity Layer

This layer is comprised of facets having to do with ac-
tivities themselves or with relationships between activities.
We have identified three facets so far in this layer: a sub-
type facet, a composition facet, and a temporal facet. We
now briefly describe each of them.

Activity Subtype (Is-A) Facet. For this facet, we consider
only the subtype relationship between activities; i.e., those
concepts that are either activities or subtypes of activities.
This means projecting from the GEM all those occurrences
of subtypes where either type is a subtype of the general
type ACTIVITY, e.g., SWIMMING < WATERSPORT. Just
as 1n entity subtypes, these associations support inference
of an activity.

Activity Composition Facet. Here we have information
about an activity that is a part of another entity. This facet
is obtained by projecting only subgraphs that can be gener-
alized to [ACTIVITY] — (part-of) — [ACTIVITY]. Inferences
are supported since the existence of a whole activity infers
the existence of each of its parts. For example, if BOAT-
ING is a part of DEEP-SEA-FISHING, then knowing that
DEEP-SEA-FISHING is occurring infers that BOATING is

also taking place.

31f the relation is in Boyce-Codd Normal Form, then all of the single-
relational functional dependencies can be automatically extracted. There
could, however, be some inter-relation functional dependencies. These
would have to be entered explicitly by the inference analyst.

Temporal Facet. Information here is concerned with time-
dependent relationships between activities. This facet 1s
obtained by projecting only subgraphs that can generalize
to any of the following:

[ACTIVITY] — (before) — [ACTIVITY]
[ACTIVITY] — (after) — [ACTIVITY]
[ACTIVITY] — (cause) — [ACTIVITY]

This information supports inferences in several ways. If
activity IGNITION is before LAUNCHING, then knowing
about LAUNCHING means that IGNITION must have pre-
ceded it. Similarly if activity SHIPPING causes the activ-
ity RECEIVING; then knowing about a SHIPPING activity

infers a RECEIVING activity.

C. Entity-Activity Relationship Layer

This layer contains information used for inferences of
relationships between activities and entities.

Used-For Facet. Information here is about entities that
are used for particular activities. This facet is obtained by
projecting only subgraphs that can be generalized to

[ACTIVITY] < (used-for) — [ENTITY]
This information supports inferences in that if, e.g., HAM-
MER is used for NAILING, then the existence of a NAILING
activity infers that HAMMER exists.

Producer/Consumer Facet. This facet is obtained by
projecting only subgraphs that can generalize to either of
the following:

[ACTIVITY] — (produce) — [ENTITY]
[ACTIVITY] < (consume) — [ENTITY]
This facet is important for inferences because if a certain
activity is known to have occurred, then whatever entity it
produces is known to have been created. For example, if
FIRE produces SMOKE, then if we know about a fire, then

we can infer smoke.

IV. PATH ANALYSIS

In our work, we are interested in inference paths that
lead from unclassified knowledge to classified or sensitive
information. The links along an inference path represent
relationships between entities or activities. After inference-
relevant knowledge layers and facets have been identified,
we use a fast algorithm we have developed to find such
paths in each facet [9]. There are two main categories of
these paths:

Single-Facet Paths. This is a set of paths between two
items in a single facet that represent potential infer-
ence problems in the originating database. Each path
represents a means of inferring a relationship that was
not originally specified. A given path may or may not
be an actual inference problem; we categorize them ac-
cording to their potential severity (explained below).

Inter-Facet Paths. This is a set of paths between items
that lie in two or more different facets. We use the pre-
vious single-facet paths to build the set of inter-facet
paths. As with the single-facet paths, we categorize
them according to severity.

Obtaining these paths is the primary focus of our work.
This section gives details of how the paths are obtained

and categorized. We have not implemented all of these
features; this section provides a framework for generalized
path processing for inference purposes.

We base our path analysis on the idea of associations
that collectively form secondary paths to information. For
our purposes, an association is treated simply as a directed
relationship. Many useful inference relationships can be ex-
pressed as transitive associations; e.g., if a certain coil is a
part of a microwave generator and a microwave generator is
a part of a radar unit in a secret location, then the coil is a
part of the radar unit. Even keeping the radar unit’s loca-
tion secret, we could still infer it from the delivery location
of the coil. We refer to this secondary inference channel
as a second path to the information (as in [7]), where the
first path is the explicit association itself. In this case we
could eliminate the inference by either classifying the parts
breakdown or by classifying the delivery of the coil.

We originally developed our tools solely to analyze func-
tional dependency in a database. Functional dependency is
a well-understood transitive association in that, by defini-
tion, if C is functionally dependent on B and B is function-
ally dependent on A, then C is functionally dependent upon
A. Our work in this area has been reported previously [8],
[9], [10] Similar work has been done by SRI International
[16] based on the original work by Hinke [7] on detecting
second paths.

We quickly realized that the notion of functional depen-
dency could easily be extended to transitive associations in
general. The idea of detecting unclassified second paths can
be applied to several relationships of interest to database
security beyond functional dependencies. We have used
several of them in this paper: part-of relations, temporal
relations, used-for relations, etc. We therefore have ex-
tended our methods to handle transitive associations in
general, as long as we are careful in describing the seman-
tics of the association.

The Wizard system organizes known inference-relevant
information and gleans certain types of transitive associa-
tions from it. Each type of transitive association i1s ana-
lyzed, and potential inference paths determined. Those in-
ference paths are then categorized according to their sever-
ity; we explain below how the inference analyst may begin
by focusing on those paths most likely to pose a practical
inference problem. This section outlines how these steps
are accomplished. First we make clear what we mean by
an association and introduce four characteristics by which
they may distinguished.

There are two separate issues involved in analyzing infer-
ence paths once they are detected. The first 1s a determina-
tion of the “goodness” of an inference path; i.e., whether
we can actually infer information along the path. This
corresponds to Morgenstern’s function INFER(X,y) which
defines how much information X gives us about y [13] [14]
The second issue is based on the security classifications of
the “good” paths; we must examine the classifications of
both X and y to decide whether the path constitutes a real
inference vulnerability or not. This section considers both
issues; the first, in terms of the semantics of a given associ-

ation, and the second in terms of grading paths according
to their severity.

A. Association Semantics

In our work, an association is merely a labeled directed
arc between two components (either entities or activities).
We represent this arc as one CG relation from the (small)
set of inference-relevant CG relations we have identified;
e.g., part-of, used-for, is-a, etc. Earlier we said that differ-
ent analysis techniques were used based on which particular
CG relation (or association) was involved. Fig. 4 summa-
rizes the important characteristics of associations that we
will use in our analyses. We now explain our basis for
choosing the techniques.

Fig. 4. Different types of associations.

Darection

We define each association with an inherent direction.
For example, the association part-of is directed from a
whole to a part (in keeping with the interpretation of con-
ceptual graphs). We define each association with a par-
ticular meaning in one arbitrary direction. The defined
association direction we call forward, the other we call
backward. For example, the part-of association as we
have define it goes forward from a whole to its part(s);
its backward association would be a (different) association
composed-of. We will refer to it as the backward part-of
relation.

In one direction, some inferences can be made with cer-
tainty. If we have an emergency kit, then we have a flash-
light; if we have a flashlight, then we have a light bulb. In
the reverse direction, inferences can also be made, but they
are weaker: given a light bulb, we might have a flashlight,
but we might also have a backlit computer display, etc.
Given a flashlight we may or may not have an emergency
kit.

Some reverse associations might appear fruitless for in-
ference detection. For example, in an employee database
relation with the social security number as a primary key,
if we are given a particular social security number, we can
uniquely determine a person’s age, but given some par-
ticular age, we are unable in theory to determine whose
age 1t is, unless there happens to be only one person with
that age; in that case, we use empirical dependency, which
describe next.

Cardinality

We are interested in the number of entities or activities
that can be inferred through a given association. Take the
entity-part-of association: given a radio that needs a certain
kind of battery, we can infer the battery’s existence with
certainty. (We can also infer other parts of the same radio,
but those are other distinct associations.) If we look at the
association starting with the battery, a certain kind of bat-
tery may be a part of many different kinds of electronic de-
vices. Given a battery, we cannot determine exactly which
kind of electronic device it is a part of.

We distinguish four different cardinalities which affect
the usefulness of inferences.

Many. This cardinality exists when the number of inferrable
items is large enough so that no meaningful inference
can be made. Obviously the precise quantity varies
from situation to situation; we must use simple heuris-
tic techniques to determine what that quantity is.

Few. This cardinality exists when there is more than one
inferrable item, but the number i1s small enough to
narrow down the possibilities to form a meaningful
inference (albeit a weak one). For example, in a police
investigation, if the number of suspects can be reduced
to a small number, then each one can be questioned,
etc. Again, the precise quantity that constitutes “few”
depends on the situation; we are mostly interested in
differentiating it from “many”.

One. This cardinality exists when given a particular item
and an association, only one inferrable item exists. For
example, the association “biological mother of” has
only one inferrable item; each person has only one bi-
ological mother.

Empty. This cardinality exists when there are no inferrable
items from a given item and association. These con-
stitute effective “dead ends” in the inference detection
process; however, in some cases, the lack of any in-
ferrable item might itself be a useful inference.

Epistemological Basts
We note two distinct bases for deciding why an associa-
tion exists, and what is its cardinality:

Predefined Basis. These are definitional characteristics
that are known by virtue of the structure of general
knowledge (e.g., all persons have one biological mother)
or by virtue of the structure in the information domain
being analyzed. For example, if all dormitory rooms
in a certain college are known to be single-occupant
rooms, then knowing a room number permits the in-
ference (with cardinality one) of its occupant’s iden-
tity (assuming we also have the mapping from room
to name).

Empirical Basis. These are analyst-supplied characteris-
tics that are not part of the defined information struc-
ture, but comprise de facto characteristics that can be
determined by inspection of instances in the knowledge
base. For example, a hotel’s registration database or-
dinarily allows for two or more persons per room, but
it may be the case that on a particular night, all rooms
are in fact booked to just a single person each. In
that case, knowing a room number permits an uncon-
ditional inference of a particular person, even though
the database definition would not require it.

The basis of an association is obviously important for
practical inference analysis. A clever adversary may make
inferences that are based on de facto characteristics of a
particular set of database instances, rather than on any a
priori constraints on those instances. The most important
interaction between the epistemological basis and cardinal-

ity 1s that a predefined many-cardinality association can
be treated as an empirical few- or one-cardinality once the
knowledge base’s instances have been inspected.

In our work, if some association has a predefined cardi-
nality of many, we either ignore it during analysis (effec-
tively sacrificing a degree of completeness for soundness),
or else we calculate a cardinality (see below). We call the
first strategy a sound strategy, and the second we call a
completeness-seeking strategy. This feature 1s important
when we are looking for potential inference problems, be-
cause an adversary may be interested even in weak infer-
ences.

Transitivity

Transitive associations are directional relationships be-
tween entities or activities. We are interested in whether a
given association I is transitive; i.e., given [A] — (1) — [B]
and [B] — (r) — [C], can we assume that [A] — (r) — [C].

As an example of a transitive association, consider the
“entity-part-of” relationship. If a light bulb is part of a
flashlight, and a flashlight is part of an emergency kit, then
a light bulb is part of the emergency kit. If we have an
emergency kit, we can infer that we have a flashlight and
from the flashlight we can infer that we have a light bulb.

We remind the reader that not all associations are tran-
sitive within a given facet. An association between two
incompatible types might not be transitive. That is, an as-
sociation from “entity” to “activity” cannot be transitive,
since there can be no like association from “activity” to
“activity” to connect with.

B. Applying Association Semantics

In this section, we apply the semantics above to the
facets we have identified thus far. We have defined each
association to conform to conventional conceptual graph
usage; here we explain how the directions affect process-
ing.

Entity and Activity Subtype (Is-A) Facet. Characterized
as SUBTYPE < SUPERTYPE, this facet i1s processed in
the forward direction; 1.e., from subtype to supertype. Its
cardinality in this direction is one, meaning that given an
instance of a subtype, we are certain we also have an in-
stance of the one supertype. This does not mean there
cannot be another supertype (e.g., in multiple inheritance)
but there is no ambiguity about the existence of the given
supertype. This facet is processed as transitive.

Functional Dependency Facet. Characterized as [T1]
— (func-dep) — [T2], where T2 functionally determines
T1, this facet is processed in the backward direction. Its
cardinality in this direction is one, meaning that given T2,
we can infer T1 for certain. It is transitive, in that given
some T3 that functionally determines T2, we can say that
T3 functionally determines T1.

Entity and Activity Composition Facets. Both these facets
are defined as WHOLE — (part-of) — PART. This facet is
processed in the forward direction. Its cardinality is de-
fined as one, since given a whole, we expect to have its

parts*. Again, there may be more than one part we can
infer for certain. It is transitive, since a part may itself be
made up of smaller parts.

Temporal Facet. We have several relations in the tempo-
ral facet:

[ACTIVITY] — (before) — [ACTIVITY], or
[ACTIVITY] — (after) — [ACTIVITY], or
[ACTIVITY] — (cause) — [ACTIVITY]

In general, the cardinality of these relations is many, since
there may be many unrelated activities that cause a cer-
tain activity, as well as many unrelated activities that are
before a given one. As we said earlier, we can examine
the database empirically to discover smaller cardinalities
for inference purposes. These are treated in the forward

direction. These relations are transitive.

Used-For Facet. Characterizing this facet as [ACTIVITY]
— (used-for) «+ [ENTITY], the cardinality is many, since
a given entity can generally be used for more than one
activity and a given activity can be used for more than one
entity. We consider this facet in the forward direction (i.e.,
in the direction of the arrows). It is non-transitive, since
entities and activities cannot be mixed; we could not string
it together with another used-for relation.

Producer/Consumer Facet. Characterizing this facet as

[ACTIVITY] — (produce) — [ENTITY], or
[ACTIVITY] < (consume) — [ENTITY],
its cardinality is many in either direction, and it is non-
transitive (for reasons similar to the used-for facet).

C. Association Processing

For each facet, we categorize its association(s) accord-
ing to the four characteristics we have introduced. Fig. 4
summarized how each characteristic affects our processing.
We then perform the processing for each facet. The overall
process is shown in Fig. 5.

Fig. 5. Association processing.

In our previous work [10] [9] we have described a lossless-
join algorithm based on Navathe-Elmasri [6] and Ullman
[20] as modified. Tt allows us to quickly obtain the end-
points of transitive paths given any set of transitive asso-
ciations, taking into account their initial security classifi-
cation levels.

There are usually many paths detected by the lossless-
join algorithm. Many of these paths represent bona fide in-
ference problems; however, many of them are not relevant
to inference for various reasons. We grade detected paths
by their severity based on the relationship between the clas-
sification levels of the ending points of the detected path
versus any direct (i.e., single-hop) paths between those
same points. This grouping is therefore based on the database
schema using its own defined classification levels. Complete
details of our severity groupings are beyond the scope of

4This assumes all entities are complete entities. We have not yet ad-
dressed the issue of incomplete entities; e.g., a car without tires is still
considered a car.

this paper; we summarize here the four grades we identified
to which a path might belong®:

Red Grade - detected paths where one or both endpoints
only appear in single-hop paths at a higher (or non-
comparable) classification level than the detected path.
All such paths are certain to represent an inference
vulnerability.

Yellow Grade - detected paths where one or both end-
points appear in single-hop paths at both higher (or
non-comparable) and lower classification levels than
the detected path. These paths may represent an in-
ference vulnerability.

White Grade - detected paths where neither endpoint

of endpoints of paths already determined through single-
facet analysis. The illustration shows how we establish a
path from cord in the entity layer to rafting in the activity
layer. It also shows how a path from entity cord to activ-
ity trekking can be established. Finally it also shows how a
path from cord to flashlight, both in the entity composition
facet, can be obtained using information from the used-for
facet.

Fig. 6. Establishing inter-facet paths.

The paths in Fig. 6 illustrate two important points about
inter-facet analysis. First, the use of multiple facets may
allow us to derive paths from two components in the same

appears in any single-hop paths from the original schema. 5ot that were not derivable from just the single-facet anal-

These are detected paths about which we have no
other information; they may or may not be inference
vulnerabilities.

Green Grade - detected paths where both endpoints ap-
pear in single-hop paths at lower classification levels
than the detected path. These paths do not represent
an inference vulnerability, since the detected path 1s
already known from inspection of the database at a
lower level.

The database designer can subsequently adjust classifi-
cations or the design as he chooses, using the grades as
a guide. Path analysis thus provides the designer with a
powerful tool that can advise him as to potential inference
problems in a database, and help him decide which ones
are most important.

D. Inter-Facet Analysis

In the previous section, analysis was portioned out by
facet boundaries so that any interactions between the facets
were effectively ignored. For practical inference analysis,
such inter-facet interactions are an important source of fur-
ther potential inference problems. We have developed the
following technique to detect at least some of these infer-
ences.

A natural extension to single facet analysis is to link
endpoints of two single-facet paths to form one inter-facet
path. In other words, given some single-facet path P with
endpoints p; and p;, and another single-facet path ¢ with
endpoints p; and py, we can create a new inter-facet path
R from p; to pg.

We can efficiently perform inter-facet analysis using the
paths we obtained from our single-facet analysis. The ad-
vantage of doing the single-facet analysis first (aside from
the obvious benefit of obtaining the single-facet inference
paths themselves) is that we can use them to exploit their
transitivity within a single facet wherever it has been deter-
mined — we need only use the path endpoints when cross-
ing facet boundaries; we do not have to re-derive them in
combination with all the other facets. Fig. 6 illustrates
the process. It shows three facets: entity composition,
used-for and activity composition. The dots indicate pairs

5In an earlier paper, we called these grades classes [10]; we changed
the name to avoid confusion with security classification.

ysis. In Fig. 6, the path from cord to flashlight (both in
entity-composition facet) was not derived just within the
facet; it required information from the used-for facet (e.g.,
tent and flashlight both used for camping) in order to derive
the path. Secondly, there are some pairs of facets for which
it 1s not possible to find inter-facet paths. For example,
there cannot be direct one-hop inter-facet paths from the
entity-composition facet to the activity-composition facet;
their axes do not share any common components. On the
other hand, the entity-composition and used-for facets can
be linked by a single hop since they both share a common
axis (namely, entities).

Inter-facet paths will involve concepts and relations that
were supplied by the analyst during microanalysis and will
likely not have security classification levels assigned to them.
Our default therefore will be to consider concepts not from
the database as essentially unclassified (i.e., available to
any adversary) for the purposes of path grades. Tt is also
possible that the analyst could manually assign higher se-
curity levels to particular concepts if he knows that they
do, in reality, represent information whose security is to be
preserved.

The combinatorial complexity of inter-facet detection is
exponential in the worst case, that 1is, if every concept is
related via a single-facet path to every other concept. That
is to be expected; however, in real-world databases this
worst case is unlikely to occur. We have used a prototype
of Wizard to perform the inter-facet analysis. We used a
Sun Sparc 5 with 24Mbytes of memory running at 80MHz
using our own benchmark database of 36 relations. Fig. 7
shows the run times for obtaining the multi-facet paths for
differing number of instances. We would like to perform
the analysis on a large existing database to determine its
practical utility.

Fig. 7. Performance results in obtaining multi-facet paths.

Our last task is to rank the inter-facet paths according
to their severity, much as we did for the single-facet paths.
Since the inter-facet paths are not directly based on the
database schema (whose original security classifications are
known), the inference analyst must provide security clas-
sifications to the GEM via each relation’s microanalysis.

This provides the “original” paths for purposes of ranking
the new-found paths. We are still exploring this aspect.

V. IMPLEMENTATION
The Wizard architecture that we outlined at the begin-
ning of this paper will now be fleshed out in more detail. In
Fig. 8 the boxes denote collections of information; the ovals
denote processes, either automatic or manually assisted.

Fig. 8. Wizard system overview.

The first step is microanalysis for database semantics
using a set of standard form graphs called the C'G canon,
along with real-world knowledge and the database schema.
The semantics are represented by one conceptual graph
for each relation schema; we call each graph a microan-
alyzed knowledge chunk or MKC. We then combine the
MKC’s we have created and use the Instantiator Tool to
create an instance of each relation’s schema graph from
each database instance, resulting in a set of conceptual
graphs called the global ensemble of MK(C’s or GEM. Since
we base the graphs of the GEM on the original database
relation schemata, each tuple 1s used to fill in individual
values to form instance graphs. This process is performed
automatically by the Instantiator Tool; each concept box
originating from the relation schema itself is supplied with
an individual identifier (a conceptual graph referent that
is taken from its corresponding attribute’s value. Each
instance concept is then labeled with its corresponding se-
curity classification level.

We have constructed a Parser/Projector Tool that (1)
parses the conceptual graphs of the GEM, and (2) performs
the projection of each facet’s information by replicating
them and using the database’s tuples to fill in values. We
then use standard parsing techniques on conceptual graphs
to glean each facet’s contituent relations (e.g., (part-of),
(used-for), etc.) for analyzing their paths.

We have developed a tool called Merlin that is adapt-
able to detect inference problems in the different facets.
Merlin’s processing is based on the association processing
described above. Merlin single-facet tools support the de-
tection of second paths which it then grades according to
their potential severity or importance. In the future it will
support the empirical basis with some refinements (see Dis-
cussion below).

Merlin inter-facet tools find paths between concepts in
different facets. In an prototype run of the system we used
a database benchmark for inferences that we have devel-
oped that has 39 relations and approximately 3000 tuples.
In modeling three enterprises: a manufacturer, its supplier
and 1ts customer, we have successfully detected both single-
facet and inter-facet paths.

Single facet paths detected by the prototype include an
inference from company to division to employee in the
entity-part-of facet, and an inference from part number to
order number to customer number in the func-dep facet.
Multi-facet paths include a path from a spindle part to
a cottonpicker in the entity-part-of facet and then to the
activity of cottonpicking in theused-for facet.

We are developing a complete inference detection and
analysis product based on the design in Fig. 8 that will
support all parts of the system in an integrated environ-
ment.

VI. DiscussioN

One important issue is why we do not analyze the GEM
directly, but instead project it onto facets for analysis.
Since many useful inferences reside in a single facet, we
have developed the Merlin tool to efficiently analyze tran-
sitive associations within each facet separately so that some
portions of the analysis can be performed rapidly. Of
course, we could deal with the GEM directly, but at the
cost of reduced performance of whatever analysis methods
we choose, since we not only have many more concepts to
deal with, we also must deal with arbitrary combinations of
concepts and relations, which increases the combinatorial
complexity of any solution. Our solution i1s a divide-and-
conquer approach, and is particularly amenable to concur-
rent implementation, since each facet can be independently
processed.

We have merely begun the identification of useful facets;
therefore, our architecture allows for additional facets to
be easily included. We clearly have further techniques to
explore that are based on associations other than transitive
ones. In particular, we need to explore techniques to ad-
dress inferring relationships between relationships. These
do not appear to come under the transitive association
paradigm, yet they might form an interesting set of infer-
ences in their own right. Although performing single-facet
analysis separately reduces the work needed to detect the
multi-facet paths, it is also possible that certain inference
paths would be rendered undetectable by our division; we
are studying this aspect to determine these inference paths
and develop techniques for analyzing them.

We need to further clarify the notion of “few” vs. “many”
in dealing with associations that involve database instances.
We may want to incorporate additional domain knowledge
from a human analyst to make our determination more ac-
curate. We also need to address the issue of incomplete
entities (or activities), where some parts are missing but
the entity (or activity) is still deemed to exist.

We do not yet recommend particular solutions to the in-
ference problems we have detected. It is our claim that
with a repertoire of fast and flexible analysis tools, the de-
signer can explore critical database attributes (possibly re-
classifying some of them) and then quickly re-analyze the
database to observe any improvements. Given fast feed-
back, the designer will be able to gain valuable insight as
to how changes in classification affect the overall security
of the database, at least with respect to inferences.

There are some interesting variations to our approach
that can be attempted in further refining the analysis of an
existing database, as well as exploring our analysis tech-
niques. With respect to cardinality, we could perform a
sensitivity analysis; i.e., if a cardinality is many, then as-
sume none and observe the difference in results, then as-
sume one and observe further differences. This can give

some indication to the analyst as to the reliability of the
initial processing. With respect to classification, we can
consider the effect of providing security classification lev-
els to knowledge that is strictly outside the database, by
attaching those levels to conceptual graph during micro-
analysis.

VII. CONCLUSION

We have developed techniques for handling a complete
knowledge acquisition, detection and analysis process for
an important set of database inference problems. We have
implemented these techniques in a prototype version that
has helped us identify many of the issues we have presented
here. The results of analysis are a set of practical problems
for the database designer, organized by their severity or
importance, which can be addressed in actual databases.

We acknowledge that the problem of detecting database
inference vulnerabilities requires modeling an amount of in-
formation comparable to the information that a determined
and intelligent adversary would have. We believe, there-
fore, that any database inference detection approach must
incorporate real-world knowledge in order to address the
problem. Our approach uses conceptual graphs to model
general knowledge that the analyst deems relevant, and
then uses a fast algorithm to quickly detect potential (not
always actual) inference problems.

Our system can easily incorporate new tools. Tools that
use conceptual graphs can use the results of microanaly-
sis for other purposes related to database design, analysis
and implementation. Tools that require some new facet
need merely to have the parser/projector glean whatever
concepts and relations are relevant to that new facet. The
extensibility of the system makes it an ideal environment
for exploring database inference.

ACKNOWLEDGMENTS
The authors wish to thank Randall W. Wolf for his sub-
stantial effort in implementing the tools presented in this
paper. Asha Chandrasekhar did the preliminary design
and implementation for functional dependency.

REFERENCES

[1] ANSI, “Information Resource Dictionary System (IRDS) Tech-
nical Report, Part 1: Conceptual Schema for IRDS”. Technical
Report X3/TR-14:1995, American National Standards Institute
(ANSI), 1995.

[2] Harry S. Delugach and Thomas H. Hinke. “AERIE: Database
Inference Modeling and Detection Using Conceptual Graphs”.
In Heather D. Pfeiffer and Timothy E. Nagle, editors, Con-
ceptual Structures: Theory and Implementation, number 754
in Lecture Notes in Artificial Intelligence, chapter 16. Springer-
Verlag, 1993. ISBN 3-540-57454-9, reprinted from Proc. Seventh
Annual Workshop On Conceptual Graphs, New Mexico State
University, Las Cruces, New Mexico, July 8-10, 1992.

[3] Harry S. Delugach and Thomas H. Hinke. “Microanalyzed
Knowledge Chunks For Knowledge Acquisition in Database In-
ference Analysis”. Tech. Report 95-01, Dept. of Computer Sci-
ence, Univ. Alabama in Huntsville, 1995.

[4] Gerard Ellis and Robert A. Levinson, editors. Proceedings of
the Second International Workshop on PEIRCE: A Conceptual
Graphs Workbench, 1993. Held in association with the First

10]

(11]

(12]

(13]

(14]

15]

(16]

(17]

18]

(19]

(20]

Intl. Conf. on Conceptual Structures, Laval University, Quebec,
Canada, Aug. 1993.

Gerard Ellis and Robert A. Levinson, editors. Proceedings of
the Third International Workshop on PEIRCE: A Conceptual
Graphs Workbench, 1994. Held in association with the 2nd Intl.
Conf. on Conceptual Structures, Univ. Maryland, College Park,
Aug. 1994.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems. The Benjamin/Cummings Publishing Com-
pany, Inc., Redwood City, CA., 1989.

Thomas H. Hinke. “Inference Aggregation Detection in
Database Management Systems”. In ITEEE Symposium on Se-
curity and Privacy, Oakland, CA, USA, April 1988.

Thomas H. Hinke and Harry S. Delugach. “AERIE: An In-
ference Modeling and Detection Approach For Databases”. In
B. W. Thuraisingham and C. E. Landwehr, editors, Database
Security, VI. Status and Prospects, number A-21 in IFIP
Transactions, Amsterdam, 1993. Elsevier Science Publ. (North-
Holland).

Thomas H. Hinke and Harry S. Delugach. “A Fast Algorithm
For Finding Second Paths in Database Inference Analysis”.
Jour. Computer Security, 1995. (in press).

Thomas H. Hinke, Harry S. Delugach, and Asha Chandrasekhar.
“Layered Knowledge Chunks For Database Inference Detec-
tion”. In Proc. 7th IFIP WG 11.8 Working Conference on
Database Security, Huntsville, Alabama, Sept. 1993.

Donovon Hsieh, Teresa F. Lunt, and Peter K. Boucher. “The
Seaview Prototype”. Technical Report A012, SRI International,
August 1993.

G. W. Mineau, B. Moulin, and J. F. Sowa, editors. Conceptual
Graphs for Knowledge Representation. Number 699 in Lecture
Notes in Artificial Intelligence. Springer-Verlag, 1993.
Matthew Morgenstern. “Security and Inference in Multilevel
Database and Knowledge-Base Systems”. In Proceedings of
SIGMOD (ACM Special Interest Group on Management of
Data. ACM, 1987.

Matthew Morgenstern. “Controlling Logical Inference in Multi-
level Database Systems”. In 1988 IEEE Symposium on Security
and Privacy, Oakland, CA, USA, April 1988.

Simon Polovina and John Heaton. “An Introduction to Concep-
tual Graphs”. ATl Expert, pages 36-43, May 1992.

Xjaolei Qian, Mark E. Stickel, Peter D. Karp, Teresa F. Lunt,
and Thomas D. Garvey. “Detection and Elimination of Inference
Channels in Multilevel Relational Database Systems”. In Pro-
ceedings 19938 IEEE Computer Society Symposium on Research
m Security and Privacy, pages 196-205, May 1993.

John F. Sowa. Conceptual Structures: Information Processing
m Mind and Machine. Addison-Wesley, Reading, MA, 1984.
William M. Tepfenhart, Judith P. Dick, and J. F. Sowa, edi-
tors. Conceptual Structures: Current Practices. Number 835 in
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1994.
Bhavani Thuraisingham. “The Use of Conceptual Structures for
Handling the Inference Problem, and Cover Stories for Database
Security”. In Proc. 5th IFIP WG 11.8 Working Conference
on Database Security, Shepherdstown, WV, U.S.A., November
1991.

Jeffrey D. Ullman. Principles of Database and Knowledge-base
Systems, Volume 1. Computer Science Press, Rockville, MD.,
1988.

Originating Human-
Database Supplied
Schema Domain

(& Instances Information
if known)

Knowledge
Acquisition

Subdomain
Partitioning

Fig. 1. Wizard subsystems.

Microanalyzed Knowledge
Chunks

Inference
Detection &
Analysis

Potential

Inference

Problems
(graded by
severity)

Original-Database: w
//V ~>
DRl
—L[i

\

Global-Ensemble:

Fig. 2. Microanalyzed knowledge chunks and global ensemble.

10

%

n

&
N

Entity Layer

Entrty-Activity
Relationsip Layer

employee-
id-number

employee

airplane — pa-©

person

.\5,'0

e(\\'\\\) &
backhoe
entjt Y2

mone
Y Dart-of

consume

W radar
%
Part-or s battery

0\ ity-
ga entity > blade

part-of

used-rfor

bucket

Activity Layer

construction ~ga®"’

digging\

projectTﬁmJ’pushlng

borrowing

Fig. 3. Layers and their facets’ constituent relations.

O
v

H Characteristic Values Operational Definition Processing Implications H
Direction forward association as defined (e.g., part- mnormal
of)
backward derived reverse association (e.g., invert connectivity matrix
composed-of)
Cardinality many number of associations >> 1 ignored
few number of associations > 1 and < narrowed inference
many
one number of associations = 1 unique path
empty number of associations = 0 no path
Basis predefined known from constraints on info deterministic
structure
empirical derived from observation of calculate cardinality
instances
Transitivity transitive A — B and B — C implies A — lossless join
C
non-transitive ignored

Fig. 4. Different types of associations.

11

DECIDE whether strategy = completeness-seeking or sound
FOR each facet DO
FOR specified direction DO
IF facet is transitive THEIN
IF facet cardinality = many AND strategy = completeness seeking THEN
Calculate new cardinality

ELSE
SET new cardinality = old cardinality

END IF

CASE new cardinality OF
none : skip to next facet
one perform endpoint detection
few assume one; perform endpoint detection
many : skip to next facet

END CASE

END IF
END FOR

END FOR

Fig. 5. Association processing.

2] .
Used- = 9 o = 5 S Entity
For 2|l= 2§ S5 3 N © =g| Part-of
| =T S = 3 -8 88.& .28[%
entity {|l@ @ @ a3 a 53 52! Z i52|3 whole
battery 5 battery
lightbulb I lightbulb
flashlight [@ aﬁﬁﬁﬁf‘iﬁ m— @ |€ ' flashlight)
tent .F. tent
radio (@ [J @| radio
cord |@)) cord
raft O raft
Swimming |
rafting: single-facet path exists
TERr []
C||mb|ng [] between components
- inter-facet path exists
camping ° between components
trekking . .
o.» steps for illustration
hiking purposes only
whole = 58 32
BlE 28 5&=
Activity 253 3 Q@ 3
Part-Of < a

Fig. 6. Establishing inter-facet paths.

12

Database Tuples | Concepts | Single-Facet Paths | Multi-Facet Paths | Run-time (secs)
2233 217 983 3934 262
3394 299 1417 5370 359
5587 456 2120 6673 821

Fig. 7. Performance results in obtaining multi-facet paths

Real-World
Knowledge Originating @
<« / Database KEY:
(MSQL)
Micro- /
; DB
analysis
(manual) / / Instances
Instantiator
Tool
Microanalyzed
Knowledge
Chunks (MKC S)
Merlin Single Merlin Inter-
Single-Facet Facet Inter-Facet Facet
Tool Paths Tool Paths
Join Too
Global \\\\
Ensemble
(GEM) Lrnnes

L0y -Achvity Re/znonsps

CG Parser

-

-

Acovrimes

AN

Projector
Tool

Fig. 8. Wizard system overview.

AERIE Inference Layers and Facets

13

