
An Approach To Conceptual Feedback In Multiple Viewed
Software Requirements Modeling

Harry S. Delugach

Computer Science Department
Univ. of Alabama in Huntsville

Huntsville, AL 35899
phone: (205) 895-6614

fax: (205) 895-6239
Email: delugach@cs.uah.edu

WWW: http://www.cs.uah.edu/~delugach

1. INTRODUCTION

Software requirements analysis and specification is concerned with
the exploratory phases of software development: namely, defining
a problem and its domain, followed by the process of identifying
what features and constraints must be embodied in any software
that is expected to solve the problem. A multiple viewed require-
ments technique deals with requirements analysis based on having
available diverse multiple descriptions of software requirements.
Multiple views originate from the various people, perspectives and
purposes involved in a system. Because these multiple descriptions
are often expressed in differing notation schemes based on differ-
ing underlying paradigms and methodologies, the problem of con-
sistency and completeness is a significant impediment to obtaining
a reliable set of requirements. Although each view by itself may be
demonstrated to be internally consistent and coherent, one view is
not usually formally integrated with another. This paper outlines
part of an approach to these multiple-viewed requirements that
provides some structure for integrating and validating multiple
views.

Most recent research has acknowledged the presence of multiple
views, but only a few have explicitly modeled them as distinct
views. The work of Nissen, et al [Nissen96] is an example of a
practical technique that is used in commercial settings to form a
framework for discussion and negotiation among participants. Its
biggest drawbacks are (a) it depends upon having a skilled
(human) facilitator, thus allowing for potential biases to appear and
(b) there is no formal way of modeling negotiation or overlap.
Viewpoints [Nuseibeh94] describes a partitioning of viewpoints
that provides organization to the content of a viewpoint which is
relevant to examining multiple viewpoints for consistency and
completeness. The work of Leite [Leite91] addresses the question
of eliciting different opinions about what a system's requirements
are, and supports the negotiation process whereby the differing
opinions may be reconciled. The terminology and framework of
Leite's work are quite applicable to the current proposal. Their
main focus is in providing an example of how viewpoints may be
reconciled; in their case, by using rule-based models.

These techniques are all designed around a fairly well-defined (and
pre-defined) set of interactions between views. The techniques rely
on heuristics to evaluate the interactions, much as do most rule-
based systems. These techniques can benefit from a uniform repre-
sentation that is general enough to capture all of the relevant in-
formation in the views, with a minimum of human bias and
intervention.

The approach described herein is not a methodology; as the views
can be obtained from a variety of sources. Our main contribution is
to incorporate conceptual graphs (a well-known semantic modeling
technique; e.g., [Sowa84] [Nagle92]) as a general and powerful
representation of the cognitive information in requirements.

2. CONTEXT OF WORK

The primary objectives of the larger project is to construct a col-
laborative, multiple-viewed software requirements analysis envi-
ronment. An overview is shown in Figure 1. The general
capabilities of the environment will be the following:

• capabilities for acquiring domain knowledge using conceptual
graphs,

• translation of software requirements analysis views into con-
ceptual graphs,

• formal analysis of the views, with respect to their overlap,
consistency and completeness

• validation of resulting views through further interaction with
human analysts.

• generation of software requirements specification documents.

Multiple
Viewed

Analysis

View
Acquisition

Domain
Knowledge
Acquisition

Generation
of a

Specification

Multiple
Views

Domain
Models

Requirements
Specification

Figure 1. Multiple Viewed Requirements Environment.

The primary input is either directly from human analysts or indi-
rectly from them via CASE tools. Each diagram or specification
will be translated into conceptual graphs, using algorithms along
the lines of the ones already developed by us earlier [Delugach91],
[Delugach92a], [Delugach92b]. The result is a set of specification
graphs, with one conceptual graph for each originating diagram.
This collection of graphs can then be analyzed according to the
normal rules of conceptual graphs; e.g., they can be joined,
matched, analyzed for inconsistency and incompleteness, etc.

Once the combined analysis is done, translation can be made back
into one of the originating diagram views (e.g., data flow dia-
grams). This allows existing automated tools to perform that dia-
gram view's own internal consistency checks, but more
importantly, it allows the human analyst to see new information, in
his original notation, that was gained by incorporating the other
views. The human analyst can then examine, validate, and evaluate
the new information from other views without having to explicitly
see those other views in their own notations (or understand the in-
ternal representation).

From a human analyst's point of view, they create a diagram (or set
of diagrams) describing a system using whatever notation they
choose and tell the tool to “store” the diagrams. Other analysts
have done the same, each in their own chosen notation. Then either
analyst asks the system to “retrieve” the system description in their
original notation. Instead of seeing the same diagrams as before,
the analyst sees augmented diagrams with additional information,
whose source may be traced to the various other views if desired.
The analyst can then examine the new diagram(s) and provide ad-
ditional information, and then “store” the new diagram, so that the
process iterates. (Of course, the original diagram is still intact for
tracking and editing purposes.)

The human analyst therefore has the potential to get feedback from
the automated analysis so that inconsistencies and incomplete-
nesses in their original diagrams (as well as the combined dia-
grams) may be flagged for being addressed by the human analyst,
either then or later. The approach is thus naturally iterative.

Although it is beyond the scope of this short paper to discuss the
knowledge acquisition and domain modeling portion of the envi-
ronment, we consider them to be crucial to the eventual success of
any such system. Descriptions of other ongoing work in this area
will appear elsewhere [Delugach96] [Wolf96].

3. MODELING MULTIPLE VIEWS WITH
CONCEPTUAL GRAPHS

One central feature of this approach is the use of conceptual graphs
to represent and manipulate software requirements information.
Conceptual graphs are a visual form of semantics networks that is
easy to understand, yet powerful enough to express a wide range of
knowledge constructs. This short paper introduces conceptual
graphs briefly; for a more complete introduction, see [Polovina92]
or [Sowa92].

3.1 Conceptual Graphs

A conceptual graph consists of concepts and relations; concepts
denoted by a box and relations denoted by a circle or oval. Rela-
tions are connected to concepts via directed links; the direction of
the arrow is predetermined and usually follows a linguistic con-
vention. A concept contains a type identifier with an optional ref-
erent which indicates a particular individual (or set of individuals)

of that type. Associated with one or more conceptual graphs is a
type hierarchy showing subtype/supertype relationships with mul-
tiple supertypes allowed, and a set of definitions (not shown here).

Starting along the lines of our earlier work [Delugach91],
[Delugach92a], various notations in software requirements are
provided with translations to and from conceptual graphs. Due to
space limitations, we do not present the algorithms here. An early
version of the data flow translation appears in [Delugach92a].This
paper will show two examples: a Rumbaugh OMT object diagram
[Rumbaugh91] and a data flow diagram.

3.2 OMT object diagrams

Figure 2(a) shows a typical view of a system using OMT. Boxes
represent object classes, with attributes and operations shown.
Figure 2(b) shows the initial conceptual graph that would result
from a first translation step.

Nurse

Patient

alert

connection

plug into

vital signs current readings

normal ranges

Database

Monitor

(a)

Patient

attribute Vital
Signs

Current
Readings

Monitorconnection

Alertobj

Nurse: { * } Database Normal
Ranges

plug into

attribute

link attribute

NURSE < ENTITY.
DATABASE < ENTITY.
PATIENT < ENTITY.
MONITOR < ENTITY.
ALERT < PROCESS.

(b)

Figure 2. Object diagram and its conceptual graph.

3.3 Data flow diagrams

Figure 3(a) shows another typical view of a system using a data
flow diagram (DFD). Obviously a small example, it nonetheless
captures some of the features of a view that this work will con-
sider. There are labels which originate from real-world entities,
whose meaning is implied (e.g., "patient") but not further described
in the view. There are relationships called for by the particular no-
tation, in this case, data flows between processes, actors or data
stores.

sensorfactor

current
reading

normal
ranges

alarm

compare databaseMedical
Person

Patient

readings

(a)

Medical
Person

Patient

normal
ranges

alarm current
reading

factor sensor Database

readings

compare

produce consume

consumeproduce

produce

consumeproduce

contains

produce

consume

consume

Medical_Person < ANIMATE_ENTITY.
Patient < ANIMATE_ENTITY.
DATABASE < ENTITY.
sensor < PROCESS.
compare < PROCESS.

(b)

Figure 3. Data flow diagram and its conceptual graph.

4. VALIDATING MULTIPLE VIEWS

After views have been acquired, they can be combined via con-
ceptual graph operations, such as joining around coincident con-
cepts. Figure 5 shows the combined graphs from Figure 2(b) and
Figure 3(b).

There are several validation and verification techniques using the
combined graphs. Two important ones are (a) feedback into one's
original diagramming technique, and (b) paraphrasing graphs into
natural language.

4.1 Originating Notation

Using the translation from conceptual graphs to the various nota-
tions, the analyzed requirements can be presented to each original
requirements specifier in their original notation, with additional
features obtained during analysis with the other views. As an ex-
ample, we show in Figure 4 an augmented data flow diagram that
would be presented to the DFD specifier. Some additional features
have appeared:

1. The "Medical Person" has been changed to "Medical Person /
Nurse" reflecting the conceptual graph join.

2. An "alert" process has appeared, since it was introduced by
the OMT specifier as an operation.

3. An unknown "flow" appears between "alert" and "Medical
Person / Nurse" since there is an (obj) relation between those
two in the conceptual graph.

4. A "Monitor" actor has appeared due to the appearance of the
entity in the OMT's conceptual graph.

Note that feature 1 is subject to change based on the natural lan-
guage feedback. Feature 3 represents an incompleteness; the DFD
specifier must decide the direction and label of the flow (or to
eliminate it entirely). Feature 4 also is an incompleteness; the DFD
specifier is invited to provide flows for the monitor.

sensorfactor

current
reading

normal
ranges

alarm

compare databaseMedical
Person/

Nurse

Patient

readings

alert
???

Monitor

Figure 4. Augmented Data Flow Diagram.

Patient

attribute Vital
Signs

Current
Readings

Monitorconnection

Alertobj

Nurse: { * } Database Normal
Ranges

plug into

attribute

link attribute

Medical
Person

Patient

normal
ranges

alarm current
reading

factor sensor Database

readings

compare

produce consume

consumeproduce

produce

consumeproduce

produce

consume

consume
contains

Figure 5. Combined specification graphs.

4.2 Natural Language

Paraphrasing consists of presenting each graph, or the combined
graphs, or the analyzed combined graphs in English (or other natu-
ral language) for each requirements specifier to evaluate and re-
spond to. For example, using Figure 5, an automated system
produces the following results to which the specifier can respond.

1. A patient produces factors, is connected to a monitor, has vital
signs, and there are zero or more patients. The OMT specifier
and DFD specifier both agree with this.

2. A medical person/nurse is linked to a database, undergoes an
alert, consumes an alarm, and produces normal ranges. The
DFD specifier notes that a nurse is not supposed to produce the
normal ranges; they are to come from a doctor. Therefore the

DFD needs changing and the term "medical person" is not the
same as "nurse".

3. A database contains readings, is linked to nurse, has normal
readings. OMT specifier notes that the link to nurse can be
further specified as "accesses".

4. Normal ranges is produced by medical person / nurse, and is
consumed by compare process. This validates the DFD speci-
fier's earlier conclusion that "medical person" is not the same
as "nurse".

5. Current reading is produced by sensor process, is attribute of
monitor, and is consumed by compare process, There are zero
or more current readings. OMT specifier notes that the current
readings are really related to the patient's vital signs rather than
just a monitor feature. Both specifiers note that sensor process
and monitor entity are related, suggesting that the sensor proc-
ess perhaps ought to be located in the monitor.

6. A compare process has one normal ranges, many current
readings. Both specifiers agree with this.

5. CONCLUSION AND FUTURE WORK

This paper described one part of a multiple viewed development
environment that deals with integrating and validating each view
through feedback from the people who have created each view. As
part of a larger body of research, it is being developed along with
the knowledge acquisition and (most importantly) domain model-
ing efforts to begin exploring how these ideas all interact with each
other.

The examples suggest that conceptual feedback is a valuable fea-
ture for any requirements development environment. Overlap and
inconsistency are readily apparent through two kinds of feedback:
translation to one's originating notation and natural language para-
phrasing. Obviously the techniques need to be applied to substan-
tial development efforts in order to determine their effectiveness in
the large scale.

Two strengths of a conceptual graph based approach are (a) it eas-
ily supports natural language interaction with the environment and
(b) it does not enforce much structure or a certain methodology,
thus providing generality. It is not yet clear whether this environ-
ment will (or should) ultimately lead to a coherent methodology.
At the outset, we are avoid prescribing a methodology so that sev-
eral different ones may be tried. An interesting future development
might be to treat a methodology itself as a view and hence to
model multiple methodologies using this approach. Such a daunt-
ing task would nonetheless be useful, both as a research tool in ex-
ploring the relationship between various methodologies and as a
practical development tool, since large projects usually comprise
subsystems that may be developed by different vendors using dif-
ferent methodologies.

6. REFERENCES

[Delugach91] Delugach, Harry S. "A Multiple Viewed Approach
to Software Requirements", Ph.D. dissertation, Computer
Science Department, University of Virginia, Charlottesville,
VA, 1991.

[Delugach92a] Delugach, Harry S., "Specifying Multiple-Viewed
Software Requirements With Conceptual Graphs," Jour.
Systems and Software, vol. 19, pp. 207-224, 1992.

[Delugach92b] Delugach, H.S. "Analyzing Multiple Views Of
Software Requirements" [In] Conceptual Structures: Current
Research and Practice, Eklund, P., Nagle, T., Nagle, J. &
Gerholz, L. [Eds.], 1992, 391-410, Ellis Horwood.

[Finkelstein92] Finkelstein, A., Kramer, J., Nuseibeh, B.,
Finkelstein, L. & Goedicke, M. "Viewpoints: a framework for
integrating multiple perspectives in system development",
International Journal of Software Engineering and
Knowledge Engineering, 2 (1), 1992, 31-57.

[Leite91] Leite, J.C.S.P. and Freeman, P.A. "Requirements
Validation through Viewpoint Resolution", IEEE Trans. on
Software Eng., 1991, 17 (12), 1253-69.

[Nagle92] Tim Nagle and Jan Nagle and Laurie Gerholz and Peter
Eklund, eds , Conceptual Structures: Current Research and
Practice, Ellis Horwood, 1992.

[Nissen96] Hans Nissen, Manfred Jeusfeld, Matthias Jarke, Georg
Zemanek and Harald Huber, "Managing Multiple
Requirements Perspectives with Metamodels," IEEE
Software, 12(6), pp. 37-48, 1996.

[Nuseibeh94] Nuseibeh, B., Kramer, J. and Finkelstein, A. "A
Framework for Expressing the Relationships between
Multiple Views in Requirements Specifications", IEEE Trans.
on Software Eng., 20 (10), 760-73, 1994.

[Polovina92] Polovina, Simon and Heaton, John, "An
Introduction to Conceptual Graphs", AI Expert, pp. 36-43,
1992.

[Rumbaugh91] Rumbaugh, James, Blaha, Michael, Premerlani,
William; Eddy, Frederick; and Lorensen, William, Object-
Oriented Modeling and Design, Prentice Hall, Englewood
Cliffs, NJ, 1991.

[Sowa84] Sowa, John F., Information Processing in Mind and
Machine, Addison-Wesley Publ., Reading, MA, 1984.

[Sowa92] Sowa, J. F. "Conceptual Graphs Summary," in
Conceptual Structures: Current Research and Practice, Tim
Nagle and Jan Nagle and Laurie Gerholz and Peter Eklund,
eds., Ellis Horwood, 1992 pp. 3--52.

