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1 Introduction 

This paper deals with formal representations and reasoning 
about metadata in order to perform ‘smart’ queries of data 
repositories. As data users become more and more 
sophisticated, they tend to expect more ‘brains’ from their 
data collections. ‘I know the data is there, so why can’t the 
system tell me what I want to know?’ Two main obstacles 
to solving this problem are well known: 

• Large numbers of database schemas, whose integration 
is typically very difficult. 

• Standard approaches are not suitable for information 
sources that are not relational databases with available 
schemas. 

As a result, most recent approaches are centred around some 
kind of domain model, as in the SIMS project by Arens et al. 
(1996). [For further discussion about the general problem of 
intelligent queries, see Arens et al. (1996), Sowa (2000) and 
Bertino et al. (2001).] But even these approaches have their 
limitations: 

• Domain models are still tightly bound to the structure 
of the database (or more generally, information source) 
for their semantics. 

• For most applications, there are different points of view 
from which to establish a domain model, some of them 
user-based (end-user, novice, expert, auditor etc.) and 
others based on different aspects of the domain (temporal, 
spatial, economic, terminological etc.). For an early 
discussion of viewpoints from a developer’s perspective, 
see Delugach (1992, 1996). 

This paper presents a standards-based alternative that lies in 
between the two kinds of approaches. While it does rely on 
database structure to some extent, it relies more heavily on 
the metadata of the information source, whose semantics 
can be captured by a general domain model using another 
standard, namely Common Logic  

It is our expectation that these additional constraints will be 
developed by the makers of the metadata for a given data 
source, and that the constraints (in some dialect of Common 
Logic) will be included in a metadata registry for interchange 
with any subscriber to the metadata. 

1.1 Why do we need metadata? 
We usually start out a discussion of metadata by saying that 
it is ‘data about data,’ but most practitioners have something 
more specific in mind. In general, metadata is anything we 
want to say about our data other than its values and types. 
This includes such knowledge as: 
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• What are the possible values of a data element with 
respect to other concepts? 

• What does each of the values mean? 

• What concept is being represented by the data? 

• How is that concept related to other concepts in the 
information source? 

We need metadata (whether we call it that or not) in order to 
use the data to represent things that matter to us: to understand 
phenomena, to better serve customers, to establish organisational 
policies, and/or to keep a more accurate record of human 
activities. Data does not just exist in a repository – it is stored, 
used, and modified as a reflection of whatever objects or 
activities it is meant to represent. We do more than just 
represent the data; we also want to reason about it, drawing 
conclusions about those real world objects during the pursuit of 
normal human activity. It is therefore widely understood that 
we need the ability to formally reason about data. Metadata is 
one important aspect to that ability. 

For definitions and terminology about metadata and 
conceptual modelling used in this paper, readers are directed 
to ISO/IEC 11179 [specifically parts 1, 3 and 4 (ISO/IEC, 
2003; ISO/IEC, 2004a; ISO/IEC, 2004b)] and two related 
terminology standards (ISO, 2000a; ISO, 2000b). 

1.2 What are metadata constraints? 
For the purposes of this paper, we consider two kinds of 
knowledge commonly considered metadata constraints: 

Domain constraint: any formally specified condition that 
further limits the values or contents of a data element 
beyond its database definition, where definition is 
considered in the sense of ISO/IEC (2004a). 

Metadata relationship: any formally specified relationship 
between metadata items where the relationship is largely 
specified in terms of metadata item attributes. 

In this paper, we will focus on metadata relationships, and 
show how they are represented to semantically enhance 
existing metadata and how these relationships can be used 
in answering practical queries. In order to follow a 
standards-based approach to representing the relationships, 
we will use Common Logic ISO/IEC (2007) as our semantic 
representation. 

The Digital Library Federation identifies three types of 
metadata about digital resources; although aimed at libraries, 
these categories are relevant for our purposes as well: 

descriptive metadata: information describing the intellectual 
content of the object; we will call this the semantics of the 
objects being described. 

administrative metadata: information necessary to allow a 
repository to manage the object: this can include information on 
how it was obtained, its storage format etc.; we will consider 
this part of the pragmatics of the objects being described. 

 

structural metadata: information that ties each object to others 
to make up logical units (for example information that relates 
individual images of pages from a book to the others that make 
up the book itself); this we will also consider part of the 
pragmatics of the objects being described. 

This paper shows examples of all three types of metadata. 
Our purpose is to illustrate the need for reasoning methods 
that use metadata constraints, and to show how Common 
Logic would represent those constraints. 

Note that this paper uses several examples from the 
pharmacologic domain. These are not meant to be exhaustive 
or complete with respect to a full medical knowledge base and 
are intentionally simplified for illustration purposes. 

2 Background 

This section provides an introduction to Common Logic and 
explains why we believe it is a useful representation to 
support reasoning with metadata. First we briefly illustrate 
some basic limitations of metadata for reasoning, and then 
introduce Common Logic which we will later use as a 
representation to overcome some of the limitations. 

2.1 Limitations of metadata for reasoning 

For the approach in this paper, we assume that there already 
exists a metadata model that associates specific data elements 
with particular concepts. That is, our domain constraints and 
metadata relationships will be expressed primarily at the 
conceptual domain level (or ‘higher’) for the purposes of 
reasoning.  

Looking at a data repository’s content using concepts 
largely frees data users from the burden of trying to figure out 
the details what is in a database; however, reasoning about 
those concepts using databases is still done mostly in an ad-hoc 
case-by-case manner, through custom programming as in the 
following illustration. 

Assume we have on hand a database of medications as 
in Figure 1(a) with metadata in the form of definitions also 
available as English text. Assume we also have a hospital 
record of drugs administered with information such as in 
Figure 1(b), again with appropriate metadata.  

To motivate our illustration, suppose we want an answer to 
the query: How many times have analgesics been prescribed in 
this particular hospital?  

Since the term ‘analgesic’ does not actually appear in 
the hospital drug record, a very naïve (and wrong!) answer 
would be ‘zero’. A knowledgeable domain specialist will 
know that analgesic is a general term comprising all pain 
medications; they can easily create a custom query that will 
search a drug catalogue for all known pain medications 
from a list. But suppose we next want to know how many 
time antibiotics have been prescribed in the same hospital? 
Another ad-hoc custom query will have to be created, even  
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though the structure and process is exactly the same. This is 
precisely the kind of duplication that metadata constraints 
will help us avoid. 

Figure 1 Database examples for metadata illustration 

Drug Class Form Dose 
Acetaminophen Analgesic Capsule 200 mg 
Aminoglycoside Antibiotic Liquid 15 mg 

Aspirin Analgesic Pill 250 mg 
. . . . . . . . .  

(a) Drug catalogue 

Patient Date Medication Dose Approval
A1234 12/01/07 Acetaminophen 400 mg ZYX 
A9876 12/01/07 Aspirin 250 mg ABC 

. . . . . . . . . . . . . . . 
(b) Hospital drug record 

One important strength of metadata is its ability to capture 
semantics. Even in simple examples we encounter some of 
the difficulties with database semantics that metadata is 
meant to address. The data element named Drug represents a 
concept that has synonyms; in the case of the National Cancer 
Institute (NCI) in the USA, the preferred term is medication, 
even though many medical personnel will still use drug to 
refer to these objects, even in technical reports. That is why 
we speak of ‘concepts’ rather than ‘terms’ or ‘data values’ in 
performing reasoning. This is also the attitude taken by 
terminologists (see the standards ISO, 2000a; ISO, 2000b) as 
well as the metadata registration community (ISO/IEC, 2003; 
ISO/IEC, 2004a; ISO/IEC, 2004b). 

Also evident is an important limitation of metadata in its 
usual sense. In order to answer the above query, some knowledge 
missing from the written description is needed – namely, that 
both aspirin and acetaminophen are kinds of analgesics and 
both should be considered as analgesics. While this seems 
‘obvious’ to the reader, it is actually beyond the reasoning 
ability of most metadata systems, and hence provides a clear 
illustration of where we need more knowledge than represented 
by just the metadata. 

The form of metadata varies, but this paper assumes 
content based on international standards (ISO/IEC, 2003; 
ISO/IEC, 2004a; ISO/IEC, 2004b). Such descriptions of 
metadata are already in wide use for some significant metadata 
repositories, such as that of the NCI (Coronado et al., 2004).  

The next subsection shows how a knowledge representation 
(in this case, Common Logic) can provide a basis for the 
reasoning needed to answer this section’s query (and others). 

2.2 Common Logic 

In order to fully understand the work described herein, a brief 
description of Common Logic is necessary; for the complete 
standard see ISO/IEC (2007). Common Logic (CL) is a 
standardisation of first-order logic whereby sentences in the  
logic can be exchanged between systems while preserving its  
 
 

semantics. CL’s semantics are those of formal model theory 
(Hodges, 1997; Huth and Ryan, 2004), where symbols are 
assumed to have a consistent interpretation within any given 
model. CL specifies an abstract semantics, to which three 
distinct standardised dialects are each semantically equivalent. 

The CL standard does not specify how to perform 
reasoning; however, since it provides a clear model theoretic 
interpretation to any CL formula, reasoning from a CL 
representation follows directly from well-known logic rules 
and model theory. One key feature of that theory is that symbols 
in the representation denote individuals and relationships in 
some universe of discourse. A primary metadata standard 
(ISO/IEC 11179) recognises the importance of a conceptual 
domain relative to particular data values, we can use concepts 
in the conceptual domain on which to base our Common 
Logic interpretations. For example, the data values for ‘drug’ 
and ‘medicine’ both are based on the same conceptual domain, 
so that they share one universe of discourse and therefore the 
symbol ‘acetaminophen’ means the same individual for both 
of them. 

Strictly speaking, since CL itself has an abstract syntax 
and semantics, we would be more accurate expressing our 
conceptual models using that abstract syntax. This 
sometimes becomes cumbersome, so it is easier for us to 
illustrate CL with examples written in one of the concrete 
dialects defined in the CL annexes. This paper will therefore 
use examples written in the Common Logic Interchange 
Format (CLIF) defined in Annex A of ISO/IEC (2007). We 
could represent the examples using any one of the three 
dialects and mix them up any way we would like – this 
would further demonstrate the power and interoperability of 
CL, but would probably confuse most readers. 

The next section outlines the basic approach for representing 
relationships and for creating metadata constraint models at the 
conceptual level. 

3 Our approach 

This section describes the overall approach to both representing 
and reasoning about metadata using Common Logic. We 
explain how metadata constraints and relationships fit into the 
modelling scheme, then we describe our approach for creating 
and representing a conceptual model from its corresponding 
metadata. We then present some basic notions about reasoning. 

3.1 Representing metadata relationships 
The scheme in Figure 2 suggests the general structure of 
modelling metadata relationships and domain constraints. The 
diagram illustrates how we are interested in relationships that 
exist beyond the metadata descriptions themselves. The picture 
is best understood from the bottom up. At the bottom are 
shown the objects in a domain of interest; namely, medicines. 
(We will discuss later whether there are other levels or points 
of view from which we can consider these drugs.) Information 
about these medications is represented by a database as in 
Figure 1(a).  
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Figure 2 Knowledge structure for metadata relationships  
(see online version for colours) 

 

As we noted in the previous section, while metadata does 
provide some semantics to help understand the content along 
with the conceptual domain of a database, we require something 
beyond metadata that will provide formal semantics at the 
level of understanding relationships in the conceptual domain. 
Common Logic is one representation for conceptual models 
that can provide some of these semantics.  

This paper describes an approach in which CL formulae are 
included along with metadata to model a conceptual domain. 
The metadata itself forms a model whose understanding does 
not require any additional knowledge, in the sense that 
practitioners with no CL expertise already know how to use 
metadata effectively. It can also be argued that practitioners 
already ‘know’ some of what we are about to describe; again, 
we do not claim to be adding any new knowledge, only that we 
are adding existing informal knowledge in a formal way 
suitable for automation and formal reasoning. 

Common Logic supports all of first-order logic with 
quantification. We can therefore describe basic logic reasoning 
and deduction rules. We begin illustrating Common Logic by 
showing a simple rule. One typical relationship between classes 
is the notion of one category being a subtype (specialisation, 
subclass, subconcept, etc.) of another.  

To express the rule that the subtype relationship is 
transitive, we can state the formula in CL.1. This formula 
says that if s1 is a subtype of s2 and s2 is a subtype of s3, 
then s1 is a subtype of s3. 

(forall ( (s1 s2 s3) (implies 
 (and (subType s1 s2) (subType s2 s3)) 
 ( subType s1 s3 )  ) 

CL.1

To express the rule that an individual of a given type is also 
an individual of any of its supertypes, see CL.2. 

(forall ((t1 t2 x) (implies   
  (and (type t1 x) (subType t1 t2)) 
  (type t2 x))) 

CL.2

We will use these two formulas later. 

3.2 Associating metadata with conceptual models 

The above discussion gives some constraints that a conceptual 
model would contain, but still lacks content – namely, 

specifications of actual instances of things such as types, 
objects, individuals etc. That is, we must develop a model of a 
database’s conceptual domain and then populate it with objects 
of interest. This requires an active system that is able to use  
a conceptual model to acquire individual attributes (from a 
database or other information source) about each of the objects. 
This section describes one practical strategy for populating 
such a conceptual model. Some of this work appears in 
Delugach (2003), using conceptual graphs, which is one of the 
dialects to express CL formulae. 

We use a typical source and model such as those in 
Figure 3, where Figure 3(a) is the data source and Figure 3(b) 
shows the conceptual model (in conceptual graph form, one 
of the dialects of CL). This figure is a clear illustration of 
the knowledge that must be included in order to support 
reasoning: some ‘obvious’ concepts are missing from the 
data source, such as the fact that these are people working 
for a particular organisation, the fact that each record 
represents an employee etc. Most of the relationships among 
the data are implicit ones, easily assumed by (human) users 
of the source, but un-represented for purposes of automated 
retrieval and processing. 

Figure 3(c) shows how active agents (here represented 
by the actor lookup in a conceptual graph) are used to 
populate the conceptual model with instance attributes from 
the data source. The populated model is thereby usable for 
inference and reasoning.  

Figure 3 Data source and conceptual model 

Name Position Yrs Experience Degree Major Percent Stock 

Karen Jones VP Marketing 18 MBA Marketing 3 

Kevin Smith VP Technology 12 MSE Engineering 4 

Keith Williams VP Finance 15 BS Accounting 3 

 É É É É É É  
(a) 

 
(b) 

 
(c) 
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Note that the Employee concept has the identifier *ed361. 
This is an arbitrary symbol, assigned by the populating 
process, in order to denote this particular employee (the one 
named ‘Karen Jones’). Each record of the data source will 
represent a different employee, each one having its own 
arbitrary (but unique) symbol that denotes it for reasoning 
purposes. Populating the model for each employee will 
therefore result in a new copy of the graph shown in Figure 
3(c), but with its distinct attribute values denoted in the 
concepts. The populated conceptual model will consist of 
many replicated graphs, all structurally identical because the 
relationships among the record fields are the same for every 
employee. 

Such a conceptual model would of course be very large. 
A reasonable optimisation would be to defer populating  
the model with instances until an instance is needed; e.g., as 
the antecedent to an implication. For some general searches, 
however, all instances would populate the model. For this 
paper such considerations will be avoided; we assume that 
an automated agent will have been developed with sufficient 
optimisation strategies to make this approach feasible. 

There may be additional constraints to add to the 
conceptual model; e.g., relationships between a manager 
and the members of their departments, team relationships 
among groups of employees, and so on. If these happen to 
be contained in other data sources (a plausible assumption) 
then a similar procedure can be used to further populate the 
model with those occurrences. 

There is one last point to make. For practical systems, we 
are not really interested in the record of this employee – we 
are interested in the actual employee, whose information is 
captured in the data source. Associating the symbol *ed361 
with this actual employee is of key importance for practical 
systems, but is beyond the scope of the formal modelling 
process. 

This section described how conceptual models can be 
created which capture knowledge about objects of interest, 
as well as their semantics. Once this is accomplished, we 
have the capability to reason about these models, as shown 
in the rest of the paper. 

3.3 Reasoning with Common Logic 
The CL standard itself is neutral with respect to reasoning, in 
the sense that it does not require or describe any particular 
reasoning strategy or algorithms. This is in keeping with  
its primary purpose which is to serve as an interchange 
representation for logical formulae. It is up to knowledge 
users how they intend to reason with them, of course, while 
still requiring that they adhere to the model theoretic 
foundation of the representations. 

As a result, reasoning with CL is usually performed with 
conventional first-order logic theorem proving rules which are 
obviously not in the scope of this paper; see Huth and Ryan 
(2004), Hayes (1985), Kalish et al. (1980), Israel (1983), Sowa 
(1993) for some current techniques, and Roberts (1973), 
Whitehead and Russell (1927) for some historical background. 

One novel feature that is added to logic representations 
is a facility for interacting with agents. This feature is 
included in conceptual graphs (Sowa, 1984), the basis for 

Annex B of ISO/IEC (2007), through the use of actor nodes 
in an active knowledge system as described in Delugach 
(2003, 2006, 2008). These can provide ‘triggers’ so that 
certain real-world activities can invoke automated reasoning 
and retrieval processes within a knowledge system. The 
extended example in Section 0 gives an illustration of how 
this works in a practical system.  

4 Examples 

The purpose of this section (and the main purpose of the 
paper) is to illustrate the usefulness of a formal semantic 
representation for metadata constraints. It is our aim that the 
examples clearly show the kind of knowledge that we humans 
would like to automatically apply in solving problems and 
understanding human activity.  

The reasoning shown in these illustrations is not esoteric 
or complicated. On the contrary, these simple examples are 
intended to show that, with respect to existing metadata 
representations, our current reasoning ability is quite 
limited; even apparently simple deductions are beyond our 
current capabilities. Common Logic is one representation 
that makes a step toward supporting such inferences. 

We will show some Common Logic descriptions of  
the metadata required for these examples, but the main point 
is that they all require a knowledge representation that 
captures semantics. We do not argue that Common Logic is 
the only way to accomplish this, just that it is sufficiently 
expressive for these purposes. 

4.1 Generalisation from an ontology 

The previous sections’ examples already illustrated common 
way of organising information by assigning a type to a 
given object and then arrange the types in a hierarchy. In the 
model of metadata relationships for medications, we would 
also include CL.3.  

( subType acetaminophen analgesic ) 

( subType aspirin analgesic ) 

( subType analgesic medication ) 
CL.3

Note that in one sense, the example is a metadata 
relationship involving descriptive metadata, in the sense 
that we are talking about a shared meaning between the 
concepts acetaminophen and aspirin; namely, that they 
share a common super-concept analgesic. It could also be 
considered structural metadata, since it involves the 
generalisation hierarchy structure. 

Common Logic does not support types directly, but there 
are two common conventions; unfortunately, modellers must 
choose one of them. One is simply to use monadic predicates; 
e.g. (aspirin d1) associates the type aspirin with the name 
d1. Another way is to explicitly denote the type relationship 
by saying (type aspirin d1). Either of these could be 
used to denote that d1’s type is aspirin. Since CL’s semantics 
imply that d1 is a symbol for some individual in the domain 
being described, it would only be useful if it also appeared 
somewhere else in a model.  
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To model the hospital drug records from Figure 1(a), we 
would specify CL.4. 

(type drug-administration d1)  

(recipient d1 A1234) (type patient A1234) 

(date-administered d1 12/01/77)  

(type aspirin d1)  (dose d1 (400 mg) ) 

 

(type drug-administration d2)  

(recipient d2 A1234) (type patient A9876) 

(date-administered d2 12/01/77)  

(type acetaminophen d2) (dose d2 (250 mg) ) 

CL.4

Note that each instance of administering a drug has its own 
symbol d1, d2 and so on. This is how data must be specified 
in logic terms, because each time a drug is administered and 
a record produced, there is an identifiable individual that we 
must denote. 

Another way to use an ontology for reasoning with 
metadata is to aggregate individual concepts based on their 
supertypes. A good example is to consider a doctor whose 
patient has an infection, and an antibiotic is indicated.  
A database will have data about different drugs and their 
properties; the metadata will reflect them in a data value-
independent way. The doctor may be familiar with some of 
the individual drugs, but wants to choose the best one for 
the patient. Metadata ontologies allow a querying system to 
gather all possible subtypes of antibiotic drug and present 
their properties to the doctor for further decision making. 

4.2 Constraints using structural metadata 

CL can also express constraints among metadata that 
represent knowledge that lies beyond the actual content; in 
this case, we show how the origin of the data affects how 
we might reason about it. 

Suppose we have the model CL.5 from a database, 
where sample s1 has assigned two different values from 
two different chemical tests. 

(sample-pH s1 

(assign test-12-pH  

  (value 6 (‘5 Jul 2007’ Harry litmus ) ) 

 

(assign test-12-pH  

  (value 5.5 (‘7 Jul 2007’ Jane ph-meter) ) 

) 

CL.5

In registering metadata for other users, we would like to 
specify our own axioms for what value to use when there 
may be more than one assigned value. CL.6 shows how 
such an axiom might be framed in CL semantics: 

(forall (x val a1 a2 a3) (implies 

(assign a1 (value val (a2 a3 ph-meter) ) ) 

 val ) ) 
CL.6

The above axiom states that if any value’s source is a  
pH meter test, then that is the value to be used. We could 
also provide rules that tell what do if you only have the 
litmus test.  

4.3 An extended example 
This section describes a more complete example of the  
kind of powerful inferences that can be supported through  
a knowledge-based representation of concepts to support 
reasoning with metadata.1 The domain of the example is a 
simple one, yet it demonstrates the amount of knowledge that 
must be brought to bear in using data from multiple data 
sources, and therefore shows the power of metadata constraints 
so that we can perform these kinds of inferences automatically. 

The example situation is where a doctor prescribes some 
medication to a patient. Will the patient have an allergic 
reaction? In most real-world environments, this question is 
answered in an ad-hoc way, by comparing a patient’s stated 
medical history with a list of drugs. Using automated 
reasoning with semantically based metadata, powerful queries 
can be automatically constructed and answered.  

The example scenario assumes the existence of an 
automated reasoning agent that will traverse the models 
making inferences and satisfying (or not) logical assertions 
along the way. The initial logic rule for the agent’s reasoning 
is shown in CL.7, so the agent attempts to satisfy the 
consequent (allergic d person). The rule just says that 
if there’s a prescription for a medication and the recipient of 
the prescription has an adverse reaction to the drug, then the 
person is allergic. 

(forall (p person d) (implies 

 ( (type prescription p) and 

 (object p d) and  

 (type medication d) and 

 (recipient p person) and 

 (adverse-reaction d person) ) 

  (allergic d person) 

  ) ) 

CL.7

The function adverse-reaction (specified in CL.11 below) 
is obtained from metadata related to medical terminology. All 
of the specifications in this section are shown as they would be 
obtained either automatically from the metadata or else 
provided by the information source providers with the metadata. 
These would already have been developed and would be 
available to an automated system before the scenario begins. In 
the interest of clarity, however, each model will be introduced 
at the point it would be accessed. 

The scenario begins with a prescription: 

John A. Doe A0123456   500 mg Prevpac bid 

One way to describe the prescription is by the conceptual 
model in CL.8, which has been populated as described 
above in Section 0.  

(type prescription p1)  

(recipient p1 person1 ) 

(type patient person1 ) 

(name person1 ‘John A. Doe’) 

(patientID person1 A0123456) 

(object p1 d1) 

(type Prevpac d1)  (dose d1 (500 mg) ) 

(frequency d1 bid) 

CL.8
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The model in CL.8 denotes the following. This particular 
instance of a prescription is denoted by the symbol p1. The 
recipient of the prescription is denoted by the symbol 
person1. The recipient is of type patient, has the name 
‘John A. Doe’ and the patient ID A0123456. The object (i.e. 
the thing being prescribed) in p1 has the symbol d1 and is 
of type Prevpac; its dose is 500 mg and frequency is ‘bid’ 
(twice daily). 

Since not all prescriptions are for drugs (e.g. some could 
also be for a medical device), the triggered agent first looks 
for what type prescription this is (‘Prevpac’), and then 
consults a drug ontology (partially shown in CL.9) to 
determine its type. Additional information beyond this 
example is shown to remind the reader that such ontologies 
contain a rich and large set of knowledge. 

(subType acetaminophen analgesic ) 
(subType aspirin analgesic ) 
(subType analgesic medication ) 
(subType amoxicillin penicillin-antibiotic) 
(subType penicillin-antibiotic antibiotic) 
(subtype antibiotic medication) 
(subType nafcillin penicillin-antibiotic) 
(subType clarithromycin 
  macrolide-antibiotic) 
(subType macrolide-antibiotic antibiotic) 
(subType macrolide-antibiotic  
  protein-synthesis-inhibitor) 
(subType protein-synthesis-inhibitor  
  medication) 
(subType lansoprazole proton-pump-inhibitor) 
(subType proton-pump-inhibitor  
  anti-ulcer-agent) 
(subType anti-ulcer-agent adjuvant) 
(subType adjuvant medication) 

CL.9

The agent first tests the logical query (type medication 
Prevpac) for its truth or falsity with respect to the existing 
conceptual models. Note that Prevpac does not appear 
anywhere in CL.9, since these are generic-name drugs, and 
it happens that Prevpac is a trade name. The automated 
agent looks up Prevpac in a composition list, as shown in 
CL.10. This model would be generated automatically from 
the metadata of a database containing drug components. 

(part Amoxil amoxicillin) 

(part Co-amoxiclav  

 amoxicillin Clavulanic-acid) 

(part Prevpac  

 amoxicillin clarithromycin lansoprazole)

(part Tylenol acetaminophen) 

(part Panadol paracetamol) 

CL.10

Discovering that Prevpac is actually a combination of three 
things, amoxicillin, clarithromycin and lansoprazole (but 
still not identified as medications), the agent applies the type 
rule shown in CL.2 to each of the components. Each can 
therefore be identified as a medication from CL.9, so the 
agent now continues its reasoning steps from CL.7 to 
determine whether the particular patient (denoted as p1 
earlier) is allergic to the particular drug d1. 

Satisfying the (sub)formula (adverse-reaction d 
person) in CL.7 is the crux of this example. For our 
purposes, we will restrict our modelling to a physician’s 
explicit diagnosis of an adverse reaction, so the reasoning 
will focus mostly on the drug part of the formula. 

Assuming that the patient’s records are accessible 
through a standards-compliant information source, the 
automated agent may make use of standard codes, such as 
ICD-9-CM, which is a recent version of the International 
Classification of Diseases, used by the World Health 
Organization (WHO) for its data collection and reporting 
functions. Many hospitals and medical practitioners use the 
codes in their everyday recording of patient information. 

We will assume that this patient’s records are available, 
including the ICD codes. The agent has been given a simple 
model for determining past adverse reactions: If the patient 
record contains a diagnosis of ICD-9-CM code 995.2, this 
denotes ‘unspecified adverse effect of drug, medicinal and 
biologic substances’. Note that this code does not specifically 
mean ‘allergy’ – any adverse reaction will be included under 
this code by the reasoning agent. 

The SNOMED terminology for disorders has a concept 
‘Allergic reaction to drug’ (code 416093006) which is 
mapped to the ICD as 995.29, meaning that it is a subtype  
of the ‘unspecified adverse effect’. This concept has the 
relationship ‘causative agent’ to a drug or medication.  

Such codes must be provided manually (hard-coded) by a 
domain specialist when the agent was originally specified; 
having the agent determine it through reasoning over all the 
terms in the ICD is beyond the scope of the current work, but 
is part of our long-term goal. Since the adverse reactions are 
concepts, a richer domain model of medication and patient 
behaviour could provide real meaning to ‘adverse reaction’, 
but for the present, it is simply one kind of response to a 
causative agent. In fact, substituting the code for some other 
response would allow the same agent to determine whether a 
given medication would cause that other response. 

CL.11 shows the basis for determining if there is an 
adverse reaction and what caused it. This is a domain 
constraint in the sense described at the beginning of the 
paper, because it formally specifies what is an adverse 
reaction for the agent’s formula in CL.7. 

(forall (drug prev patient) (implies 

 ( (record patient r ) and 

 (part r (diagnosis d 995.2)) and 

 (part d (causative-agent prev) ) and 

 (similar prev drug ) ) 

  (adverse-reaction drug patient) 

  ) ) 

CL.11

The formula in CL.11 depends on a function named ‘similar’. 
Research on similarity measures is abundant (e.g. Delugach, 
1993; Landauer et al., 1998; Maedche and Staab, 2002). 
Particular strategies for measuring similarity among metadata 
concepts are still under investigation, but we could start by 
adopting a simple measure based on the subtype hierarchy: 
the closer together are the two drugs in the ontology (i.e. the 
fewer subtype relationships needing to be traversed between 
them), the more similar they are; if the similarity is below 
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some threshold, the function will return true. This is 
obviously simplistic when dealing with a large number of 
drugs, but for the moment we will assume that (similar 
nafcillin amoxicillin) returns true, since both drugs 
are ontological ‘siblings’ with respect to penicillin-antibiotic, 
as can be inferred by the agent from CL.9. 

(subType nafcillin penicillin-antibiotic) 

(subType amoxicillin penicillin-antibiotic) 

Note that this model specifies that any drug related to the one 
which caused the previous reaction will also cause the same 
reaction. That is, if someone had a reaction to nafcillin, then  
it is assumed there would be a reaction to amoxicillin.  
In practice, a richer conceptual model would be needed to 
more accurately determine this, if indeed such determination 
can be made without further tests or additional patient 
information. 

Another simplification of the example’s model is that 
the composition model does not specify how much of each 
ingredient makes up the whole. The agent therefore does not 
perform any reasoning about the amount of the dose or the 
form of the drug, so that a 1 mg portion of amoxicillin is 
considered the same as a 1000 mg portion. 

This extended example shows how an automated 
reasoning agent derives the results we seek, by proving  
(or not) formulae specified by metadata constraints. A failure 
to prove the formula means that (within the given information 
of course) the condition does not hold.  

5 Discussion 

This section discusses some of the limitations and problems 
identified with the formal logic and semantics approach. 

5.1 Declarative style issues 

Aside from the use of multiple dialects, there are a variety 
of ways in which the same logical formula can be 
represented, each with exactly the same expressive power. 
For example, to show that a door is part of a house, we 
could write either of these (as well as others): 

(part door house) 

(part house door) 

Which one to choose is a matter of convention. Common 
Logic does not prescribe any particular order, and in fact 
one of the strengths of the standard is that specifiers can use 
whatever style is convenient. Of course, interpreting the first 
one while assuming the style of the second one (i.e. 
interpreting it to mean that a house is part of a door) is 
clearly an error.  

Declarative style can mean other things as well, e.g. we 
can either say (subtype a b) or (supertype b a). For 
efficiency in some systems, it may also be useful to include 
both of these. No logic formalism by itself can eliminate the 
need for modellers to make these choices. 

Specifiers of metadata constraints must be explicit about 
the styles they use and ensure that any interpreters (either 
human or automated) use the same interpretation. When 
systems use differing styles, Common Logic’s abstract 
semantics allow specifying a translation between the two, as 
long as interpreters are required to use them. 

5.2 Mechanisms of database access 

The approach and examples described herein combine both 
logical reasoning and active querying of existing databases. 
Since we have focused on the logical reasoning part of this 
process, we do not discuss details related to the active 
querying. This must be addressed in future work, because 
the number of possible information sources is expected to 
be quite large and it is therefore not feasible to assume that 
all of them have been previously identified and integrated 
into a single logical system. They must be found and 
modelled as they are needed. 

A key ingredient to accessing existing databases is the 
ability to provide interpretations for symbols in a formal 
logical model, in the sense of mapping to whatever ‘real 
world’ objects and relationships are under consideration. 
Given these interpretations, it will be possible for queries to 
instantiate information from external sources and perform 
reasoning on these instantiated symbols.  

5.3 Knowledge-based system limitations 

There are other major issues in the approach described that 
should be already clear to the reader who is familiar with 
knowledge-based systems. Indeed, these issues are ever-
present in developing and validating such an approach, as 
summarised in textbooks such as Brachman and Levesque 
(2004). We briefly include them here as reminders. 

Synonyms: The issue of synonyms in naming schemes is well 
known and a number of solutions have been effective. For 
example, the same popular analgesic para-acetylaminophenol 
is called paracetamol internationally but it is referred to as 
acetaminophen in the USA. In the case of pure synonyms, 
where two or more terms refer to the identical concept, it is 
straightforward (though less efficient) to use lists of synonyms. 
Note it is not feasible to always expect a single standard 
nomenclature in a system or even in a single database – there 
are still many information domains where multiple standards 
exist, and sometimes an updated version of a standard produces 
synonyms or requires mappings between terms. In some cases, 
we can envision that using metadata constraints based on 
concepts instead of terms will tend to ‘smooth out’ differences 
in terminology. 

Validation: As in any knowledge-based system, especially 
where human analysts are involved, validating the constraints 
is a crucial part of the process. Internal consistency among a 
set of constraints can be established by various theorem-
proving techniques, at a computational cost that is well 
documented, as summarised in Brachman and Levesque 
(2004) and Huth and Ryan (2004). 
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Cost vs. benefit analysis: The benefit of using metadata 
constraints and relationships has been shown in the previous 
section. Users can make queries on conceptual relationships, 
which are then instantiated by database access based on its 
metadata. But acquiring and validating metadata constraints 
involves time and effort on the part of knowledge modellers 
and domain experts. That cost must be balanced against the 
potential benefits: an ever-present issue in knowledge-based 
systems.  

It may be argued that there are some broad application 
areas for knowledge-intensive systems (national security, 
nuclear materials, epidemiology) where the benefit can be 
considered great enough to balance even substantial costs. 
For such obviously critical systems, however, a collection of 
special-purpose or customised approaches might be just as 
(or more) effective. For the vast majority of databases, cost 
will be an important consideration. 

Granularity: A set of well-known problems arises from data 
that are at distinctly differing levels of detail. For example, 
one database may deal with drugs in terms of their general 
class (e.g. NSAID, analgesic) whereas another may deal 
with drugs in terms of their point of origin, method of 
preparation and manufacturer.  

Knowledge modelling: Finally, a key issue is left un-addressed, 
not just because it is beyond the scope of this work, but also 
because it is centred in the very fact that there are many more 
useful queries that we would want to be automatically 
performed besides the one shown in the extended example. 
Yes, automatically determining potential allergic reactions is a 
valuable thing to do. But an allergy is just one possible reaction 
to a drug – there may be counter indications (conditions under 
which the drug may be dangerous rather than beneficial). There 
may also be situations where a less expensive drug should be 
sought if it can be as effective as the more expensive one. Each 
of these considerations would require different data sources and 
therefore access to different concepts and metadata.  

6 Related work 

The field of metadata and ontology is a wide one, as 
evidenced by the range of topics discussed in this journal. 
We briefly mention other approaches to this problem and 
summarise their relationship to the current work.  

One of the most important modelling representations used 
today is that of UML (Booch et al., 2005), whose associated 
Object Constraint Language (OCL) (Warmer and Kleppe, 
1998) is particularly relevant to this work. OCL would seem a 
reasonable candidate for expressing metadata constraints and 
indeed has been used in some limited ways already (e.g. 
Demuth et al., 2001). The reason for choosing Common Logic 
is both its foundation in formal logic and its solid relationship 
to model theory, both of which are somewhat lacking in OCL 
[see Vaziri and Jackson (2000) for a good overview]. In fact, 
the OMG’s Ontology Definition Metamodel uses Common 
Logic as one of its formalisms. 

 

There are some other widely used ontological 
representations, e.g. RDF (Brickley and Guha, 2004) and 
OWL (Antoniou and van Harmelen, 2004; Smith et al., 
2004), that also provide some useful features related to  
the semantics of constraints with respect to metadata.  
Since these languages are primarily intended for ontology 
interchange, they clearly lack some of the expressiveness 
desired for knowledge representation and reasoning. Indeed, 
one criticism of full first-order logic as a practical 
representation centres on its computational complexity 
which the less expressive formalisms seek to avoid (Baader 
et al., 2004). 

7 Conclusion and future work 

We have shown how Common Logic can be a valuable way 
to represent and reason about metadata, and therefore can be 
used to develop ‘smart’ queries of information sources.  
This paper shows only a first step toward full utilisation of 
CL’s capabilities. As a new standard, Common Logic has 
yet to gain widespread use in the metadata and information 
systems community.  

While CL is certainly not the only representation that 
can support these capabilities, it is clearly a candidate for 
further study; future work will develop automated tool 
support and lead to even more interesting applications. 
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Note 

1 This example is taken from a talk given by Bruce Bargmeyer at 
the 9th Open Forum for Metadata Registries, Kobe, Japan, 2006. 


