
Int. J. Metadata, Semantics and Ontologies, Vol. 4, No. 4, 2009 277

Copyright © 2009 Inderscience Enterprises Ltd.

Representing metadata constraints in
Common Logic

Harry S. Delugach
Computer Science Department,
University of Alabama in Huntsville,
Huntsville, AL 35899, USA
Email: delugach@cs.uah.edu

Abstract: This paper presents a standards-based approach to specifying and reasoning about
metadata constraints based on existing metadata registry standards, existing terminologies and
Common Logic. The paper introduces Common Logic’s basic principles and theory, and applies
it to several examples where we might want to reason about metadata constraints. It is our
expectation that these additional constraints will be developed by the makers of the metadata for
a given data source, and will be included in a metadata registry for exchange with any subscriber
to the metadata.

Keywords: Common Logic; metadata; constraints; standards.

Reference to this paper should be made as follows: Delugach, H.S. (2009) ‘Representing
metadata constraints in Common Logic’, Int. J. Metadata, Semantics and Ontology, Vol. 4,
No. 4, pp.277–286.

Biographical notes: Harry S. Delugach is an Associate Professor of Computer Science at the
University of Alabama in Huntsville. He has over 20 years of teaching and research experience,
as well as in knowledge-based systems, conceptual graphs, Common Logic and formal models
in software engineering. He serves on several conference programme committees, including a
senior role in the International Conference on Conceptual Structures (ICCS). He is the author of
CharGer, an open-source conceptual graph visualisation package. He serves on the USA’s
technical advisory groups to ISO/IEC JTC1’s SC32 subcommittee on data interchange, where he
edited the Common Logic standard (ISO/IEC 24707:2007).

1 Introduction

This paper deals with formal representations and reasoning
about metadata in order to perform ‘smart’ queries of data
repositories. As data users become more and more
sophisticated, they tend to expect more ‘brains’ from their
data collections. ‘I know the data is there, so why can’t the
system tell me what I want to know?’ Two main obstacles
to solving this problem are well known:

• Large numbers of database schemas, whose integration
is typically very difficult.

• Standard approaches are not suitable for information
sources that are not relational databases with available
schemas.

As a result, most recent approaches are centred around some
kind of domain model, as in the SIMS project by Arens et al.
(1996). [For further discussion about the general problem of
intelligent queries, see Arens et al. (1996), Sowa (2000) and
Bertino et al. (2001).] But even these approaches have their
limitations:

• Domain models are still tightly bound to the structure
of the database (or more generally, information source)
for their semantics.

• For most applications, there are different points of view
from which to establish a domain model, some of them
user-based (end-user, novice, expert, auditor etc.) and
others based on different aspects of the domain (temporal,
spatial, economic, terminological etc.). For an early
discussion of viewpoints from a developer’s perspective,
see Delugach (1992, 1996).

This paper presents a standards-based alternative that lies in
between the two kinds of approaches. While it does rely on
database structure to some extent, it relies more heavily on
the metadata of the information source, whose semantics
can be captured by a general domain model using another
standard, namely Common Logic

It is our expectation that these additional constraints will be
developed by the makers of the metadata for a given data
source, and that the constraints (in some dialect of Common
Logic) will be included in a metadata registry for interchange
with any subscriber to the metadata.

1.1 Why do we need metadata?
We usually start out a discussion of metadata by saying that
it is ‘data about data,’ but most practitioners have something
more specific in mind. In general, metadata is anything we
want to say about our data other than its values and types.
This includes such knowledge as:

278 H.S. Delugach

• What are the possible values of a data element with
respect to other concepts?

• What does each of the values mean?

• What concept is being represented by the data?

• How is that concept related to other concepts in the
information source?

We need metadata (whether we call it that or not) in order to
use the data to represent things that matter to us: to understand
phenomena, to better serve customers, to establish organisational
policies, and/or to keep a more accurate record of human
activities. Data does not just exist in a repository – it is stored,
used, and modified as a reflection of whatever objects or
activities it is meant to represent. We do more than just
represent the data; we also want to reason about it, drawing
conclusions about those real world objects during the pursuit of
normal human activity. It is therefore widely understood that
we need the ability to formally reason about data. Metadata is
one important aspect to that ability.

For definitions and terminology about metadata and
conceptual modelling used in this paper, readers are directed
to ISO/IEC 11179 [specifically parts 1, 3 and 4 (ISO/IEC,
2003; ISO/IEC, 2004a; ISO/IEC, 2004b)] and two related
terminology standards (ISO, 2000a; ISO, 2000b).

1.2 What are metadata constraints?
For the purposes of this paper, we consider two kinds of
knowledge commonly considered metadata constraints:

Domain constraint: any formally specified condition that
further limits the values or contents of a data element
beyond its database definition, where definition is
considered in the sense of ISO/IEC (2004a).

Metadata relationship: any formally specified relationship
between metadata items where the relationship is largely
specified in terms of metadata item attributes.

In this paper, we will focus on metadata relationships, and
show how they are represented to semantically enhance
existing metadata and how these relationships can be used
in answering practical queries. In order to follow a
standards-based approach to representing the relationships,
we will use Common Logic ISO/IEC (2007) as our semantic
representation.

The Digital Library Federation identifies three types of
metadata about digital resources; although aimed at libraries,
these categories are relevant for our purposes as well:

descriptive metadata: information describing the intellectual
content of the object; we will call this the semantics of the
objects being described.

administrative metadata: information necessary to allow a
repository to manage the object: this can include information on
how it was obtained, its storage format etc.; we will consider
this part of the pragmatics of the objects being described.

structural metadata: information that ties each object to others
to make up logical units (for example information that relates
individual images of pages from a book to the others that make
up the book itself); this we will also consider part of the
pragmatics of the objects being described.

This paper shows examples of all three types of metadata.
Our purpose is to illustrate the need for reasoning methods
that use metadata constraints, and to show how Common
Logic would represent those constraints.

Note that this paper uses several examples from the
pharmacologic domain. These are not meant to be exhaustive
or complete with respect to a full medical knowledge base and
are intentionally simplified for illustration purposes.

2 Background

This section provides an introduction to Common Logic and
explains why we believe it is a useful representation to
support reasoning with metadata. First we briefly illustrate
some basic limitations of metadata for reasoning, and then
introduce Common Logic which we will later use as a
representation to overcome some of the limitations.

2.1 Limitations of metadata for reasoning

For the approach in this paper, we assume that there already
exists a metadata model that associates specific data elements
with particular concepts. That is, our domain constraints and
metadata relationships will be expressed primarily at the
conceptual domain level (or ‘higher’) for the purposes of
reasoning.

Looking at a data repository’s content using concepts
largely frees data users from the burden of trying to figure out
the details what is in a database; however, reasoning about
those concepts using databases is still done mostly in an ad-hoc
case-by-case manner, through custom programming as in the
following illustration.

Assume we have on hand a database of medications as
in Figure 1(a) with metadata in the form of definitions also
available as English text. Assume we also have a hospital
record of drugs administered with information such as in
Figure 1(b), again with appropriate metadata.

To motivate our illustration, suppose we want an answer to
the query: How many times have analgesics been prescribed in
this particular hospital?

Since the term ‘analgesic’ does not actually appear in
the hospital drug record, a very naïve (and wrong!) answer
would be ‘zero’. A knowledgeable domain specialist will
know that analgesic is a general term comprising all pain
medications; they can easily create a custom query that will
search a drug catalogue for all known pain medications
from a list. But suppose we next want to know how many
time antibiotics have been prescribed in the same hospital?
Another ad-hoc custom query will have to be created, even

 Representing metadata constraints in Common Logic 279

though the structure and process is exactly the same. This is
precisely the kind of duplication that metadata constraints
will help us avoid.

Figure 1 Database examples for metadata illustration

Drug Class Form Dose
Acetaminophen Analgesic Capsule 200 mg
Aminoglycoside Antibiotic Liquid 15 mg

Aspirin Analgesic Pill 250 mg
.

(a) Drug catalogue

Patient Date Medication Dose Approval
A1234 12/01/07 Acetaminophen 400 mg ZYX
A9876 12/01/07 Aspirin 250 mg ABC

.
(b) Hospital drug record

One important strength of metadata is its ability to capture
semantics. Even in simple examples we encounter some of
the difficulties with database semantics that metadata is
meant to address. The data element named Drug represents a
concept that has synonyms; in the case of the National Cancer
Institute (NCI) in the USA, the preferred term is medication,
even though many medical personnel will still use drug to
refer to these objects, even in technical reports. That is why
we speak of ‘concepts’ rather than ‘terms’ or ‘data values’ in
performing reasoning. This is also the attitude taken by
terminologists (see the standards ISO, 2000a; ISO, 2000b) as
well as the metadata registration community (ISO/IEC, 2003;
ISO/IEC, 2004a; ISO/IEC, 2004b).

Also evident is an important limitation of metadata in its
usual sense. In order to answer the above query, some knowledge
missing from the written description is needed – namely, that
both aspirin and acetaminophen are kinds of analgesics and
both should be considered as analgesics. While this seems
‘obvious’ to the reader, it is actually beyond the reasoning
ability of most metadata systems, and hence provides a clear
illustration of where we need more knowledge than represented
by just the metadata.

The form of metadata varies, but this paper assumes
content based on international standards (ISO/IEC, 2003;
ISO/IEC, 2004a; ISO/IEC, 2004b). Such descriptions of
metadata are already in wide use for some significant metadata
repositories, such as that of the NCI (Coronado et al., 2004).

The next subsection shows how a knowledge representation
(in this case, Common Logic) can provide a basis for the
reasoning needed to answer this section’s query (and others).

2.2 Common Logic

In order to fully understand the work described herein, a brief
description of Common Logic is necessary; for the complete
standard see ISO/IEC (2007). Common Logic (CL) is a
standardisation of first-order logic whereby sentences in the
logic can be exchanged between systems while preserving its

semantics. CL’s semantics are those of formal model theory
(Hodges, 1997; Huth and Ryan, 2004), where symbols are
assumed to have a consistent interpretation within any given
model. CL specifies an abstract semantics, to which three
distinct standardised dialects are each semantically equivalent.

The CL standard does not specify how to perform
reasoning; however, since it provides a clear model theoretic
interpretation to any CL formula, reasoning from a CL
representation follows directly from well-known logic rules
and model theory. One key feature of that theory is that symbols
in the representation denote individuals and relationships in
some universe of discourse. A primary metadata standard
(ISO/IEC 11179) recognises the importance of a conceptual
domain relative to particular data values, we can use concepts
in the conceptual domain on which to base our Common
Logic interpretations. For example, the data values for ‘drug’
and ‘medicine’ both are based on the same conceptual domain,
so that they share one universe of discourse and therefore the
symbol ‘acetaminophen’ means the same individual for both
of them.

Strictly speaking, since CL itself has an abstract syntax
and semantics, we would be more accurate expressing our
conceptual models using that abstract syntax. This
sometimes becomes cumbersome, so it is easier for us to
illustrate CL with examples written in one of the concrete
dialects defined in the CL annexes. This paper will therefore
use examples written in the Common Logic Interchange
Format (CLIF) defined in Annex A of ISO/IEC (2007). We
could represent the examples using any one of the three
dialects and mix them up any way we would like – this
would further demonstrate the power and interoperability of
CL, but would probably confuse most readers.

The next section outlines the basic approach for representing
relationships and for creating metadata constraint models at the
conceptual level.

3 Our approach

This section describes the overall approach to both representing
and reasoning about metadata using Common Logic. We
explain how metadata constraints and relationships fit into the
modelling scheme, then we describe our approach for creating
and representing a conceptual model from its corresponding
metadata. We then present some basic notions about reasoning.

3.1 Representing metadata relationships
The scheme in Figure 2 suggests the general structure of
modelling metadata relationships and domain constraints. The
diagram illustrates how we are interested in relationships that
exist beyond the metadata descriptions themselves. The picture
is best understood from the bottom up. At the bottom are
shown the objects in a domain of interest; namely, medicines.
(We will discuss later whether there are other levels or points
of view from which we can consider these drugs.) Information
about these medications is represented by a database as in
Figure 1(a).

280 H.S. Delugach

Figure 2 Knowledge structure for metadata relationships
(see online version for colours)

As we noted in the previous section, while metadata does
provide some semantics to help understand the content along
with the conceptual domain of a database, we require something
beyond metadata that will provide formal semantics at the
level of understanding relationships in the conceptual domain.
Common Logic is one representation for conceptual models
that can provide some of these semantics.

This paper describes an approach in which CL formulae are
included along with metadata to model a conceptual domain.
The metadata itself forms a model whose understanding does
not require any additional knowledge, in the sense that
practitioners with no CL expertise already know how to use
metadata effectively. It can also be argued that practitioners
already ‘know’ some of what we are about to describe; again,
we do not claim to be adding any new knowledge, only that we
are adding existing informal knowledge in a formal way
suitable for automation and formal reasoning.

Common Logic supports all of first-order logic with
quantification. We can therefore describe basic logic reasoning
and deduction rules. We begin illustrating Common Logic by
showing a simple rule. One typical relationship between classes
is the notion of one category being a subtype (specialisation,
subclass, subconcept, etc.) of another.

To express the rule that the subtype relationship is
transitive, we can state the formula in CL.1. This formula
says that if s1 is a subtype of s2 and s2 is a subtype of s3,
then s1 is a subtype of s3.

(forall ((s1 s2 s3) (implies
 (and (subType s1 s2) (subType s2 s3))
 (subType s1 s3))

CL.1

To express the rule that an individual of a given type is also
an individual of any of its supertypes, see CL.2.

(forall ((t1 t2 x) (implies
 (and (type t1 x) (subType t1 t2))
 (type t2 x)))

CL.2

We will use these two formulas later.

3.2 Associating metadata with conceptual models

The above discussion gives some constraints that a conceptual
model would contain, but still lacks content – namely,

specifications of actual instances of things such as types,
objects, individuals etc. That is, we must develop a model of a
database’s conceptual domain and then populate it with objects
of interest. This requires an active system that is able to use
a conceptual model to acquire individual attributes (from a
database or other information source) about each of the objects.
This section describes one practical strategy for populating
such a conceptual model. Some of this work appears in
Delugach (2003), using conceptual graphs, which is one of the
dialects to express CL formulae.

We use a typical source and model such as those in
Figure 3, where Figure 3(a) is the data source and Figure 3(b)
shows the conceptual model (in conceptual graph form, one
of the dialects of CL). This figure is a clear illustration of
the knowledge that must be included in order to support
reasoning: some ‘obvious’ concepts are missing from the
data source, such as the fact that these are people working
for a particular organisation, the fact that each record
represents an employee etc. Most of the relationships among
the data are implicit ones, easily assumed by (human) users
of the source, but un-represented for purposes of automated
retrieval and processing.

Figure 3(c) shows how active agents (here represented
by the actor lookup in a conceptual graph) are used to
populate the conceptual model with instance attributes from
the data source. The populated model is thereby usable for
inference and reasoning.

Figure 3 Data source and conceptual model

Name Position Yrs Experience Degree Major Percent Stock

Karen Jones VP Marketing 18 MBA Marketing 3

Kevin Smith VP Technology 12 MSE Engineering 4

Keith Williams VP Finance 15 BS Accounting 3

 É É É É É É
(a)

(b)

(c)

 Representing metadata constraints in Common Logic 281

Note that the Employee concept has the identifier *ed361.
This is an arbitrary symbol, assigned by the populating
process, in order to denote this particular employee (the one
named ‘Karen Jones’). Each record of the data source will
represent a different employee, each one having its own
arbitrary (but unique) symbol that denotes it for reasoning
purposes. Populating the model for each employee will
therefore result in a new copy of the graph shown in Figure
3(c), but with its distinct attribute values denoted in the
concepts. The populated conceptual model will consist of
many replicated graphs, all structurally identical because the
relationships among the record fields are the same for every
employee.

Such a conceptual model would of course be very large.
A reasonable optimisation would be to defer populating
the model with instances until an instance is needed; e.g., as
the antecedent to an implication. For some general searches,
however, all instances would populate the model. For this
paper such considerations will be avoided; we assume that
an automated agent will have been developed with sufficient
optimisation strategies to make this approach feasible.

There may be additional constraints to add to the
conceptual model; e.g., relationships between a manager
and the members of their departments, team relationships
among groups of employees, and so on. If these happen to
be contained in other data sources (a plausible assumption)
then a similar procedure can be used to further populate the
model with those occurrences.

There is one last point to make. For practical systems, we
are not really interested in the record of this employee – we
are interested in the actual employee, whose information is
captured in the data source. Associating the symbol *ed361
with this actual employee is of key importance for practical
systems, but is beyond the scope of the formal modelling
process.

This section described how conceptual models can be
created which capture knowledge about objects of interest,
as well as their semantics. Once this is accomplished, we
have the capability to reason about these models, as shown
in the rest of the paper.

3.3 Reasoning with Common Logic
The CL standard itself is neutral with respect to reasoning, in
the sense that it does not require or describe any particular
reasoning strategy or algorithms. This is in keeping with
its primary purpose which is to serve as an interchange
representation for logical formulae. It is up to knowledge
users how they intend to reason with them, of course, while
still requiring that they adhere to the model theoretic
foundation of the representations.

As a result, reasoning with CL is usually performed with
conventional first-order logic theorem proving rules which are
obviously not in the scope of this paper; see Huth and Ryan
(2004), Hayes (1985), Kalish et al. (1980), Israel (1983), Sowa
(1993) for some current techniques, and Roberts (1973),
Whitehead and Russell (1927) for some historical background.

One novel feature that is added to logic representations
is a facility for interacting with agents. This feature is
included in conceptual graphs (Sowa, 1984), the basis for

Annex B of ISO/IEC (2007), through the use of actor nodes
in an active knowledge system as described in Delugach
(2003, 2006, 2008). These can provide ‘triggers’ so that
certain real-world activities can invoke automated reasoning
and retrieval processes within a knowledge system. The
extended example in Section 0 gives an illustration of how
this works in a practical system.

4 Examples

The purpose of this section (and the main purpose of the
paper) is to illustrate the usefulness of a formal semantic
representation for metadata constraints. It is our aim that the
examples clearly show the kind of knowledge that we humans
would like to automatically apply in solving problems and
understanding human activity.

The reasoning shown in these illustrations is not esoteric
or complicated. On the contrary, these simple examples are
intended to show that, with respect to existing metadata
representations, our current reasoning ability is quite
limited; even apparently simple deductions are beyond our
current capabilities. Common Logic is one representation
that makes a step toward supporting such inferences.

We will show some Common Logic descriptions of
the metadata required for these examples, but the main point
is that they all require a knowledge representation that
captures semantics. We do not argue that Common Logic is
the only way to accomplish this, just that it is sufficiently
expressive for these purposes.

4.1 Generalisation from an ontology

The previous sections’ examples already illustrated common
way of organising information by assigning a type to a
given object and then arrange the types in a hierarchy. In the
model of metadata relationships for medications, we would
also include CL.3.

(subType acetaminophen analgesic)

(subType aspirin analgesic)

(subType analgesic medication)
CL.3

Note that in one sense, the example is a metadata
relationship involving descriptive metadata, in the sense
that we are talking about a shared meaning between the
concepts acetaminophen and aspirin; namely, that they
share a common super-concept analgesic. It could also be
considered structural metadata, since it involves the
generalisation hierarchy structure.

Common Logic does not support types directly, but there
are two common conventions; unfortunately, modellers must
choose one of them. One is simply to use monadic predicates;
e.g. (aspirin d1) associates the type aspirin with the name
d1. Another way is to explicitly denote the type relationship
by saying (type aspirin d1). Either of these could be
used to denote that d1’s type is aspirin. Since CL’s semantics
imply that d1 is a symbol for some individual in the domain
being described, it would only be useful if it also appeared
somewhere else in a model.

282 H.S. Delugach

To model the hospital drug records from Figure 1(a), we
would specify CL.4.

(type drug-administration d1)

(recipient d1 A1234) (type patient A1234)

(date-administered d1 12/01/77)

(type aspirin d1) (dose d1 (400 mg))

(type drug-administration d2)

(recipient d2 A1234) (type patient A9876)

(date-administered d2 12/01/77)

(type acetaminophen d2) (dose d2 (250 mg))

CL.4

Note that each instance of administering a drug has its own
symbol d1, d2 and so on. This is how data must be specified
in logic terms, because each time a drug is administered and
a record produced, there is an identifiable individual that we
must denote.

Another way to use an ontology for reasoning with
metadata is to aggregate individual concepts based on their
supertypes. A good example is to consider a doctor whose
patient has an infection, and an antibiotic is indicated.
A database will have data about different drugs and their
properties; the metadata will reflect them in a data value-
independent way. The doctor may be familiar with some of
the individual drugs, but wants to choose the best one for
the patient. Metadata ontologies allow a querying system to
gather all possible subtypes of antibiotic drug and present
their properties to the doctor for further decision making.

4.2 Constraints using structural metadata

CL can also express constraints among metadata that
represent knowledge that lies beyond the actual content; in
this case, we show how the origin of the data affects how
we might reason about it.

Suppose we have the model CL.5 from a database,
where sample s1 has assigned two different values from
two different chemical tests.

(sample-pH s1

(assign test-12-pH

 (value 6 (‘5 Jul 2007’ Harry litmus))

(assign test-12-pH

 (value 5.5 (‘7 Jul 2007’ Jane ph-meter))

)

CL.5

In registering metadata for other users, we would like to
specify our own axioms for what value to use when there
may be more than one assigned value. CL.6 shows how
such an axiom might be framed in CL semantics:

(forall (x val a1 a2 a3) (implies

(assign a1 (value val (a2 a3 ph-meter)))

 val))
CL.6

The above axiom states that if any value’s source is a
pH meter test, then that is the value to be used. We could
also provide rules that tell what do if you only have the
litmus test.

4.3 An extended example
This section describes a more complete example of the
kind of powerful inferences that can be supported through
a knowledge-based representation of concepts to support
reasoning with metadata.1 The domain of the example is a
simple one, yet it demonstrates the amount of knowledge that
must be brought to bear in using data from multiple data
sources, and therefore shows the power of metadata constraints
so that we can perform these kinds of inferences automatically.

The example situation is where a doctor prescribes some
medication to a patient. Will the patient have an allergic
reaction? In most real-world environments, this question is
answered in an ad-hoc way, by comparing a patient’s stated
medical history with a list of drugs. Using automated
reasoning with semantically based metadata, powerful queries
can be automatically constructed and answered.

The example scenario assumes the existence of an
automated reasoning agent that will traverse the models
making inferences and satisfying (or not) logical assertions
along the way. The initial logic rule for the agent’s reasoning
is shown in CL.7, so the agent attempts to satisfy the
consequent (allergic d person). The rule just says that
if there’s a prescription for a medication and the recipient of
the prescription has an adverse reaction to the drug, then the
person is allergic.

(forall (p person d) (implies

 ((type prescription p) and

 (object p d) and

 (type medication d) and

 (recipient p person) and

 (adverse-reaction d person))

 (allergic d person)

))

CL.7

The function adverse-reaction (specified in CL.11 below)
is obtained from metadata related to medical terminology. All
of the specifications in this section are shown as they would be
obtained either automatically from the metadata or else
provided by the information source providers with the metadata.
These would already have been developed and would be
available to an automated system before the scenario begins. In
the interest of clarity, however, each model will be introduced
at the point it would be accessed.

The scenario begins with a prescription:

John A. Doe A0123456 500 mg Prevpac bid

One way to describe the prescription is by the conceptual
model in CL.8, which has been populated as described
above in Section 0.

(type prescription p1)

(recipient p1 person1)

(type patient person1)

(name person1 ‘John A. Doe’)

(patientID person1 A0123456)

(object p1 d1)

(type Prevpac d1) (dose d1 (500 mg))

(frequency d1 bid)

CL.8

 Representing metadata constraints in Common Logic 283

The model in CL.8 denotes the following. This particular
instance of a prescription is denoted by the symbol p1. The
recipient of the prescription is denoted by the symbol
person1. The recipient is of type patient, has the name
‘John A. Doe’ and the patient ID A0123456. The object (i.e.
the thing being prescribed) in p1 has the symbol d1 and is
of type Prevpac; its dose is 500 mg and frequency is ‘bid’
(twice daily).

Since not all prescriptions are for drugs (e.g. some could
also be for a medical device), the triggered agent first looks
for what type prescription this is (‘Prevpac’), and then
consults a drug ontology (partially shown in CL.9) to
determine its type. Additional information beyond this
example is shown to remind the reader that such ontologies
contain a rich and large set of knowledge.

(subType acetaminophen analgesic)
(subType aspirin analgesic)
(subType analgesic medication)
(subType amoxicillin penicillin-antibiotic)
(subType penicillin-antibiotic antibiotic)
(subtype antibiotic medication)
(subType nafcillin penicillin-antibiotic)
(subType clarithromycin
 macrolide-antibiotic)
(subType macrolide-antibiotic antibiotic)
(subType macrolide-antibiotic
 protein-synthesis-inhibitor)
(subType protein-synthesis-inhibitor
 medication)
(subType lansoprazole proton-pump-inhibitor)
(subType proton-pump-inhibitor
 anti-ulcer-agent)
(subType anti-ulcer-agent adjuvant)
(subType adjuvant medication)

CL.9

The agent first tests the logical query (type medication
Prevpac) for its truth or falsity with respect to the existing
conceptual models. Note that Prevpac does not appear
anywhere in CL.9, since these are generic-name drugs, and
it happens that Prevpac is a trade name. The automated
agent looks up Prevpac in a composition list, as shown in
CL.10. This model would be generated automatically from
the metadata of a database containing drug components.

(part Amoxil amoxicillin)

(part Co-amoxiclav

 amoxicillin Clavulanic-acid)

(part Prevpac

 amoxicillin clarithromycin lansoprazole)

(part Tylenol acetaminophen)

(part Panadol paracetamol)

CL.10

Discovering that Prevpac is actually a combination of three
things, amoxicillin, clarithromycin and lansoprazole (but
still not identified as medications), the agent applies the type
rule shown in CL.2 to each of the components. Each can
therefore be identified as a medication from CL.9, so the
agent now continues its reasoning steps from CL.7 to
determine whether the particular patient (denoted as p1
earlier) is allergic to the particular drug d1.

Satisfying the (sub)formula (adverse-reaction d
person) in CL.7 is the crux of this example. For our
purposes, we will restrict our modelling to a physician’s
explicit diagnosis of an adverse reaction, so the reasoning
will focus mostly on the drug part of the formula.

Assuming that the patient’s records are accessible
through a standards-compliant information source, the
automated agent may make use of standard codes, such as
ICD-9-CM, which is a recent version of the International
Classification of Diseases, used by the World Health
Organization (WHO) for its data collection and reporting
functions. Many hospitals and medical practitioners use the
codes in their everyday recording of patient information.

We will assume that this patient’s records are available,
including the ICD codes. The agent has been given a simple
model for determining past adverse reactions: If the patient
record contains a diagnosis of ICD-9-CM code 995.2, this
denotes ‘unspecified adverse effect of drug, medicinal and
biologic substances’. Note that this code does not specifically
mean ‘allergy’ – any adverse reaction will be included under
this code by the reasoning agent.

The SNOMED terminology for disorders has a concept
‘Allergic reaction to drug’ (code 416093006) which is
mapped to the ICD as 995.29, meaning that it is a subtype
of the ‘unspecified adverse effect’. This concept has the
relationship ‘causative agent’ to a drug or medication.

Such codes must be provided manually (hard-coded) by a
domain specialist when the agent was originally specified;
having the agent determine it through reasoning over all the
terms in the ICD is beyond the scope of the current work, but
is part of our long-term goal. Since the adverse reactions are
concepts, a richer domain model of medication and patient
behaviour could provide real meaning to ‘adverse reaction’,
but for the present, it is simply one kind of response to a
causative agent. In fact, substituting the code for some other
response would allow the same agent to determine whether a
given medication would cause that other response.

CL.11 shows the basis for determining if there is an
adverse reaction and what caused it. This is a domain
constraint in the sense described at the beginning of the
paper, because it formally specifies what is an adverse
reaction for the agent’s formula in CL.7.

(forall (drug prev patient) (implies

 ((record patient r) and

 (part r (diagnosis d 995.2)) and

 (part d (causative-agent prev)) and

 (similar prev drug))

 (adverse-reaction drug patient)

))

CL.11

The formula in CL.11 depends on a function named ‘similar’.
Research on similarity measures is abundant (e.g. Delugach,
1993; Landauer et al., 1998; Maedche and Staab, 2002).
Particular strategies for measuring similarity among metadata
concepts are still under investigation, but we could start by
adopting a simple measure based on the subtype hierarchy:
the closer together are the two drugs in the ontology (i.e. the
fewer subtype relationships needing to be traversed between
them), the more similar they are; if the similarity is below

284 H.S. Delugach

some threshold, the function will return true. This is
obviously simplistic when dealing with a large number of
drugs, but for the moment we will assume that (similar
nafcillin amoxicillin) returns true, since both drugs
are ontological ‘siblings’ with respect to penicillin-antibiotic,
as can be inferred by the agent from CL.9.

(subType nafcillin penicillin-antibiotic)

(subType amoxicillin penicillin-antibiotic)

Note that this model specifies that any drug related to the one
which caused the previous reaction will also cause the same
reaction. That is, if someone had a reaction to nafcillin, then
it is assumed there would be a reaction to amoxicillin.
In practice, a richer conceptual model would be needed to
more accurately determine this, if indeed such determination
can be made without further tests or additional patient
information.

Another simplification of the example’s model is that
the composition model does not specify how much of each
ingredient makes up the whole. The agent therefore does not
perform any reasoning about the amount of the dose or the
form of the drug, so that a 1 mg portion of amoxicillin is
considered the same as a 1000 mg portion.

This extended example shows how an automated
reasoning agent derives the results we seek, by proving
(or not) formulae specified by metadata constraints. A failure
to prove the formula means that (within the given information
of course) the condition does not hold.

5 Discussion

This section discusses some of the limitations and problems
identified with the formal logic and semantics approach.

5.1 Declarative style issues

Aside from the use of multiple dialects, there are a variety
of ways in which the same logical formula can be
represented, each with exactly the same expressive power.
For example, to show that a door is part of a house, we
could write either of these (as well as others):

(part door house)

(part house door)

Which one to choose is a matter of convention. Common
Logic does not prescribe any particular order, and in fact
one of the strengths of the standard is that specifiers can use
whatever style is convenient. Of course, interpreting the first
one while assuming the style of the second one (i.e.
interpreting it to mean that a house is part of a door) is
clearly an error.

Declarative style can mean other things as well, e.g. we
can either say (subtype a b) or (supertype b a). For
efficiency in some systems, it may also be useful to include
both of these. No logic formalism by itself can eliminate the
need for modellers to make these choices.

Specifiers of metadata constraints must be explicit about
the styles they use and ensure that any interpreters (either
human or automated) use the same interpretation. When
systems use differing styles, Common Logic’s abstract
semantics allow specifying a translation between the two, as
long as interpreters are required to use them.

5.2 Mechanisms of database access

The approach and examples described herein combine both
logical reasoning and active querying of existing databases.
Since we have focused on the logical reasoning part of this
process, we do not discuss details related to the active
querying. This must be addressed in future work, because
the number of possible information sources is expected to
be quite large and it is therefore not feasible to assume that
all of them have been previously identified and integrated
into a single logical system. They must be found and
modelled as they are needed.

A key ingredient to accessing existing databases is the
ability to provide interpretations for symbols in a formal
logical model, in the sense of mapping to whatever ‘real
world’ objects and relationships are under consideration.
Given these interpretations, it will be possible for queries to
instantiate information from external sources and perform
reasoning on these instantiated symbols.

5.3 Knowledge-based system limitations

There are other major issues in the approach described that
should be already clear to the reader who is familiar with
knowledge-based systems. Indeed, these issues are ever-
present in developing and validating such an approach, as
summarised in textbooks such as Brachman and Levesque
(2004). We briefly include them here as reminders.

Synonyms: The issue of synonyms in naming schemes is well
known and a number of solutions have been effective. For
example, the same popular analgesic para-acetylaminophenol
is called paracetamol internationally but it is referred to as
acetaminophen in the USA. In the case of pure synonyms,
where two or more terms refer to the identical concept, it is
straightforward (though less efficient) to use lists of synonyms.
Note it is not feasible to always expect a single standard
nomenclature in a system or even in a single database – there
are still many information domains where multiple standards
exist, and sometimes an updated version of a standard produces
synonyms or requires mappings between terms. In some cases,
we can envision that using metadata constraints based on
concepts instead of terms will tend to ‘smooth out’ differences
in terminology.

Validation: As in any knowledge-based system, especially
where human analysts are involved, validating the constraints
is a crucial part of the process. Internal consistency among a
set of constraints can be established by various theorem-
proving techniques, at a computational cost that is well
documented, as summarised in Brachman and Levesque
(2004) and Huth and Ryan (2004).

 Representing metadata constraints in Common Logic 285

Cost vs. benefit analysis: The benefit of using metadata
constraints and relationships has been shown in the previous
section. Users can make queries on conceptual relationships,
which are then instantiated by database access based on its
metadata. But acquiring and validating metadata constraints
involves time and effort on the part of knowledge modellers
and domain experts. That cost must be balanced against the
potential benefits: an ever-present issue in knowledge-based
systems.

It may be argued that there are some broad application
areas for knowledge-intensive systems (national security,
nuclear materials, epidemiology) where the benefit can be
considered great enough to balance even substantial costs.
For such obviously critical systems, however, a collection of
special-purpose or customised approaches might be just as
(or more) effective. For the vast majority of databases, cost
will be an important consideration.

Granularity: A set of well-known problems arises from data
that are at distinctly differing levels of detail. For example,
one database may deal with drugs in terms of their general
class (e.g. NSAID, analgesic) whereas another may deal
with drugs in terms of their point of origin, method of
preparation and manufacturer.

Knowledge modelling: Finally, a key issue is left un-addressed,
not just because it is beyond the scope of this work, but also
because it is centred in the very fact that there are many more
useful queries that we would want to be automatically
performed besides the one shown in the extended example.
Yes, automatically determining potential allergic reactions is a
valuable thing to do. But an allergy is just one possible reaction
to a drug – there may be counter indications (conditions under
which the drug may be dangerous rather than beneficial). There
may also be situations where a less expensive drug should be
sought if it can be as effective as the more expensive one. Each
of these considerations would require different data sources and
therefore access to different concepts and metadata.

6 Related work

The field of metadata and ontology is a wide one, as
evidenced by the range of topics discussed in this journal.
We briefly mention other approaches to this problem and
summarise their relationship to the current work.

One of the most important modelling representations used
today is that of UML (Booch et al., 2005), whose associated
Object Constraint Language (OCL) (Warmer and Kleppe,
1998) is particularly relevant to this work. OCL would seem a
reasonable candidate for expressing metadata constraints and
indeed has been used in some limited ways already (e.g.
Demuth et al., 2001). The reason for choosing Common Logic
is both its foundation in formal logic and its solid relationship
to model theory, both of which are somewhat lacking in OCL
[see Vaziri and Jackson (2000) for a good overview]. In fact,
the OMG’s Ontology Definition Metamodel uses Common
Logic as one of its formalisms.

There are some other widely used ontological
representations, e.g. RDF (Brickley and Guha, 2004) and
OWL (Antoniou and van Harmelen, 2004; Smith et al.,
2004), that also provide some useful features related to
the semantics of constraints with respect to metadata.
Since these languages are primarily intended for ontology
interchange, they clearly lack some of the expressiveness
desired for knowledge representation and reasoning. Indeed,
one criticism of full first-order logic as a practical
representation centres on its computational complexity
which the less expressive formalisms seek to avoid (Baader
et al., 2004).

7 Conclusion and future work

We have shown how Common Logic can be a valuable way
to represent and reason about metadata, and therefore can be
used to develop ‘smart’ queries of information sources.
This paper shows only a first step toward full utilisation of
CL’s capabilities. As a new standard, Common Logic has
yet to gain widespread use in the metadata and information
systems community.

While CL is certainly not the only representation that
can support these capabilities, it is clearly a candidate for
further study; future work will develop automated tool
support and lead to even more interesting applications.

Acknowledgements

Members of ISO/IEC/SC32/WG2 have been very helpful in
understanding these ideas. Bruce Bargmeyer and Kevin Keck
helped in relating Common Logic to the existing metadata
standards. Denise Warzel clearly explained the purpose of the
NCI terminology browsers and how to use them.

References

Antoniou, G. and van Harmelen, F. (2004) ‘Web Ontology
Language: OWL’, in Staab, S. and Studer, R. (Eds):
Handbook on Ontologies, Springer, Berlin, pp.67–92.

Arens, Y., Knoblock, C.A. and Shen, W-M. (1996) ‘Query
reformulation for dynamic information integration’, Journal
of Intelligent Information Systems, Vol. 6, pp.99–130.

Baader, F., Horrocks, I. and Sattler, U. (2004) ‘Description logics’,
in Staab, S. and Studer, R. (Eds): Handbook on Ontologies,
Springer, Berlin, pp.3–28.

Bertino, E., Zarri, G.P. and Catania, B. (2001) Intelligent Database
Systems, Addison-Wesley.

Booch, G., Rumbaugh, J. and Jacobsen, I. (2005) Unified
Modeling Language User Guide (2/e), Addison-Wesley,
Reading, MA USA.

Brachman, R.J. and Levesque, H.J. (2004) Knowledge
Representation and Reasoning, Morgan Kaufmann,
San Francisco.

286 H.S. Delugach

Brickley, D. and Guha, R.V. (2004) ‘RDF Vocabulary Description
Language 1.0: RDF Schema’, 10 February 2004.

Common Logic Standard portal – http://common-logic.org
Coronado, S.D., Haber, M.W., Sioutos, N., Tuttle, M.S. and

Wright, L.W. (2004) ‘NCI thesaurus: using science-based
terminology to integrate cancer research results’, in Fieschi,
M., Coiera, E. and Li, Y-C.J. (Eds): Proceedings of 11th
World Congress on Medical Informatics, IOS Press, San
Francisco, CA, USA, pp.33–37.

Delugach, H.S. (1992) ‘Analyzing multiple views of software
requirements’, in Eklund, P., Nagle, T., Nagle, J. and Gerholz,
L. (Eds): Conceptual Structures: Current Research and
Practice, Ellis Horwood, pp.391–410.

Delugach, H.S. (1993) ‘An exploration into semantic distance’, in
Pfeiffer, H.D. and Nagle, T.E. (Eds): Conceptual Structures:
Theory and Implementation, Vol. 754, Springer-Verlag,
pp.119–124.

Delugach, H.S. (1996) ‘An approach to conceptual feedback in
multiple viewed software requirements modeling’, Viewpoints
96: International Workshop on Multiple Perspectives in
Software Development, San Francisco, pp.242–246.

Delugach, H.S. (2003) ‘Towards building active knowledge
systems with conceptual graphs’, in de Moor, A., Lex, W. and
Ganter, B. (Eds): Conceptual Structures for Knowledge
Creation and Communication: 11th International Conference
on Conceptual Structures (ICCS 2003), Vol. LNAI 2746,
Springer-Verlag, Berlin, pp.296–308.

Delugach, H.S. (2006) ‘Active knowledge systems for the
pragmatic web’, in Schoop, M., de Moor, A. and Dietz, J.
(Eds): Pragmatic Web: Proceedings of the First International
Conference on the Pragmatic Web, Vol. P-39, Gesellschaft
für Informatik, Stuttgart, Germany, pp.67–80.

Delugach, H.S. (2008) ‘Active knowledge systems using
conceptual graphs’, in Hitzler, P. and Schärfe, H. (Eds):
Conceptual Structures in Practice, Chapman and Hall/CRC
Press.

Demuth, B., Hussmann, H. and Loecher, S. (2001) ‘OCL as a
specification language for business rules in database
applications’, in 4th International Conference on the Unified
Modeling Language: Modeling Languages, Concepts and
Tools, pp.104–117.

Digital Library Federation – http://www.diglib.org/
dlfhomepage.htm

Hayes, P.J. (1985) ‘The logic of frames’, in Brachman, R.J. and
Levesque, H.J. (Eds): Readings in Knowledge Representation,
Morgan Kaufmann, Los Altos, CA.

Hodges, W. (1997) A Shorter Model Theory, Cambridge
University Press, Cambridge, UK.

Huth, M. and Ryan, M. (2004) Logic in Computer Science:
Modelling and Reasoning About Systems, Cambridge
University Press, Cambridge, UK.

ISO (2000a) ‘ISO 704:2000 – Terminology work – Principles and
methods’, International Organization for Standardization,
Geneva, Switzerland.

ISO (2000b) ‘ISO 1087-1:2000 – Terminology work –
Vocabulary. Part 1: Theory and application’, International
Organization for Standardization, Geneva, Switzerland.

ISO/IEC (2003) ‘ISO/IEC 11179-3:2004 – Information technology
– Metadata registries (MDR) – Part 3: Registry metamodel
and basic attributes’, International Organization for
Standardization, Geneva, Switzerland.

ISO/IEC (2004a) ‘ISO/IEC 11179-4:2004 – Information
technology – Metadata registries (MDR) – Part 4:
Formulation of data definitions’, International Organization
for Standardization, Geneva, Switzerland.

ISO/IEC (2004b) ‘ISO/IEC 11179-1:2004 – Information technology –
Metadata registries (MDR) – Part 1: Framework’, International
Organization for Standardization, Geneva, Switzerland.

ISO/IEC (2007) ‘ISO/IEC 24707:2007 – Information technology –
Common Logic (CL) – A framework for a family of logic-
based languages’, International Organization for
Standardization, Geneva, Switzerland.

Israel, D.J. (1983) ‘The role of logic in knowledge representation’,
Computer, Vol. 16, pp.37–41.

Kalish, D., Montague, R. and Mar, G. (1980) Logic: Techniques of
Formal Reasoning, Harcourt Brace Jovanovich, New York.

Landauer, T.K., Foltz, P.W. and Laham, D. (1998) ‘Introduction to
latent semantic analysis’, Discourse Processes, Vol. 25,
pp.259–284.

Maedche, A. and Staab, S. (2002) ‘Measuring similarity between
ontologies’, in Proceedings of European Conference on
Knowledge Acquisition and Management – EKAW-2002,
Springer, Madrid, Spain, pp.251–263.

National Cancer Institute Terminology Browser – http://nciterms.nci.
nih.gov/NCIBrowser/Dictionary.do

OMG Ontology Definition Metamodel – http://www.omg.org/
technology/documents/modeling_spec_catalog.htm

Roberts, D.D. (1973) The Existential Graphs of Charles S. Peirce,
Mouton, The Hague.

Sowa, J.F. (1984) Conceptual Structures: Information Processing
in Mind and Machine, Addison-Wesley, Reading, Mass.

Sowa, J.F. (1993) ‘Relating diagrams to logic’, in Sowa, J.F. (Ed.):
Conceptual Graphs for Knowledge Representation, Springer-
Verlag, Berlin, pp.1–35.

Sowa, J.F. (2000) Knowledge Representation: Logical,
Philosophical, and Computational Foundations, Brooks/Cole.

Smith, M.K., Welty, C. and McGuinness, D.L. (2004) ‘OWL Web
Ontology Language Guide’, Vol. 2006, W3C.

Vaziri, M. and Jackson, D. (2000) ‘Some shortcomings of OCL,
the object constraint language of UML’, in Proceedings of the
Technology of Object-Oriented Languages and Systems
(TOOLS 34'00), IEEE Computer Society.

Warmer, J. and Kleppe, A. (1998) Object Constraint Language:
Precise Modeling with UML, Addison-Wesley.

Whitehead, A.N. and Russell, B. (1927) Principia Mathematica,
2nd ed., Cambridge University Press, Cambridge, UK.

Note

1 This example is taken from a talk given by Bruce Bargmeyer at
the 9th Open Forum for Metadata Registries, Kobe, Japan, 2006.

