
ELSEVIER

Computers & Securiry Vol. 16, No. 8, pp. 687-708, 1997
0 1997 Else&r Science Limited

All rights reserved. Printed in Great Britain
0167-4048197 $17.00

Protecting
databases from
inference
attacks*
Thomas H. Hinke, Harry S.
Delugach and Randall F? Wolf
Computer Science Department, The University ofAlabama in Huntsville,
Huntsville, AL 35899, Phone: (205) 895-6455 FAX: (205) 895-
6239, E-mail: thinke@xuah.edu, delugach@xuah.edu

This paper presents a model of database inference and a taxonomy

of inference detection approaches.The Merlin inference detection

system is presented as an example of an automated inference anal-

ysis tool that can assess inference vulnerabilities using the schema

of a relational database. A manual inference penetration approach

is then offered as a means of detecting inferences that involve

instances of data or characteristics of groups of instances. These

two approaches are offered as practical approaches that can be

applied today to address the database inference problem.The final

section discusses future directions in database inference research.

Keywords: computer security, database inference, database security,

inference detection tools, inference detection analysis

1. Introduction
A database holds a great amount of data that is critical
for the operation of enterprises, be they commercial
or government.This data, while providing crucial sup-
port for the mission of the enterprise, can also provide
a source of sensitive information that is useful for
those who are competitors or adversaries of the enter-

l This work was supported under Maryland Procurement 05ce Contract
No. h4DA904-94-C-6120.

prise. Using available secure database management sys-
tems, an enterprise has the ability to provide various
degrees of protection for the data.This protection can
range from access lists to label-based protection, where
security labels are assigned to the data based on its sen-
sitivity. Access to this data is mediated based on the
privileges of those who attempt to access it.

Unfortunately, properly protecting individual portions
of the database may not provide complete protection.
A competitor or adversary may be able to use data that
in isolation appears to be properly protected to infer
data that is highly sensitive.The problem for the enter-
prise is to discover these inferences, and then to take
necessary countermeasures to close them.

The general solution to the inference problem is dif-
ficult, since an adversary can apply a deep body of
knowledge in performing an inference attack. Any
adversary must be assumed to possess an extensive
educational background, as well as familiarity with
the specific domain of knowledge of his intended
attack. AU of this knowledge can be applied in per-
forming the inference attack. The implication of this

687

TH. Hinke et al. / Protecting Databases From Inference Attacks

is that the protectors of the database must also apply
this deep knowledge to their inference analysis in
order to discover the vulnerabilities of their database
before they are discovered by their adversary. While
work is proceeding to address database inference
detection in light of the deep knowledge required
[l], the results of this work are still in the research
phase. However, the fact that deep knowledge is
required to address the general inference problem
fully does not mean that there are no practical tech-
niques available today to apply to important seg-
ments of the problem. It is the objective of this paper
to describe these practical techniques.

In order to provide both a context for this discussion
and a means to help those with responsibility for
database protection to understand some of the subtle
implications of the inference problem, Section 2 of
this paper will present a model of the inference prob-
lem that has been developed as part of the AERIE
inference project at the University of Alabama in
Huntsville, USA.This model provides a useful means
of visualizing the various data vulnerabilities associ-
ated with the inference problem, as well as terminol-
ogy for addressing methods for countering the prob-
lem. Section 3 will then consider a framework for
categorizing the techniques that can be applied to
the design of databases in order to reduce their vul-
nerability to inference attack. Section 4 will discuss
current state of the art automated inference tech-
niques, and Section 5 will present manual techniques
that can be applied. Finally, Section 6 will contain a
brief discussion of future techniques that are still in
the research stage.

2. Characterization of inference
Vulnerabilities in Databases
The AERIE inference research project at the
University of Alabama in Huntsville has developed a
model of the inference problem that is called AERIE
(Activities, Entity, Relationships Inference Effects).
This model assumes that an adversary desires certain
data that is the target of his or her inference attack.
This target, which is referred to as the sensitive target,
can be expressed in terms of the constructs of the
AERIE model. This model augments the entity-rela-

tionship (ER-model) developed by Chen that is com-
monly used for database modelling [2].

The AERIE model characterizes possible inference
targets in terms of entities, activities and various rela-
tionships[3]. A n entity, as in the ER-model, is
some thing that has existence and can be distin-
guished from other things. Entities are the nouns
in the AERIE model. Activities are the verbs and
they indicate actions. Relationships are used to rep-
resent various associations between entities and
activities. Using the model to represent various pos-
sible inference targets, we have the following types of
targets:

Entity Materialization: this represents an inference
that detects the existence of an entity or some charac-
teristics of an entity. An example of this type of infer-
ence would be to infer that the entity growing season
is underway within a farming community based on
the nature of items that show up in a point-of-sale
database, such as fertilizer, seed or pesticides.

Activity Materialization: this represents an infer-
ence that detects the existence of an activity. For
example, one can infer that a winter mountain climb-
ing expedition is about ready to occur based on the
ordering of relevant equipment, such as an ice axe,
cross country skis or low-temperature sleeping bags.

Entity-Entity Relationship: this represents an
inference of a relationship between two entities. An
example is the ability to infer the companies that are
supporting a very sensitive project, based, for example,
on an employee for the company attending a meeting
for the project.

Activity-Activity Relationship: this represents a
sensitive relationship between activities. For example,
the fact that the activity of cotton picking has
occurred can be deduced by the fact that a cotton
gin’s database shows daily ginning activity.

Entity-Activity Relationship: this represents an
inference that detects a sensitive relationship between
an entity and an activity. An example of this could be
inferring that a company was adopting a new process

Computers & Security, Vol. 16, No. 8

for the manufacture of computer chips based on its
ordering of particular types of equipment.

Relationship-Relationship Relationship: in this
type of inference, it is the relationship between rela-
tionships that is being inferred. For example, in a
classroom setting, the posting of student grades along
with a student number would be a relationship. A
sorted list of student names would also be a relation-
ship. A sensitive relationship between these two lists
could be knowledge that the same sorting algorithm
was used in both cases. With this information one
could easily deduce the grade associated with each
student’s name, which is highly sensitive. Another
type of relationship-relationship target is the ability
to infer some rule (a type of relationship) that has
been applied to the data. For example, by scanning
the list of ages for members of a retirement commu-
nity one could infer a rule that each member must
be at least 55 years old.

These various types of inference targets represent enti-
ties, activities and relationships that occur in the real
world. Any database, however, constitutes a
microworld. This microworld selectively represents a
portion of the real world that is relevant to the enter-
prise that maintains the database. Within the
microworld of the database, sensitive targets that are to
be protected by an enterprise are represented by what
we call signatures.The signature represents the manifes-
tation of the real world inference target within the
microworld of the database. For example, the orders
for the mountain climbing expedition represent the
signatures of the expedition in the database of the
equipment retailer.

The relationship between the inference signature and
target can be understood in terms of a model developed
by Morgenstern [4, 51. This model uses an inference
function - INFER - which is defined in terms of the
uncertainty, H(y), about the value of some information
Y, and the relative uncertainty, II_,&), about Y, given
knowledge of X. Ha is equal to 0 if X fully discloses
the exact value of Y. This means that the uncertainty
of Y, given X, is 0; thus there is no uncertainty If X dis-
closes no information about Y, then Hfl) is equal to
H(Y).The infer function is defined as:

= 0 othenvise

In this case, E is some minimum threshold, below
which X supplies what can be considered an insignif-
icant amount of information about Y.

In this model, the inference fimction INFER (X + y)
has a value related to how much information X dis-
closes about Y. INFER has a value of 0 if X discloses
no information about Y. It has the value of 1 if X dis-
closes the exact value of Y. In terms of the signatures
within the database and the sensitive targets that are to
be protected, it would be desirable if INFER (signa-
ture + target) = 0 for all signatures that are contained
within the database.

Each of the various types of sensitive targets expressed
in the AERIE model has a signature.The entity signature
(E-sig) is a signature in the database that reflects the exis-
tence and characteristics of an entity that exists within
the real world. For example, as noted for the entity mate-
rialization example, the growing season represents the
real world target.The database itself may not contain any
explicit information about the growing season. However,
it may contain an E-sig of the growing season, which
consists of records of the sale of items that are normally
purchased at the beginning of the growing season.
Examples might be seed and fertilizer. Of course, to
be able to perform this inference, an adversary would
have to have a knowledge base that included the signa-
tures of all of the sensitive targets that were of interest.

The activity signature (A-sig) represents the database
manifestation of an activity that occurs in the real
world. For example, preparation for an attack could be
indicated by database entries for material requisitions
and troop movements. When it is not important to
differentiate between an activity or entity signature,
we can refer to a Q-sig, which represents either an A-
sig or an E-sig.

The relationship signature (R-sig) represents the sig-
natures in which the various types of relationships that

689

T H. Hinke et al. / Protecting Databases From Inference Attacks

may exist in the real world are reflected within the
database. A particular type of R-sig is the second path
inference [6,7]. An example of second path inference
is shown in Figure 1.This represents the real-world tar-
get that the identity of companies that are supporting
certain sensitive projects must not be disclosed.This is
an example of an entity-entity sensitive target. In this
example, the relationship between a project and the
companies that support the project is considered to be
classified at level HIGH, as indicated by the dashed
line in the figure.This sensitive target can be inferred
at a lower classification level (LOW) by finding a sec-
ond path that makes the association between compa-
ny and project1

One such second path shown in the figure is [project,
meeting, visitor, company]. This path recognizes the
possibility of using a meeting attendee list to associate
all of the companies for which the attendees work
with the classified project.As can be noted, while such
a path exists at the HIGH level (where it can be of no
use to a LOW cleared adversary), this path is not visi-
ble at the LOW level, as indicated by its dashed line.
Thus, this does not provide an exploitable second path
at the LOW level.

However, as can be noted, an exploitable LOW second
path consisting of [project, escort, visitor, company]
does exist. This example assumes a working environ-
ment in which all visitors are escorted by some
employee who has been designated as an escort for the
particular visitor. This path uses the project to which
the escort charges his or her time as the basis for asso-
ciating the visitor’s company with the project, and
thus forming the classified association using only
LOW classified data2

Using this second path, the value of the INFER func-
tion would not equal one, since there could be some

’ Note that while HIGH and LOW are used for the example. these can be
generalized to various types of hierarchically ordered security levels (e.g.
tuxlassilied, confidential, secret or top secret) or various non-hierarchical
categories (e.g. competition-sensitive, company Delta proprietary) that
have been used to label data within the US Department of Defense.

’ One solution to this problem would be to polyinstamiate [8] the project
number, such that the escort would have a classitied project number and an
unclassified project number. He would use the unclassified project number
for escorting visitors. If the classified project were not tied to this unclasai-
fied number, then the inference path would be broken.

false associations. For example, assume that a visitor
from the Alpha Company was to be escorted by an
employee who works only on Project Gamma. Using
the second path inference signature, this would be
viewed as a signature for the association between the
Alpha Company and Project Gamma. However, if the
visitor was actually attending a meeting for Project
Omega, this sensitive association would not be indi-
cated by this second path. In terms of the INFER
function, this means that the value of INFER of this
second-path signature for this company-project asso-
ciation is less than one. It is also less than one due to
the fact that in many companies, people work on mul-
tiple projects. However, the fact that the value of
INFER is less than one does not mean that it is not
valuable.

The AERIE project has identified the following three
tiers of data within the database that can potentially
support a sensitive target: schema, group and instance.
In a relational database, the schema consists of the def-
inition of the relation tables and associated attributes
that are contained in each relation. Second-path infer-
ences (such as the company-project inference that was
previously discussed) are an example of a type of infer-
ence signature whose potential can be detected with
schema-level analysis.

The group tier consists of inference signatures that
involve properties about groups of data values. For
example, knowledge that certain types of parts are
unique to certain types of aircraft could be used to
infer that an airbase supports a particular type of air-
craft, based on the nature of parts that are shipped to
the base. This tier can also be used for inferences
involving signatures that involve statistical properties
of the data or correlations with various types of data.

The instance tier represents those inference signatures
that involve individual tuples of a relation in a relation-
al database. For example, if the chairman of the Beta
Company is known to be performing secret negotia-
tions with a foreign government, and the chairman’s
aircraft (identified by its tail number) is reported to have
landed in Iceland, then one can infer that Beta is nego-
tiating with the Government of Iceland.This would be
an example of an instance-tier inference.

Computers & Security, Vol. 16, No. 8

Classified Secret
Supports Relationship

Project ----~~~-----------___--__

Unclassified Unclassified

Escort
Unclassified
Relationship Unclassified

Relationship
Holds Meeting

Figure 1. Company-Project Inference Using Escort

3. Characterization of Database Design
Techniques

The inference vulnerabilities presented in the previous
section can be countered through the use of various
inference-orientated design guidelines and tech-
niques. To provide a context to understand how the
various techniques relate to each other and where
they fit into the continuum of techniques that may be
available in the future, this section presents a number
of ways to characterize the techniques.

The first means of characterizing the techniques is
based on when in the database life-cycle the tech-
niques can be applied. Those techniques that can be
applied to the database during database design are
called proactive techniques. These techniques do not
require that the database data be available; only the
schema is required. Those techniques that can be
applied to existing database are called reactive tech-
niques.These techniques can use the data instances for
their analysis.

The second means of characterizing design techniques
is based on the data tier to which the technique is
applied-The data tiers were introduced in the previous
section.

The t&l means of characterizing design techniques is
based on the sophistication of the approach. A useful

model of increasingly more sophisticated security guide-
lines is illustrated by the historical development of
guidelines and methods for removing security flaws
from operating systemsThe following ordered list, pro-
vided by Marvin Schaefer [9] traces this historical devel-
opment of trusted operating system design guidelines
and associated methodologies from the earliest stages to
the latest, most technologically advanced stages:

1. Testing

2. Penetration and patch

3. Code review

4. Automated analysis

5. Application of fundamental principles

6. Formal analysis

The initial design guideline for the development of
trusted operating systems was limited to just the nor-
mal testing of security features that is used for testing
the correct functioning of any system. When it was
realized that this was not sufficient, security-orientat-
ed penetration testing was applied [lo]. These pene-
tration techniques were then supplemented with
manual reviews of the code in an attempt to discover
software anomalies that would lead to potential pene-

691

TH. Hinke et al. / Protecting Databases From Inference Attacks

tration vulnerabilities [lo]. There was also some
research in automating the search for such flaws
through automated code analysis [l l].The attempts to
discover flaws and patch existing operating systems
were replaced with the development of security prin-
ciples that could be used to design systems from
inception with security as a guiding design target [12].
For those systems that were to have the highest level
of assurance, all of the security relevant software was
formally specified in a language that could then be
formally verified to prove that - at least at the spec-
ification level - the system satisfied a desired securi-
ty policy [12]. Even today, the actual verification of the
code is viewed as beyond the current state of the art
for real (as opposed to toy) systems [121.

All of these operating system techniques have the
objective of developing software that has a minimal
number of software flaws. Using these evolutionary
stages as guidance in developing a list of increasingly
more sophisticated inference removal techniques for
databases, we see some useful analogies and distinct
differences.The following are suggested as a reasonable
sequence of increasingly more sophisticated stages in
what will be an evolving technology base for counter-
ing database inference vulnerabilities:

1. Penetration and fix

2. Automated inference analysis

3. Application of fimdamental principles to database
design

4. Formal analysis of database design

Since there is no functional capability to test for infer-
ence vulnerabilities, the initial stage in inference anal-
ysis and guidance is provided by an inference-directed
penetration analysis of the data. This is a manual,
thought-intensive process to find inference vulnerabil-
ities in a particular database. This is analogous to both
the second and third stages of the operating system
sequence. The second stage of inference analysis and
guidance is automating the process of analyzing the
data for inference vulnerabilities. This involves some
type of automated analysis of the actual data instances.

The third stage concerns the application of funda-
mental inference-prevention principles when the
database is designed. Examples of this taken from a
database area other than inference, are the various
types of integrity constraints that are applied to rela-
tional databases (e.g. referential integrity). The fourth
and final stage of inference analysis and guidance is
formal analysis. An example of formal analysis, taken
from a non-inference domain, is the use of functional
dependencies in database normalization to reduce data
redundancy Formal analysis derived horn an inference
domain could involve the formalization of the seman-
tics of the data and an automated analysis to remove
potential inference vulnerabilities as that data is placed
in a database.

In terms of the reactive and proactive approach cate-
gorization, the penetration and fix approach is a reac-
tive technique that can be applied to an existing
database, since it involves the analysis of data. As will
be shown in Section 5, this represents a group- and
instance-tier approach.

The automated-inference-analysis approach is a com-
bination of both reactive and proactive approaches.
The reactive approaches involve automated analysis of
both the schema- and instance-tier data in an existing
database to ferret out potential inference approaches.
The proactive approach involves the analysis of the
database schema while the database is still under devel-
opment.

The various types of database inference approaches
discussed in this section can be combined with the
various data tiers in which inference signatures can be
located. This combination results in the matrix of
Figure 2.The checked cells in Figlrre 2 indicate the cur-
rent state of practical database design techniques that
are available for countering inference vulnerabilities
for each of the data tiers. Practical approaches for
addressing each of these checked areas will be consid-
ered in the remainder of this paper.

In the next section, an automated technique for
schema-tier analysis will be described. This will be
followed by a section that describes a manual tech-
nique that can be used for group- and instance-tier

692

Computers & Security, Vol. 16, No. 8

Inference Technology

Penetration & Fix
Automated Inference Analysis
Application of Fundamental Principles
Forma Analysis of Database Design

Applicable Data Tier
Schema Group Instance

J J
J

Figure 2: Inference Detection Techniques and Applicable Data Tiers

analysis while automated techniques are still in the Merlin also provides some additional assistance in
research stage. schema-tier analysis.

4. Automated Techniques: Automated
Inference Analysis
Existing automated inference analysis tools have
focused on schema-tier analysis.These approaches can
be used proactively to perform an analysis of an initial
database design, or reactively to analyze existing
database schemas. Automated support for group and
instance-tier data is still in the research stage and will
be briefly described in Section 6, which looks to the
future.

The initial work in schema-tier inference detection
was performed by Hinke for relational database
schemas as part of the Advanced Secure DBMS
research project at TRW in Redondo Beach,
California, USA [7, 13].This project developed the
concept of second-path inference detection.
Additional research on second-path detection has
been conducted by the US Government [14-171 and
SRI International [18]. These approaches all use
some form of path Jinding. Work on exploring infer-
ence issues associated with functional and multival-
ued dependencies was conducted by Su and
Ozsoyoglu [19,201. In its Merlin schema analysis sys-
tem, the AERIE project has addressed the mecha-
nization of inference detection using second-path
analysis based on functional dependencies. The
Merlin tool uses an algorithm that is faster than path
finding to perform the initial analysis [21]. In Merlin,
path finding is used only to elaborate those paths that
are identified as problems. As will be described,

For relational databases, the value of second-path
inference detection is that it does not require a deep
knowledge level, as does the detection of some other
types of inference signatures; it requires only analysis
of the schema. The schema analysis will indicate
whether a second path could be constructed with a
series ofjoins. However, actual data instances will have
to be consulted to determine if the potential vulnera-
bility is realized in practice. In the company-project
example, the inference vulnerability is of concern only
for classified projects. If all visitors for classified meet-
ings refused to divulge their company afliliations, then
the database modelled in Figure 1 would not contain
instances to support the derivation of the classified
relationship between company and project. This
means that a second path leading to a sensitive associ-
ation could not be generated using the database data.
Of course, it is possible that an adversary with access
to this database could use information external to the
database (e.g. company parking stickers on the visitor’s
car or company afEliation information from profes-
sional society or conference attendance lists) to make
the link from visitor to company

The Merlin system automates this second-path detec-
tion. In the next section, we will describe the path
detection approach used in Merlin. Following that we
will describe a path grouping approach that can be
used if the schema under analysis contains security
labels. We will conclude this discussion of automated
techniques with a description of how Merlin provides
assistance in breaking second paths.

693

IH. Hinke et al. /Protecting Databases From Inference Attacks

Project Relation (rl)
Job_Number[u,u] 1 Project_Number[u,u]

Figure 3: Project Relation

Job-Cost Relation (r2)
Employee_Number[u,u] 1 Job-Number [u,ul 1 Week_DaWwl 1 Hours[u]

Figure 4: Job-Cost Relation

Visitor-Log Relation (r3)
Visitor_Name[u,u] 1 Date[u,u] 1 Companyhul I EscoNu9ul

Figure 5:Visitor Log Relation

Project Company Relation (r4)
Job_Number[s,s] 1 Project_Name[s,s] (Company[s,sl

Figure 6: Company Project Relation

4.1 Merlin Path Detection
The basis for Merlin’s path detection approach is an
algorithm for testing a relational database decomposi-
tion for the lossless join property [22, 231. We have
adapted this algorithm for use in the detection of sec-
ond-path inferences within schema-tier data. We have
also extended this algorithm to include subtype rela-
tionships.3 The complete algorithm is described in [l]
and a comparison between the performance of this
algorithm and conventional path finding is presented
in [21]. However, a brief overview of this algorithm is
presented here.

To assist in the description of this algorithm, an
example that embodies the company-project second
path of Figure 2 will be used. The database for this
example consists of the four relations: project shown
in Figure 3; job-cost shown in Figure 4; visitorJog
shown in Figure 5 and project-company shown in
Figure 6. The classifications associated with each
attribute are shown.The letters (e.g. [s,s]) associated
with each attribute indicates its minimum and max-
imum classification, with the left s indicating a min-

3 A subtype has all of the characteristics of its supertype, but adds some
additional constraint. For example, a company escort may be an employee
who has been given the responsibility of escorting visitors. This would
make the escort a subtype of employee. Any mention of escort also consti-
tutes a mention of employee.

imum classification of secret and the right s indicat-
ing a maximum classification of secret. All of the
attributes shown indicate a single classification level
for all of the attribute values, either all are unclassi-
fied, u, or all are secret, s. However, Merlin will allow
for the case in which an attribute has a range of val-
ues, such as [u-s].

The Merlin algorithm represents the schema as a
matrix consisting of rows (representing relations) and
columns (representing attributes). For each row, the
initial state of the algorithm contains an ‘ai’ under each
attribute column ‘i’ if the relation represented by that
row contains the attribute represented by the column.
Also, for each row, a unique ‘bi is placed under each
column for which the relation represented by row ‘j
does not contain such an attribute. Because of its use
of a’s and b’s, the matrix is called the AI3 matrix.The
Al3 matrix for our example is shown in Figure 7. It will
be noted that the range of security levels associated
with each attribute is also indicated in the matrix.
These will be used for ranking the second paths that
are found. It should be noticed that the last row con-
tains only b’s. The reason is that in order to address
multilevel security, the Merlin algorithm is run sever-
al times; once at each classification level. In this cur-
rent example, the run level is unclassified, which
means that the information contained in the relation

694

Computers & Security, Vol. 16, No. 8

Initial Setting of Matrix S
Relation 1 job_ 1 project_) Employee_ 1 week-date 1 hours 1 visitor _ 1 company 1 escort) date

Rl
R2
R3
R4

number name number
aO[wl al[u,u] b0
aO[u,u] bl a2 bwl
b2 b2 b2
b3Ts,sl b3[s,sl b3

b0
a3 bwl
b2
b3

name
b0 b0 b0 b0 b0
a4[u,u] bl bl bl bl
b2 a5 b,4 a%.wl a7[u,u] aS[u,u]
b3 b3 b3[s,sl b3 b3

Figure 7: Initial Matrix

represented by the last row in the AB matrix,
pmject_company is more highly classified than the run
level. However, the classification level of these classi-
fied attributes are still indicated in the AB matrix and
will be used for path ranking. More will be said about
this later in the paper.

In addition to this AES matrix, the algorithm is also
presented with a list of the functional dependencies
that apply to the schema. A function dependency
between some set of attributes X and some set of
attributes Y is denoted by X + Y, and is read as “X
functionally determines Y.” The meaning of this func-
tional dependency is that if for any two tuples ti and 5
in any relation contained in the database to which the
functional dependency applies, if the values of the X
attributes of tuple ti, represented as ti[Xj, is equal to the
value of the X attributes of tuple 5, ,represented as
t.[Xj, then ti[yl = tj[YJ. In other words, if the values for
h t e set of attributes represented by X are the same in
both tuples, then the values for the set of attributes
represented by Y will also be the same in both tuples.
The functional dependencies that apply to our exam-
ple are as follows:

1. employee-number + job-number, which means
that an employee number uniquely determines the job
number on which the employee is currently working.
This assumes that an employee works only on a single
project.

2. visitor-name + company, which means that a visi-
tor works for only a single company

3. visitor-name, date + escort, which means that each
visitor is escorted by a single escort.

4. job-number + project-name, which means that a
job number uniquely determines a project name.

5. employee-number, job-number, week-date +
hours, which means that the combination of employ-
ee number, job number and week date, such as the
Friday date for each week can be used to identify the
number of hours worked.

6. project-name + company, which means that a pro-
ject name uniquely determines a single company that
is supporting the project.

7. project-name + job-number, which means that a
project name uniquely determines the job number to
which the employee charges his or her time.

The other two types of information that this algo-
rithm uses are the subtype relationship and the foreign
keys. For this example, an escort is a subtype of employ-
ee_ntrmber. This means that any time a row contains a
reference to escort, we can also fill in a similar reference
to employee_number.A foreign key is an attribute in one
relation that references an attribute that is a key for
another relation. The referenced key attribute may
have a different name than the non-key attribute that
references it. Merlin treats foreign keys as synonyms.
Thus, any time that a row contains a reference to a
foreign key, we can also fill in a similar reference to the
key to which it refers, and vice versa.

The algorithm works in cycles. In a single cycle of the
algorithm, all of the functional dependencies are
matched with the AB matrix. Each functional depen-
dency X + Y is considered in turn and is matched
against the AB matrix to see if there are two or more

695

TH. Hinke et al. /Protecting Databases From Inference Attacks

rows that have identical values for the X attributes,
where these identical values can be ‘a values, ‘b’ values
or ‘c’ values (the meaning of c will be described short-
ly). If there are two or more rows that match, these
rows are considered to form a set R. The Y values for
the set R are then set to equal values using the fol-
lowing method: if none of the rows in R contains an
‘a’ or ‘c’ value for Y, then all of the Y values are set to
the lowest ‘b’ value in the set R. If one row in the set
contains an ‘a’ or ‘2 value for Y, then all of the other
rows in R are changed from ‘bj’ to ‘5’ for the respective
attribute in column 7. If one of the ‘b’ values changed
to a ‘c’ value is identical to some ‘b’ value not in R, then
all of those ‘b’ values not in R are also changed to ‘L'.
The ‘t’ value is used to represent places in the AB
matrix where a ‘b’ (which means that it was not visi-
ble in the relation) is changed to an attribute that is
visible, based on the application of a functional depen-
dency.

For example, using the first tinctional dependency
job-number -+ projkct_name, the Merlin algorithm will
scan the X column, job-number, and find that both the
R, and R, rows have identical values, a0 in this case.
These two rows constitute the set R for this stage.
Now the Merlin algorithm will scan the Y column,
project_rzame looking only at the R rows (in this case
R, and Rz) and find that row R, has an al and R, has
a bl. The bl value in R, will be replaced with a cl
value. The replacement is cl rather than al so that
newly replaced attributes can be identified.These pro-
vide the basis for a second path. What this replacement
means is that since a functional dependency exists and
since a mapping in R, exists for this functional depen-
dency, this mapping can be used in R, to fill in the val-
ues for all project-names, based on the Rl mapping. In
essence, R2 is being expanded via a mock join opera-
tion that is based on functional dependencies.

A single cycle is completed once all of the functional
dependencies have been checked against the AE3
matrix.The algorithm terminates following a cycle in
which no changes are made to the AE3 matrix.

In this algorithm, a second path exists between two
attributes if there exists some row such that the two
attributes are represented by two ‘c’s’ or a ‘c’ and an ‘a’.

If a row represents these two attributes as both ‘u’s’,
this is not a second path, since this indicates that the
relation initially contained both attributes. We call this
a ‘first path’.

The meaning of second path as used for the Merlin
algorithm is that an association exists between all of
the ‘a’ and ‘c’ attributes that share a row. Since all of the
non-key attributes within a relation are functionally
dependent upon the primary key of that relation, all
non-key attributes in a relation have a functional
dependency relationship with the key of that relation-
ship. Also, since the Merlin algorithm ‘grows’ each row
by adding new attributes (based on a match on the
left-hand side of the functional dependency) that have
a functional dependency relationship with an attribute
that is already in the row, this new attribute will also
have a functional dependency relationship with the
primary key of that row. It can be observed, however,
that some of the second-path associations will show a
second path between two non-key attributes. These
may or may not provide useful information. As will be
described shortly, Merlin has an approach to rank the
paths discovered so that the most promising second
paths can be readily identified.

As mentioned earlier, to address multilevel security,
Merlin can be executed at different security classifica-
tions, called rtrn levels.At a particular run level, the AI3
matrix is constructed from only those attributes that
are visible at that run level.This means that the secu-
rity level of the attributes used in the AB matrix must
be dominated by the run leveL4

The final AE% matrix is shown in Figtrre 8. This algo-
rithm has detected that a second path exists between
project-name and company. Since there exists a row that
contains an a and a c for company and project-name, this
means that there exists the ability to build an associa-
tion between a project-name and the external company
that is supporting that project, based on an employee
of that company being escorted by an employee who

4 In terms of security policies used by the US Department of Defense [12,
241, a security classification Li dominates another security classification L.
if the hierarchical component of L, (e.g. top secret > secret > confidenti&
> unclassified) is greater than or equal to the hierarchical component of L.
and the set of non-hierarchical categories associated with Lj is a subset o k
the set of categories associated with L,

Computers & Security, Vol. 16, No. 8

After Processing S
Relation job- project_ 1 Employee_ 1 week-date 1 hours 1 visitor

I
_ 1 company I escort I date

number name number name

Rl Wwl al Tu.ul 1 b0 L I A I b0 1 b0 I b0 1 c6 1 b0 I b0

R2 aO[u,u] cl a2 bwl a3 bwl a4[u,u] bl c6 bl bl
R3 co cl c2 b2 b2 a5 bwl a6b,ul a7[u,u] a8[u,u]
R4 b3 [wl b3[s,s] b3 b3 b3 b3 b3[s,s] b3 b3

Figure 8: Find Matrix

is working on the project. Of course, we cannot be
certain this association does exist, because the person
who performed the escort fimction may not necessar-
ily be associated with the project for which the person
is visiting the facility. Still, assuming that escorts nor-
mally escort visitors for their projects, this method will
provide a reasonable means of detecting real inference
vulnerabilities.

It will also be noted that the row for relation R4 still
shows all b’s. However, the classification range infor-
mation available to the Merlin path ranking code indi-
cates the initial classification for each of the three
attributes for the R, relation.This information will be
used for the path ranking, which will be described in
the next section.

This algorithm is fast and will identifj that a second
path exists by indicating those attribute pairs that are
joined by a second path. However, the algorithm does
not indicate the various attributes that provide the
realization of this path beyond the two endpoints.This
detection of a path’s existence without the actual
identification of the components of the path results in
a considerable speed-up in the inference detection
process. Comparisons between the Merlin second-
path detection algorithm and a conventional path-
finding algorithm showed that for a test database,
called the AERIE database schema (consisting of
33 relations and 104 distinct attributes) the Merlin
second-path detection algorithm took 7.23 seconds,
which was 10.9 times faster than the time it took a
conventional path-finding algorithm to find the first
path for all possible combinations of attributes. On
another test schema developed by SRI International
fi-om a ER-diagram supplied by the US Air Force

Rome Laboratory [25], consisting of 48 relations and
253 distinct attributes, the Merlin algorithm took 72.2
seconds, which was 20.1 times faster than the path
finding algorithm. [21] As can be noted, the value of
the Merlin path detection increases as the size of the
database increases.

The computational complexity of this algorithm is
based on the fact that for each cycle of the algorithm,
each attribute A of each relation R (row of the matrix)
must be considered with respect to each of the fLnc-
tional dependencies D. For C cycles, this results in
processing complexity of 0(C * R * A * 0).
Assuming under worst case conditions that one
attribute of one relation is changed for each cycle, the
number of cycles is bounded by the number of
attributes times the number of rows, which is R * A.
Substituting this for C, we have processing complexi-
ty of 0(R2 * A2). In actual practice this algorithm is
much better than this since our experience has been
that much fewer than R * A cycles are required. In
tests using both the AERIE and the SRI database
schemas, we have found that only four cycles were
actually required.

The next section presents Merlin’s path ranking
approach.

4.2 Merlin Path Analysis
To use the Merlin tool, an analyst encodes the
attributes and associated attribute security levels for
each relation in the database. The analyst will then
select a run level (which is lower than the most classi-
fied data in the database) at which to perform the
analysis.The purpose of this run level is to determine
the second paths that exist at this particular security

697

T H. Hinke et al. / Protecting Databases From Inference Attacks

level. As was noted in the previous section, Merlin
operates in cycles. In each cycle, all of the functional
dependencies are applied to the AI3 matrix to see if
additional changes result. When one complete cycle
results in no additional changes in the AB matrix,
Merlin reports its results.These results are reported in
terms of attribute pairs. Each row of the AB matrix is
scanned to determine which attributes are associated
with what other attributes. Those attribute pairs that
are new indicate a second path.The Merlin algorithm
does not, however, identi6 the components of this
path, only the end-point attributes of the path.
Standard path-finding techniques must be used if the
set of attributes that constitutes this path is to be iden-
tified.

The results of a Merlin analysis on a database of even
moderate size (e.g. 50 relations) will be a considerable
number of second paths (attribute pairs). In general,
the database designer must analyze each of the
attribute pairs that have second paths to determine
which may be sensitive and which may be ignored.

The database designer can be assisted in this task of
path analysis if the schema contains security labels.The
AERIE project has developed a technique of auto-
matic path grouping based on a schema that has secu-
rity labels assigned to the attributes of the schema.The
AERIE path grouping is based on schemas described
in the MSQL (multilevel SQL) language, a multilevel
extension to the SQL database language developed by
SRI International.[26] However, the technique is not
specific to MSQL; any schema classification language
would support this path-grouping technique. MSQL
provides the capability for the database designer to
specie the classification of each attribute in a relation.
If all of the values associated with a particular attribute
of a relation are uniformly classified at the same secu-
rity level, then a single classification is associated with
the attribute. If the values associated with an attribute
are not uniformly classified, then a classification range
is associated with the attribute.This range indicates the
lowest and highest classifications that apply to all of
the values that are associated with the attribute with-
in the relation. The security classifications of a given
attribute may differ in different relations. An attribute
could, for example, be unclassified in one relation but

be secret to top secret in another relation.This can be
seen in Figure 3, where the project-name attribute in the
Project relation is unclassified, while it is secret in the
Project_Company relation, Figure 6, because of its asso-
ciation with the company.

Under the AERIE path-ranking technique, the
schema is used as a classification guide for paths that
are detected by Merlin. Each relation can be viewed as
a set of attribute pairs consisting of each attribute in
the relation associated with each of the other
attributes in the relation. Looked at in the most gen-
eral sense, each attribute within any relation has two
classifications, representing the minimum and maxi-
mum security levels for the attribute’s values. For the
case of uniformly classified attributes, the minimum
and maximum security levels are the same. Each
attribute pair association would have four classifica-
tions, representing the minimum and maximum of
both of the associated attributes. For example, the
association between job-number and company in rela-
tion R4 has the classifications minimum s and maxi-
mum s for job-number and minimum s and maximum
s for company.

Identical attribute pairs may exist in different relations,
and it is possible that they will have different classifi-
cations. This difference may reflect the fact that the
relations from which these attributes were taken rep-
resent different entities, but have some of the same
attribute names. For example, in an aircraft relation,
the attributes of speed and range may be classified
secret; in a motor vehicle relation, both of these
attributes may be unclassified. Since there may be a
number of identical attribute pairs with differing clas-
sifications, the set of attribute pairs and their associat-
ed classifications does not constitute a real class&ca-
tion guide; however, it does provide some indication
of the possible classification of paths and a use&l basis
for ranking the paths.

As has been mentioned, Merlin is executed at a par-
ticular run level. This run level represents a potential
access level of an adversary. At the run level, Merlin
can view only those attributes whose classification is
dominated by the run level, but, as shown in Figure 8
the AEJ matrix contains classification level information

698

Computers & Security Vol. 16, No. 8

for all levels. The second paths that are generated use
only those attributes that are dominated by the run
level. To detect inferences, Merlin’s run level will be
below that of the most highly classified attributes in
the database.Thus there will be attributes to which the
Merlin second-path detector does not have access,
since they exist at a security level that strictly domi-
nates the run level, where a security level strictly dom-
inates another level if it dominates it but is not equal
to it.

A path discovered by Merlin is described in terms of
the pair of attributes that delineate the end-points of
that path.To perform the path rankings, each new path
discovered by Merlin is compared with the set of
attribute pairs that are generated from the schema.
This set of schema-based attribute pairs reflects the
entire schema; they are not limited to the attributes
that are viewable at the run level. The groupings will
be made based on this comparison.

Using a refinement of the approach presented in [21],
the various paths are ranked into grades, which differ
in their potential security vulnerability These grades
are defined in terms of four predicates. The values of
the predicates IV, lN, AV and AN are based on an
analysis of the schema with respect to the newly
detected path that has been found (and is to be
ranked) and the run level.The schema can be viewed
as a set of path templates, each template being desig-
nated by a pair of attributes that exist within at least
one relation as specified in the original schema. For
example, the Company_Project relation in Figure 6 con-
tains three path .templates Gob-number, project-name),
(job-number, company) and @oject_name, company).
Multiple instances of a path template can exist, one for
each relation that contains the two attributes that
define the path template. Each path template instance
has a lower and upper security level associated with
each of the attributes of the path template instance.
Thus the path template instance for the (job-number,
project_name) template fi-om the Company_Project rela-
tion has a lower and upper security level of secret for
both attributes. The instance of this path template
from the Project relation has a lower and upper bound
of unclassified for both attributes.

The predicates used to group the paths are defined in
terms of the relationship between the run level, the set
of path template instances that are viewable at the run
level and the new path, (i,]) that is to be ranked.The
security level of each path template instance, consist-
ing of attributes i and j, can be defined in terms of the
lowest security level of i, Li, the lowest security level of
j, L? the upper security level of i ,Ui, the upper secu-
rity level ofj, Uj and the security level of the run LR.
In the predicate definitions we will use the notation
X I Y to mean that Y dominates X.

The following define each of the four predicates:

l The predicate 1V (at least one path potentially visi-
ble) is true for path (i,]) if at least one path template
instance (i,j) in the schema is potentially visible.This
is true if there exists some path template instance
such that Li I LR AND Lj I L,.What this says is that
for a path to be visible in the schema, both of its
end-points must be visible. Note that this does not
say that the actual data will contain a realization of
this path. Since each attribute can be represented by
a range of security levels, it is possible that the
schema indicates that a path could be visible, since
the lower bound of both of the end-points of the
path is at a security level dominated by the run level.
However, the upper bound on the attribute classifi-
cation for one or both end-points could strictly
dominate the run level. In this case, all of the actual
database data that would permit a realization of this
path could be above the run level. This is why it is
said that a path is potentially visible.

l The predicate 1 N (at least one path is potentially not
visible) is true for path (i,J if at least one path tem-
plate instance (i,J in the schema is potentially invis-
ible. This is true if there exists some path template
instance such that Ui > LR OR Uj > L,.What this
says is that a path is invisible if at least one of its end-
points is invisible.

l The predicate Al/ (all paths visible) is true for path
(i,J if all path template instances (i,j) in the schema
are visible. This is true if for all path template
instances, vi 5 LR AND Uj I LR. This says that all
paths are visible if the upper bound on the end-

699

TH. Hinke et al. / Protecting Databases From Inference Attacks

points of the path has a classification that is domi-
nated by the run level.

The predicate AN (all paths are not visible) is true
for path (i,~) if all path instances (i,j in the schema
are invisible. This is true if for all path template
instances Li >LR AND Lj >LR. This says that all
paths are invisible if the lower bound on the securi-
ty levels of the end-points of the path is classified at
a security level that strictly dominates the run level.

Using the predicates, newly discovered paths are ana-
lyzed and partitioned into vulnerability grades. In all
cases, this grading process is triggered by the discovery
of a new path in the AI3 matrix (e.g. at least one
attribute in an attribute pair is a ‘c’).The following are
the criteria for each grade:

Red: AN = true. All of the templates for the newly
discovered path are invisible at the run level.Thus, red
paths represent a very high potential inference vulner-
ability, since all examples of these paths taken from the
schema are classified at a level that strictly dominates
the run level.

Yellow: 1 I/ = True AND 1N = True. At least two
path templates matching the newly found path exist in
the relation schema, and at least one path template
instance is visible and at least one is invisible at the run
level.Thus, yellow paths may or may not be a problem,
since we have examples of paths taken fi-om the
schema that are both visible and invisible at the run
level. In general, while there is a high probability that
red paths are a problem, there is a smaller probability
that yellow paths are a problem.

White: No path template matching this newly found
path exists in the relation schema. Thus, the schema
classification can provide no guidance as to the poten-
tial classification of this newly found path. White paths
must be carefully reviewed by a knowledgeable analyst.

Green: AV = true. The only instances of these paths
exist in the relation at levels that are dominated by the
run level. In terms of what can be inferred about this
association from the original schema, green paths do
not appear to represent a problem.

In addition to being ranked into colour grades, each
path can be further ranked into three subgrades,
depending upon whether the attributes that designate
the second paths are primary keys, including near keys5
or non-keys-The following are the three subgrades:

Subgrade 1: both attributes of the second path are
primary keys, near keys or part of a primary key;

Subgrade 2: only one of the attributes of the second
path is a primary key, near key or a part of a primary
key, and

Subgrade 3: neither of the attributes of the second
path are a primary key, near key or a part of a prima-

ry key.

While not currently supported by the implementa-
tion, one of the reviewers of this paper suggested that
it would be useful to order the white relationships
according to transitivity - the number of hops
involved in the transitive association. This would be a
useful means of partitioning the paths, since longer
paths would normally be viewed as less problematic.
This would require path instantiation, which is dis-
cussed in the next section.

An example of the path grades from the company-
project example are shown in Figure 9. Green paths
are not shown since they are not considered to be a
problem.

Having found the paths and ranked them by potential
vulnerability severity, Merlin can then be used to pro-
vide automated assistance in determining where a
path can be broken. It should be noted that at this
point in the analysis, Merlin knows that a second path
exists, but it does not know the series of attributes that
comprise the path; it knows only the attributes that
serve as the end-points of the path. In order to break
a path, the attributes that comprise the path must be
known.A path will then be broken by classifying one
or more of the attributes that contributes to it.

5 An attribute that, while not technically a key, is sutticiently close to a key
that in most cases it will designate a specific tuple in a relation.

700

Computers & Security, Vol. 16, No. 8

Red
Grade

Yellow
White

I I

Subgrade
1

1

3

l- r Attribute 1

company

job-number
project_name

proj ect_name

job-number
employee-number
employee-number
employee-number
employee-number

job-number
job-number
job-number
project_name
project_name
proj ect_name
project_name
proj ect_name

week-date

Attribute 2

Ilours

I
company
company

hours

proj ect_name
company

date
escort

visitor_name
date

escort
visitor_name

date
employee-number

escort
visitor_name
week-date
company

.

Figure 9: Path Grading Example

4.3 Merlin Path Breaking
Path breaking in Merlin is based on path finding followed
by a manual analysis of the components of the path to
determine the most attractive places to break the path.

As has been described, the path-detection capability of
Merlin determines the existence of all paths that con-
nect two attributes. One of the ways that these two
end-points can be related is though a series of timc-
tional dependency relationships. Because of the transi-
tivity property of functional dependencies, this pro-
vides the most meaningful association Corn an infer-
ence perspective, since the end-points will themselves
have a functional dependency relationship. As was pre-
viously noted, not all of the paths found by Merlin fall
into this category Because of this, Merlin supports two
different path finding approaches, based on whether
the path is a functional-dependency-based path or a
path based on attribute associations.

A functional-dependency-based path consists of a
sequence of links that are drawn from the set of func-

tional dependencies applicable to the database. An
attribute-association-based path is comprised of links
drawn from the set of attribute pairs that the Merlin
tool has indicated have second paths associating them,
or attribute pairs that are members of the same rela-
tion and thus are joined by what we call first paths.

Merlin can compute all paths connecting two
attributes using either functional-dependency-based
paths or attribute-association-based paths. As has been
noted, the functional-dependency-based paths are the
most meaningful. However, it some cases, there may
be a second path that is not based on a functional-
dependency-based path. In this case, the attribute-
association-based path must be computed. In either
case, once these paths are computed, they must be ana-
lyzed to determine which attribute should be classi-
fied to break the path. Since each pair of attributes
may have a number of second paths connecting them,
a number of different attributes may have to have their
classification raised in order to break all of these paths.
This identification of which attribute selected to have

701

TH. Hinke et al. / Protecting Databases From Inference Attacks

their classification increased is a manual process.
However, since the Merlin tool is fast, one approach is
to analyze the path and then reclassify particular
attributes and re-run the Merlin tool to determine if
the path has been broked. In this way, Merlin can be
interactively used to ask “What if questions“ much as
one uses spread-sheet programs in financial analysis.

5. Manual Techniques: Penetration and Fix

For group- and instance-tier data, the initial stage of
inference-orientated database analysis and design is
inference penetration testing of the database.
Analogous to operating system penetrations, this is a
manual process whose objective is to locate inference
vulnerabilities in the database. Useful guidance in per-
forming inference penetration testing of a database
can be gained by reviewing the steps used for operat-
ing system penetrations. A widely used operating sys-
tem penetration methodology is Weissman’s Flaw
Hypothesis Methodology (FHM) [lo]. This method-
ology consists of the following four steps: generation
of a set of flaw hypotheses; confirmation of each flaw
through desk checking or testing; generalization of
each flaw into a generic system vulnerability and elim-
ination of each flaw through a change in the code or
design of the system, as appropriate.

These four steps are also applicable to inference pene-
tration of databases, although the precise methods used
for database inference detection will differ from those
used for operating system penetrations due to the very
different nature of operating system code and database
data. In operating system penetrations, one is looking
for flaws in the code that would permit one to gain
access to unauthorized data or take control of the oper-
ating system. In database inference analysis, in contrast,
one is looking at ways that one can exploit the data that
can be accessed to gain insight into data to which access
is prohibited. Nevertheless, these four penetration steps
provide a useful means for organizing our thinking
about the task of inference penetrations. Each of these
steps will be considered in the following discussion.

5.1 inference Hypothesis Generation
The initial stage of inference penetration analysis is the
development of a list of sensitive targets. As has been

noted, these targets represent the information that is to
be protected from an inference attack that uses the
database. In terms of the AERIE model, these sensitive
targets can be expressed in terms of entities, activities
and the various relationships between entities and
activities.

For each of these sensitive targets, the next step is the
development of plausible hypotheses as to how these
sensitive targets could be inferred from the particular
database that is being analyzed-These hypotheses rep-
resent the potential inference signatures that could
potentially exist in the database for each of the sensi-
tive targets that have been identified.A useful question
to ask in the development of plausible inference
hypotheses is, “Which data currently in the database
would change if the inference target did not exist?” In
answering this question, we are concerned with
changes in the data at the group or instance tier. At the
group tier, we are concerned not only about changes
in the data, but changes in the statistical or multivari-
ate properties of the data as well.

Taking some guidance from the Flaw Hypothesis
Methodology, the inference hypotheses should be
rated according to two factors.The first is an estimate
of the probability that the inference hypothesis will
actually be confirmed as a valid signature for its spe-
cific target. The second is an estimate of the damage
that such an inference signature would cause if it were
confirmed as a viable signature.These estimates repre-
sent judgments of those conducting the inference
penetration analysis and should be specified in terms
of high (H), medium (M) and low (L).The combina-
tion of these two ratings leads to nine different group-
ings, with HH indicating those hypotheses that have
the highest potential for damage and LL being those
with the lowest.Those flaws with a high or medium
rank for either factor are the first ones that should be
investigated in the inference hypothesis validation
phase.

5.2 Inference Hypothesis Validation
During this stage of the inference penetration analysis,
each of the inference hypotheses must be assessed to
determine if it represents a valid inference signature
for the specified sensitive target.Again, using the FHM

702

Computers & Security, Vol. 16, No. 8

as a guide, this assessment is made in terms of a
‘gedanken’ (thought) experiment. These gedanken
experiments can be organized in terms of various
types of analysis techniques that can be applied to data.
In general, these methods are tied to various types of
signatures that exist within the various data tiers of the
database. Group-tier inference hypotheses can be
assessed in terms of various types of standard statistical
or multivariate analysis [27] techniques. These are
widely used in data analysis and are beyond the scope
of this paper.

One means of validating the instance-tier inference
hypothesis that has resulted from the AERIE project is
an inference-driven sensitivity analysis. This sensitivity
experiment is based on asking questions that are related
to the particular nature of the sensitive target, as exhib-
ited by the AERIE model. For entities and activities, the
question is: “How would the database change if the
existence state of the entity or activity changed?” For
example, consider an F-17 fighter aircraft as being a
sensitive target. In a logistics database, the inference ana-
lyst would ask how the database would change if there
was suddenly no longer an F-17 fighter. Presumably
this would mean that parts associated exclusively with
an F-17 would disappear f?om the inventory list, and
parts that were used on the F-17 - but not exclusive-
ly - would have their part-count changed. These then
represent the sensitive signatures for entities and activi-
ties that must be addressed if inference signatures for an
F-17 are to be eliminated.

For the various types of relationships (R-s@), the
question one would ask is how the database would
change if the truth of the relationship changed. In a
company-project relationship, where the sensitive
target consists of the companies supporting the
AERIE project, the question to be asked is, “What
changes would exist if there were not a sensitive
AERIE project that was related to a number of per-
forming companies?”

Another example of an instance-tier inference signa-
ture comes from what we have termed the “California
example”. This example inference involves a sensitive
target that asserts that a significant number of people
are moving out of California.The database of interest

is f?om a truck rental company. However, it is not the
database that shows the actual rentals of specific
trucks, but one that indicates - on a location basis -
the one-way rental rate between that particular loca-
tion and every other location that is served by the
company. Performing a sensitivity analysis on this
database during the summer of 1992 one would have
found that the rental rates out of California were sig-
nificantly higher than the rates into California. This
type of inference, while very difficult to model, could
easily be identified by the sensitivity analysis conduct-
ed as a gedanken experiment. This problem has been
presented to a number of different audiences, and
without exception, within a matter of seconds some-
one can identify the sensitive field that would provide
this inference. Therefore, we consider this sensitivity
analysis as a reasonable means of validating potential
inference vulnerabilities until more automated
approaches are available.

To infer a sensitive rule, we would look at states of the
database before and after transactions that involve that
rule.The question to be asked is how the database state
after the transaction would change if the rule were not
applied.The answer to this question will provide guid-
ance on what must be protected if the rule signature
is to be eliminated.

5.3 Inference Flaw Generalization
During this step, any inference signatures that are
identified during the previous step are analyzed to see
if they can be generalized to more generic inference
problems. The flaw generalization may lead to addi-
tional inference hypotheses that were not identified
during the inference hypothesis generation stage.

5.4 Inference Elimination
The primary tool for protecting a database from infer-
ence vulnerabilities is to classify the inference signa-
ture data that was discovered in the two previous steps.
A sufficient portion of the signature data must be clas-
sified so as either to eliminate the signature totally or
reduce the signature to a residue - one that when
operated on by an INFER function provides little or
no additional information about the sensitive target.
At that point the residue of the signature would be of
little value to an adversary

703

TH. Hinke et al. / Protecting Databases From Inference Attacks

If the relational database management system supports
element level classification, then each individual value
within a tuple of a relation can have a distinct classifi-
cation. With element-level classification, the inference
channel can be closed by classifying the particular field
value that provides the signature. If only tuple-level
classification is available, then the entire tuple will have
to be classified. If this is not acceptable, then the rela-
tion will have to be split into one relation that con-
tains the portion of the signature attributes that need
to be classified, and another relation that contains the
attributes that one does not desire to classi@

If a target has multiple signatures, each of which is
reduced to a non-sensitive residue, care must be taken
to ensure that these various signature residues cannot be
intersected to result in a new signature that can still be
used to perform the inference. For example, the initial
signature might permit one to deduce a particular enti-
ty. By classifying a portion of the signature, the number
of entities to which the signature could refer would be
increased. However, the intersection might permit the
initial entity to be identi6ed.A~ an example, consider a
person’s automobile that is identified by the signature,
green Ford truck with license number California
WIE188This could be reduced, through classification,
to a residue consisting of green truck. Assume that
another signature for the person who owns the truck is
a dentist, license number K611744, in Twin Lakes,
California. Assume that this signature was reduced to
just Twin Lakes, California. However, by combining the
two residues, we would have green truck inTwin Lakes,
California. Since Twin Lakes has less than 100 homes,
this might be sufficient to identify the particular person.
Breaking this inference is diflicult since the set of prop-
erty owners in Twin Lakes is so small. If the dentist is
associated only with the county of residence (e.g. Mono
County) rather than the area ofTtin Lakes, this infer-
ence could be broken.

This type of inference detection is usually associated
with statistical databases. To preserve the security of
these databases, responses which involve only a very
small number of the subjects of the database, or which
involve most of the subjects are not answerable, since
they could be used to infer sensitive data about a sin-
gle subject. A considerable amount of research has

been performed on how to determine if sensitive data
can be extracted from statistical databases. The work
by Denning [28] considers how characteristic formu-
las called trackers can be used to extract sensitive data
from statistical databases. This aspect of database infer-
ence differs fi-om the previously described Merlin
work, in that it is concerned with inferring data about
individual instances within an entity, while Merlin is
concerned with inferring relationships between dif-
ferent entities in the database.

6. Future Directions in Inference Detection
Approaches

The checked cells in Figure 2 indicate the practical
database design techniques we have provided for
countering inference vulnerabilities for each of the
three data tiers. Approaches for each of these checked
cells have been presented in previous sections of this
paper.This section discusses research that is currently
underway to provide practical approaches for the
other cells of Figure 2. In this paper, we will consider
future research directions for the schema tier and for
the lower tiers.

6.1 Schema Tier
At the schema tier, we have presented an example of a
very fast schema analysis tool and indicated where
other research centres have developed schema-tier
tools. Research at SRI International focused on the
ability to follow paths based on foreign keys. [18] For
Merlin, this analysis is based on functional dependen-
cies, foreign keys and subtypes. While this is a sound
inference detection approach in that all paths that are
detected have the potential to lead to an inference
problem in the database, the approach is not complete,
since there are legitimate inferences that will not be
detected. As an illustration, in the company-project
second path example, the critical functional depen-
dency that permits the second path to be detected is
employee-number + project. This implies that an
employee (and an escort, since an escort is a subtype
of employee-number) can work for only one project.
If an employee could work on multiple projects, then
a second path inference would not have been detect-
ed, since we would no longer have the critical mnc-
tional dependency. Likewise, if an escort could work

704

Computers & Security, Vol. 16, No. 8

for two or more projects, then there would no longer
be a functional dependency between escort and pro-
ject.The removal of this functional dependency would
mean that the Merlin tool would no longer be able to
detect this second path.

Note that this lack of completeness also occurs if a
path-finding approach, such as that used by SRI
International, is applied. In their path-finding
approach, foreign keys are used to create the second
path. If an employee can work on multiple projects,
then employee-number would no longer be a key for
the Project relation, since it would not uniquely iden-
tify a tuple of the relation. In this case, the key for the
Project relation would be the multi-attribute key
job-number plus project-number. There is no foreign
key in the Visitor_log relation to permit a path from
Visitor_log to Job-cost in order to connect company
with project number.

One approach to addressing this problem is to permit
the + relationships to include multivalued dependen-
cies [22], which are those relationships in which the
right-hand side of the arrow represents a set of values,
rather than just a single value. For those cases in which
the potential set of right-hand-side values is relatively
small, then one can use Merlin to detect potential
inference problems. What is given up in this case is
soundness, since not all paths that are identified will be
legitimate second paths.

6.2 Group and Instance Tier
The major challenge in inference-orientated security
design techniques for databases is to push the group
and instance-tier analysis technique to levels beyond
the manual penetration approach described in this

paper. This section will highlight research approaches
that have been investigated for this area.

One of the earliest efforts in this area was an approach
by Buczkowski in which an expert system is used to
encoded inference rules that can be used to detect
inference vulnerabilities [29]. In this case, one must
first know about the inference vulnerabilities and then
encode the necessary rules in the expert system to be
able to detect the existence of signatures for sensitive
targets.

The AERIE project has worked to extend the Merlin
tool into instance-tier data. The challenges here are
that the amount of data is significantly greater at the
instance level than it is at the schema level and there
may be significant inferences which are not built on
functional dependency relationships. In [30] we have
presented a model-based approach for detecting
instance-level inferences that does not rely on fimc-
tional dependencies. Under this approach two entities
X and Y are related by a minimum and maximum
association cardinality. A maximum association cardi-
nality ACmax(X + Y) is the maximum number of
Y instances that can be associated with a single
X instance using joins (based on attributes that may or
may not be keys). Similarly, the minimum association
cardinality ACmin (X + y), is the minimum number
of Y instances that can be associated with a single
X instance, using joins. These minimum and maxi-
mum association cardinalities can be used to annotate
an object model of a database, such that the model can
be used to assist in instance-tier analysis.

Figure 10 shows a portion of a company database that
has been modelled in a variation of the Unified

1 name j 1..2 1.. few 1 number 1 1.. few 1.. many name

Figure lO:Visitor-Employee Inference

705

TH. Hinke et al. / Protecting Databases From Inference Attacks

Modelling Language [31] .The notation also shows the
minimum and maximum association cardinalities
between the various entities. For example, the
AC_(Visitor + Office) is f&u, which means that a
visitor visits only a maximum of a few offices, where
few is defined as an application specific number that is
sufficiently small to constitute an inference problem.
The AC,, (Visitor + Office) is one, which means
that each visitor visits a minimum of one office. In the
opposite direction, the AC_ (Office + Visitor) is
many, indicating that many visitors visit each office. In
contrast tofew, many is an application specific number
that is sufficiently large that it does not constitute an
inference problem. The ACti,, (Office + Visitor) is
one meaning that each office has a minimum of one
visitor. These association cardinalities are based on
knowledge that a security analyst has of the actual
database, or they could result from accesses made to
the database to verify or discover the association car-
dinahties. Finally, the dotted line is used to indicate a
sensitive association between visitors and employees,
while the solid line indicates that the information is
publicly available.

By using this annotated model, the security analyst (or
a program) can use the model to determine if the
database is vulnerable to an inference problem. An
inference problem in this case is defined as the ability
to find the association between a visitor and an
employee or an employee and a visitor, since this is the
sensitive association.

Since the association card&&ties are transitive, the

AC_ (Visitor + Employee) = ACmax (Visitor +
O&e) x AC,,,, (Ofice + Employee). In this case this is
2 * few. Our view is that any relatively small constant
times f&u or even a small number of multiples of fw
constitutes an inference problem. In this case, each vis-
itor can be associated with a small number of employ-
ees and this could cause an inference problem, since
this association is sensitive.

In the opposite direction, AC,,,, (Employee + Vixifor)
is few * many, which is not considered an inference
problem. However, since ACmi, (Employee + Visitor) is
one, this means that it is possible that an individual
employee could be associated with a single visitor, and

this would be an inference problem since this associa-
tion is sensitive. For large object models, we have
applied transitive closure algorithms (with appropriate
adjustments for the association cardinalities) to deter-
mine those entity-to-entity association cardinalities
that could constitute a potential inference problem. As
necessary, particular associations can be instantiated
using standard database queries.

Other instance-level inference detection research has
also been performed by a research group at the
University of Tulsa [32]. They have used joins to
instantiate sensitive associations.

Another very different approach that has been sug-
gested uses the database itself to derive potential infer-
ence relationships. Marks suggests that material impli-
cations derived fi-om the actual data could be used as
the basis for inference detection [33]. A material
implication is not necessarily based on a causal rela-
tionship, but indicates only that the particular values
appear together.This could be due to coincidence or
because there is some relationship between these val-
ues. This requires that data be grouped and rules be
available to relate one group to another. To illustrate
this approach, Marks uses an example in which the
names of the personnel assigned to the classified
Manhattan Project are classified. However, if it is the
case that all nuclear engineers in the company are
assigned to the Manhattan Project, then there is an
inference vulnerability between a skill category, nucle-
ar engineering (which is not classified when associat-
ed with an employee name) and the personnel
assigned to a classified project.These types of relation-
ships could be identified by scanning the database
instances for groups, and then assessing whether mate-
rial implications exist between these groups.This work
appears to be in the early stages, but shows some
promise of providing a way of using the data itself to
assess potential inference vulnerabilities.

An area that has considerable potential for addressing
group-tier inferences is research on statistical
databases.The US Bureau of the Census is noted for
its effort in ensuring that personally identifiable data
cannot be derived from the census data that is
released. Work on multivariate analysis would also be

706

Computers & Security, Vol. 16, No. 8

applicable to this area [27]. While consideration of
statistical and multivariate approaches is beyond the
scope of this paper, they are noted as areas that could
be applied to group-tier inferences. The work of
Denning [28] as previously noted, is one of the sem-
inal works in this area.

As one attempts to automate inference analysis for
group and instance-tier data, one of the diflicult prob-
lems that must be addressed is the deeper levels of
knowledge that are now required, that were not
required for schema-tier analysis. This knowledge is
required since the adversary can be assumed to bring to
the inference attack many years of education as well as
specialized expertise in the areas of interest. In a previ-
ous paper [l] we have suggested a depth-first knowl-
edge acquisition approach based on microanalyzed
knowledge chunk&, which involves an inference-ori-
entated, in-depth encoding of knowledge relevant to
each of the relations within a relational database. As
research moves f?om schema-level data to instance-tier
data, the need for deep knowledge greatly increases.The
general solution of this problem is an open research
question. We believe that the general approach lies in
capturing inference-relevant semantics of the data to be
analyzed using an approach such as the microanalyzed
knowledge chunks described in [l].

Acknowledgements

We would like to acknowledge the very helpful com-
ments provided by one of the reviewers of this paper.

References

[l] Hinke,T.H., Delugach, H.S. and Chandrasekhar,A. 1994. Layered

Knowledge Chunks for Database Inference, in Database Security

VII: Status and Prospects, T.E Keefe and C.E. Landwehr, Editors.

1994, North-Holland.

[2] Chen, PP.-S., 1976. ne Entity-Relationship Model - Toward a

UnifiedView of Data. ACM7?ansactions ofDatabase Systems, 1976.

[3] Hinke, T.H. and Delugach, H.S. 1993. AERIE: An Inference

Modeling and Detection Approach For Databases, in Database

Security VI; Status and Prospects, B.M. Thuraisingham and C.E.

Landwehr, Editors. 1993, North-Holland.

6 These were previously called layered knowledge chunks.

[4] Morgenstern, M., 1988. Controlling Logical Inference in

Multilevel Database Systems. In Proceedings 1988 IEEE

Symposium on Security and Privacy, 1988.

[5] Morgenstern, M., 1987. Security and Inference in Multilevel

Database and Knowledge-Base Systems, In Proceedings of SIG-

MOD (ACM Special Interest Group on Management of Data),

1987.

[6] Hinke,T.H., 1988. Database Inference Engine Design Approach.

In Proceedings IFIP Working Group 11.3 Workshop -on Database

Security, 1988.

[7] Hinke,T.H., 1988. Inference Aggregation Detection In Database

Management Systems. In Proceedings 1988 IEEE Symposium on

Security and Priuacy, 1988. Oakland, CA: IEEE.

[8] Denning, D.E., et al., 1988, The SeaView Security Model. In

Proceedings 2988 IEEE Computer Society Symposium on Research in

Security and Privacy, 1988.

[9] Schaefer, M., 1995. Operating System Security Course, 1995.

[lo] Weissman, C., 1995. Essay 11: Penetration Testing, in Information

Security: An Integrated Collection of Essays, M.D.A.a.S.J.a.H.J.

PodelI, Editor, 1995.

[ll] Bisby, R. and HoIIingworth, D., 1978. Protection Analysis Project

Final Report, 1978, USC Information Sciences Institute: Marina

Del Rey, CA.

[12] Center, N.C.S., 1985. Department of Defense Standard: Department

of Defense Trusted Computer System Evaluation Criteria, 1985,

National Computer Security Center.

[13] Hinke,T.H., 1990. Database Inference Engine Design Approach, in

Data-base Security II Status and Prospects, C.E. Landwehr, Editor,

1990.

[14] Binns, L.J., 1993. Inference Through Secondary Path Analysis, In

Database Security, VI: Status and Prospects, B.M.Thuraisingham and

C.E. Landwehr, Editors, 1993, North-Holland.

[15] Binns, I-J., 1992. Inference Through Secondary Path Analysis. In

Proceedings of the Sixth IFIP 11.3 Working Conference on Database

Security, 1992.

[16] Binns, L.J., 1993. Implementation Considerations for Inference

Detection: Intended vs.Actual Classification. In Proceedings of the

IFIP WC 11.3 Seventh Annual Working Conference on Database

Security, 1993.

[17] Binns, L.J., 1994. Implementation Considerations for Inference

Detection: Intended vs. Actual Classification, in Database Security,

VII: Status and Prospects, T.F. Keefe and C.E. Landwehr, Editors,

1994, North-Holland.

[18] Qian, X., et al., 1993. Detection and Elimination of Inference

Channels in Multilevel Relational Database Systems. In

Proceedings 1993 IEEE Computer Society Symposium on Research in

Security and Privacy, 1993.

707

TH. Hinke et al. /Protecting Databases From Inference Attacks

[19] Su, T-A. and OzsoyogIu, G., 1991. Multivalued Dependency

Inferences in Multilevel Relational Database Systems. In IEEE

Transactions on Knowledge and Data Engineering, 1991.

[20] Su, T.-A. and OzsoyogIu, G., 1990. Multivalued Dependency

Inferences in Multilevel Relational Database Systems, in Database

Security Ill: Status and Prospects, D.L.S.a.C.E. Landwehr, Editor,

1990, North-Holland.

[21] Hinke,T.H., Delugach, H.S. and Chandrasekhar, A., 1995. A Fast

Algorithm For Detecting Second Paths in Database Inference

AnaIysis.]ournal of Computer Security, 1995,3(2,3): pp. 147-168.

[22] EImasri, R. and Navathe, S.B., 1984. Fundamentals of Database

Systems, Second Edition, 1994, Redwood City, CA: The

Benjamin/Cummings Publishing Company, Inc.

[23] UIhnan, J.D., 1988. Principles of Database and Knowledge-base

Systems, Volume 1. 1988.

[24] Bell, D.E. and LaPadula, L.J., 1976. Secure Computer Systems:

UniJTed Exposition and Mu&s Interpretation, 1976, MITRE

Corporation: Bedford, MA.

[25] Garvey, T.D., 1993. SRI RADC Database, 1993, SRI

International.

[26] Lunt,T.E, 1988. Toward a Multilevel Relational Data Language.

In Proceedings of the Fourfh IFIP Aerospace Computer Security

Apptirations Conference, 1988.

[27] Dillon, WR. and Goldstein, M., 1984. Multivariate Analysis:

Methods and Applications. 1984: John Wiley & Sons.

[28] Denning, D.E., Denning, P.E. and Schwartz, M.D., 1979. The

Tracker: A Threat to Statistical Database Security. ACM

Transactions of Database Sysremz, 1979.

[29] Buczkowski, L.J., 1990. Database Inference Controller, in

Database Security III: Status and Prospects, C.E. Landwehr, Editor.

1990, North-Holland.

[30] Hinke,T.H., Delugach, H.S. and Wolf, R.P, 1997. A Frameworkfor

Inference-Directed Data Mining, in Database Security Volume X:

Status and Prospects, F? Samarati and R.S. Sandhu, Editors. 1997,

Chapman & HaII. pp. 229-239.

[31] Rumbaugh, J., Jacobsen, I. and Booth, G., 1988. “I-Jn$ed Modeling

Language Reference Manual”, 1998.

[32] Rath, S., et al., 1996. A Tool for Inference Detection and

Knowledge Discovery in Databases, In Databate Security IX: Status
and Prospects, D.L. Spooner, S.A. Demurjian, and J.E. Dobson,

Editors. 1996, Chapman & HaII.

[33] Marks, D.G., 1994. An Inference Paradigm. in Proceedings of the

17th National Computer Security Conference, 1994.

708

