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This paper presents a model of database inference and a taxonomy 

of inference detection approaches.The Merlin inference detection 

system is presented as an example of an automated inference anal- 

ysis tool that can assess inference vulnerabilities using the schema 

of a relational database. A manual inference penetration approach 

is then offered as a means of detecting inferences that involve 

instances of data or characteristics of groups of instances. These 

two approaches are offered as practical approaches that can be 

applied today to address the database inference problem.The final 

section discusses future directions in database inference research. 
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1. Introduction 
A database holds a great amount of data that is critical 
for the operation of enterprises, be they commercial 
or government.This data, while providing crucial sup- 
port for the mission of the enterprise, can also provide 
a source of sensitive information that is useful for 
those who are competitors or adversaries of the enter- 

l This work was supported under Maryland Procurement 05ce Contract 
No. h4DA904-94-C-6120. 

prise. Using available secure database management sys- 
tems, an enterprise has the ability to provide various 
degrees of protection for the data.This protection can 
range from access lists to label-based protection, where 
security labels are assigned to the data based on its sen- 
sitivity. Access to this data is mediated based on the 
privileges of those who attempt to access it. 

Unfortunately, properly protecting individual portions 
of the database may not provide complete protection. 
A competitor or adversary may be able to use data that 
in isolation appears to be properly protected to infer 
data that is highly sensitive.The problem for the enter- 
prise is to discover these inferences, and then to take 
necessary countermeasures to close them. 

The general solution to the inference problem is dif- 
ficult, since an adversary can apply a deep body of 
knowledge in performing an inference attack. Any 
adversary must be assumed to possess an extensive 
educational background, as well as familiarity with 
the specific domain of knowledge of his intended 
attack. AU of this knowledge can be applied in per- 
forming the inference attack. The implication of this 
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is that the protectors of the database must also apply 
this deep knowledge to their inference analysis in 
order to discover the vulnerabilities of their database 
before they are discovered by their adversary. While 
work is proceeding to address database inference 
detection in light of the deep knowledge required 
[l], the results of this work are still in the research 
phase. However, the fact that deep knowledge is 
required to address the general inference problem 
fully does not mean that there are no practical tech- 
niques available today to apply to important seg- 
ments of the problem. It is the objective of this paper 
to describe these practical techniques. 

In order to provide both a context for this discussion 
and a means to help those with responsibility for 
database protection to understand some of the subtle 
implications of the inference problem, Section 2 of 
this paper will present a model of the inference prob- 
lem that has been developed as part of the AERIE 
inference project at the University of Alabama in 
Huntsville, USA.This model provides a useful means 
of visualizing the various data vulnerabilities associ- 
ated with the inference problem, as well as terminol- 
ogy for addressing methods for countering the prob- 
lem. Section 3 will then consider a framework for 
categorizing the techniques that can be applied to 
the design of databases in order to reduce their vul- 
nerability to inference attack. Section 4 will discuss 
current state of the art automated inference tech- 
niques, and Section 5 will present manual techniques 
that can be applied. Finally, Section 6 will contain a 
brief discussion of future techniques that are still in 
the research stage. 

2. Characterization of inference 
Vulnerabilities in Databases 
The AERIE inference research project at the 
University of Alabama in Huntsville has developed a 
model of the inference problem that is called AERIE 
(Activities, Entity, Relationships Inference Effects). 
This model assumes that an adversary desires certain 
data that is the target of his or her inference attack. 
This target, which is referred to as the sensitive target, 
can be expressed in terms of the constructs of the 
AERIE model. This model augments the entity-rela- 

tionship (ER-model) developed by Chen that is com- 
monly used for database modelling [2]. 

The AERIE model characterizes possible inference 
targets in terms of entities, activities and various rela- 
tionships[3]. A n entity, as in the ER-model, is 
some thing that has existence and can be distin- 
guished from other things. Entities are the nouns 
in the AERIE model. Activities are the verbs and 
they indicate actions. Relationships are used to rep- 
resent various associations between entities and 
activities. Using the model to represent various pos- 
sible inference targets, we have the following types of 
targets: 

Entity Materialization: this represents an inference 
that detects the existence of an entity or some charac- 
teristics of an entity. An example of this type of infer- 
ence would be to infer that the entity growing season 
is underway within a farming community based on 
the nature of items that show up in a point-of-sale 
database, such as fertilizer, seed or pesticides. 

Activity Materialization: this represents an infer- 
ence that detects the existence of an activity. For 
example, one can infer that a winter mountain climb- 
ing expedition is about ready to occur based on the 
ordering of relevant equipment, such as an ice axe, 
cross country skis or low-temperature sleeping bags. 

Entity-Entity Relationship: this represents an 
inference of a relationship between two entities. An 
example is the ability to infer the companies that are 
supporting a very sensitive project, based, for example, 
on an employee for the company attending a meeting 
for the project. 

Activity-Activity Relationship: this represents a 
sensitive relationship between activities. For example, 
the fact that the activity of cotton picking has 
occurred can be deduced by the fact that a cotton 
gin’s database shows daily ginning activity. 

Entity-Activity Relationship: this represents an 
inference that detects a sensitive relationship between 
an entity and an activity. An example of this could be 
inferring that a company was adopting a new process 
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for the manufacture of computer chips based on its 
ordering of particular types of equipment. 

Relationship-Relationship Relationship: in this 
type of inference, it is the relationship between rela- 
tionships that is being inferred. For example, in a 
classroom setting, the posting of student grades along 
with a student number would be a relationship. A 
sorted list of student names would also be a relation- 
ship. A sensitive relationship between these two lists 
could be knowledge that the same sorting algorithm 
was used in both cases. With this information one 
could easily deduce the grade associated with each 
student’s name, which is highly sensitive. Another 
type of relationship-relationship target is the ability 
to infer some rule (a type of relationship) that has 
been applied to the data. For example, by scanning 
the list of ages for members of a retirement commu- 
nity one could infer a rule that each member must 
be at least 55 years old. 

These various types of inference targets represent enti- 
ties, activities and relationships that occur in the real 
world. Any database, however, constitutes a 
microworld. This microworld selectively represents a 
portion of the real world that is relevant to the enter- 
prise that maintains the database. Within the 
microworld of the database, sensitive targets that are to 
be protected by an enterprise are represented by what 
we call signatures.The signature represents the manifes- 
tation of the real world inference target within the 
microworld of the database. For example, the orders 
for the mountain climbing expedition represent the 
signatures of the expedition in the database of the 
equipment retailer. 

The relationship between the inference signature and 
target can be understood in terms of a model developed 
by Morgenstern [4, 51. This model uses an inference 
function - INFER - which is defined in terms of the 
uncertainty, H(y), about the value of some information 
Y, and the relative uncertainty, II_,&), about Y, given 
knowledge of X. Ha is equal to 0 if X fully discloses 
the exact value of Y. This means that the uncertainty 
of Y, given X, is 0; thus there is no uncertainty If X dis- 
closes no information about Y, then Hfl) is equal to 
H(Y).The infer function is defined as: 

= 0 othenvise 

In this case, E is some minimum threshold, below 
which X supplies what can be considered an insignif- 
icant amount of information about Y. 

In this model, the inference fimction INFER (X + y) 
has a value related to how much information X dis- 
closes about Y. INFER has a value of 0 if X discloses 
no information about Y. It has the value of 1 if X dis- 
closes the exact value of Y. In terms of the signatures 
within the database and the sensitive targets that are to 
be protected, it would be desirable if INFER (signa- 
ture + target) = 0 for all signatures that are contained 
within the database. 

Each of the various types of sensitive targets expressed 
in the AERIE model has a signature.The entity signature 
(E-sig) is a signature in the database that reflects the exis- 
tence and characteristics of an entity that exists within 
the real world. For example, as noted for the entity mate- 
rialization example, the growing season represents the 
real world target.The database itself may not contain any 
explicit information about the growing season. However, 
it may contain an E-sig of the growing season, which 
consists of records of the sale of items that are normally 
purchased at the beginning of the growing season. 
Examples might be seed and fertilizer. Of course, to 
be able to perform this inference, an adversary would 
have to have a knowledge base that included the signa- 
tures of all of the sensitive targets that were of interest. 

The activity signature (A-sig) represents the database 
manifestation of an activity that occurs in the real 
world. For example, preparation for an attack could be 
indicated by database entries for material requisitions 
and troop movements. When it is not important to 
differentiate between an activity or entity signature, 
we can refer to a Q-sig, which represents either an A- 
sig or an E-sig. 

The relationship signature (R-sig) represents the sig- 
natures in which the various types of relationships that 
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may exist in the real world are reflected within the 
database. A particular type of R-sig is the second path 
inference [6,7]. An example of second path inference 
is shown in Figure 1.This represents the real-world tar- 
get that the identity of companies that are supporting 
certain sensitive projects must not be disclosed.This is 
an example of an entity-entity sensitive target. In this 
example, the relationship between a project and the 
companies that support the project is considered to be 
classified at level HIGH, as indicated by the dashed 
line in the figure.This sensitive target can be inferred 
at a lower classification level (LOW) by finding a sec- 
ond path that makes the association between compa- 
ny and project1 

One such second path shown in the figure is [project, 
meeting, visitor, company]. This path recognizes the 
possibility of using a meeting attendee list to associate 
all of the companies for which the attendees work 
with the classified project.As can be noted, while such 
a path exists at the HIGH level (where it can be of no 
use to a LOW cleared adversary), this path is not visi- 
ble at the LOW level, as indicated by its dashed line. 
Thus, this does not provide an exploitable second path 
at the LOW level. 

However, as can be noted, an exploitable LOW second 
path consisting of [project, escort, visitor, company] 
does exist. This example assumes a working environ- 
ment in which all visitors are escorted by some 
employee who has been designated as an escort for the 
particular visitor. This path uses the project to which 
the escort charges his or her time as the basis for asso- 
ciating the visitor’s company with the project, and 
thus forming the classified association using only 
LOW classified data2 

Using this second path, the value of the INFER func- 
tion would not equal one, since there could be some 

’ Note that while HIGH and LOW are used for the example. these can be 
generalized to various types of hierarchically ordered security levels (e.g. 
tuxlassilied, confidential, secret or top secret) or various non-hierarchical 
categories (e.g. competition-sensitive, company Delta proprietary) that 
have been used to label data within the US Department of Defense. 

’ One solution to this problem would be to polyinstamiate [8] the project 
number, such that the escort would have a classitied project number and an 
unclassified project number. He would use the unclassified project number 
for escorting visitors. If the classified project were not tied to this unclasai- 
fied number, then the inference path would be broken. 

false associations. For example, assume that a visitor 
from the Alpha Company was to be escorted by an 
employee who works only on Project Gamma. Using 
the second path inference signature, this would be 
viewed as a signature for the association between the 
Alpha Company and Project Gamma. However, if the 
visitor was actually attending a meeting for Project 
Omega, this sensitive association would not be indi- 
cated by this second path. In terms of the INFER 
function, this means that the value of INFER of this 
second-path signature for this company-project asso- 
ciation is less than one. It is also less than one due to 
the fact that in many companies, people work on mul- 
tiple projects. However, the fact that the value of 
INFER is less than one does not mean that it is not 
valuable. 

The AERIE project has identified the following three 
tiers of data within the database that can potentially 
support a sensitive target: schema, group and instance. 
In a relational database, the schema consists of the def- 
inition of the relation tables and associated attributes 
that are contained in each relation. Second-path infer- 
ences (such as the company-project inference that was 
previously discussed) are an example of a type of infer- 
ence signature whose potential can be detected with 
schema-level analysis. 

The group tier consists of inference signatures that 
involve properties about groups of data values. For 
example, knowledge that certain types of parts are 
unique to certain types of aircraft could be used to 
infer that an airbase supports a particular type of air- 
craft, based on the nature of parts that are shipped to 
the base. This tier can also be used for inferences 
involving signatures that involve statistical properties 
of the data or correlations with various types of data. 

The instance tier represents those inference signatures 
that involve individual tuples of a relation in a relation- 
al database. For example, if the chairman of the Beta 
Company is known to be performing secret negotia- 
tions with a foreign government, and the chairman’s 
aircraft (identified by its tail number) is reported to have 
landed in Iceland, then one can infer that Beta is nego- 
tiating with the Government of Iceland.This would be 
an example of an instance-tier inference. 



Computers & Security, Vol. 16, No. 8 

Classified Secret 
Supports Relationship 

Project ----~~~-----------___--__ 

Unclassified Unclassified 

Escort 
Unclassified 
Relationship Unclassified 

Relationship 
Holds Meeting 

Figure 1. Company-Project Inference Using Escort 

3. Characterization of Database Design 
Techniques 

The inference vulnerabilities presented in the previous 
section can be countered through the use of various 
inference-orientated design guidelines and tech- 
niques. To provide a context to understand how the 
various techniques relate to each other and where 
they fit into the continuum of techniques that may be 
available in the future, this section presents a number 
of ways to characterize the techniques. 

The first means of characterizing the techniques is 
based on when in the database life-cycle the tech- 
niques can be applied. Those techniques that can be 
applied to the database during database design are 
called proactive techniques. These techniques do not 
require that the database data be available; only the 
schema is required. Those techniques that can be 
applied to existing database are called reactive tech- 
niques.These techniques can use the data instances for 
their analysis. 

The second means of characterizing design techniques 
is based on the data tier to which the technique is 
applied-The data tiers were introduced in the previous 
section. 

The t&l means of characterizing design techniques is 
based on the sophistication of the approach. A useful 

model of increasingly more sophisticated security guide- 
lines is illustrated by the historical development of 
guidelines and methods for removing security flaws 
from operating systemsThe following ordered list, pro- 
vided by Marvin Schaefer [9] traces this historical devel- 
opment of trusted operating system design guidelines 
and associated methodologies from the earliest stages to 
the latest, most technologically advanced stages: 

1. Testing 

2. Penetration and patch 

3. Code review 

4. Automated analysis 

5. Application of fundamental principles 

6. Formal analysis 

The initial design guideline for the development of 
trusted operating systems was limited to just the nor- 
mal testing of security features that is used for testing 
the correct functioning of any system. When it was 
realized that this was not sufficient, security-orientat- 
ed penetration testing was applied [lo]. These pene- 
tration techniques were then supplemented with 
manual reviews of the code in an attempt to discover 
software anomalies that would lead to potential pene- 
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tration vulnerabilities [lo]. There was also some 
research in automating the search for such flaws 
through automated code analysis [l l].The attempts to 
discover flaws and patch existing operating systems 
were replaced with the development of security prin- 
ciples that could be used to design systems from 
inception with security as a guiding design target [12]. 
For those systems that were to have the highest level 
of assurance, all of the security relevant software was 
formally specified in a language that could then be 
formally verified to prove that - at least at the spec- 
ification level - the system satisfied a desired securi- 
ty policy [12]. Even today, the actual verification of the 
code is viewed as beyond the current state of the art 
for real (as opposed to toy) systems [ 121. 

All of these operating system techniques have the 
objective of developing software that has a minimal 
number of software flaws. Using these evolutionary 
stages as guidance in developing a list of increasingly 
more sophisticated inference removal techniques for 
databases, we see some useful analogies and distinct 
differences.The following are suggested as a reasonable 
sequence of increasingly more sophisticated stages in 
what will be an evolving technology base for counter- 
ing database inference vulnerabilities: 

1. Penetration and fix 

2. Automated inference analysis 

3. Application of fimdamental principles to database 
design 

4. Formal analysis of database design 

Since there is no functional capability to test for infer- 
ence vulnerabilities, the initial stage in inference anal- 
ysis and guidance is provided by an inference-directed 
penetration analysis of the data. This is a manual, 
thought-intensive process to find inference vulnerabil- 
ities in a particular database. This is analogous to both 
the second and third stages of the operating system 
sequence. The second stage of inference analysis and 
guidance is automating the process of analyzing the 
data for inference vulnerabilities. This involves some 
type of automated analysis of the actual data instances. 

The third stage concerns the application of funda- 
mental inference-prevention principles when the 
database is designed. Examples of this taken from a 
database area other than inference, are the various 
types of integrity constraints that are applied to rela- 
tional databases (e.g. referential integrity). The fourth 
and final stage of inference analysis and guidance is 
formal analysis. An example of formal analysis, taken 
from a non-inference domain, is the use of functional 
dependencies in database normalization to reduce data 
redundancy Formal analysis derived horn an inference 
domain could involve the formalization of the seman- 
tics of the data and an automated analysis to remove 
potential inference vulnerabilities as that data is placed 
in a database. 

In terms of the reactive and proactive approach cate- 
gorization, the penetration and fix approach is a reac- 
tive technique that can be applied to an existing 
database, since it involves the analysis of data. As will 
be shown in Section 5, this represents a group- and 
instance-tier approach. 

The automated-inference-analysis approach is a com- 
bination of both reactive and proactive approaches. 
The reactive approaches involve automated analysis of 
both the schema- and instance-tier data in an existing 
database to ferret out potential inference approaches. 
The proactive approach involves the analysis of the 
database schema while the database is still under devel- 
opment. 

The various types of database inference approaches 
discussed in this section can be combined with the 
various data tiers in which inference signatures can be 
located. This combination results in the matrix of 
Figure 2.The checked cells in Figlrre 2 indicate the cur- 
rent state of practical database design techniques that 
are available for countering inference vulnerabilities 
for each of the data tiers. Practical approaches for 
addressing each of these checked areas will be consid- 
ered in the remainder of this paper. 

In the next section, an automated technique for 
schema-tier analysis will be described. This will be 
followed by a section that describes a manual tech- 
nique that can be used for group- and instance-tier 
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Inference Technology 

Penetration & Fix 
Automated Inference Analysis 
Application of Fundamental Principles 
Forma Analysis of Database Design 

Applicable Data Tier 
Schema Group Instance 

J J 
J 

Figure 2: Inference Detection Techniques and Applicable Data Tiers 

analysis while automated techniques are still in the Merlin also provides some additional assistance in 
research stage. schema-tier analysis. 

4. Automated Techniques: Automated 
Inference Analysis 
Existing automated inference analysis tools have 
focused on schema-tier analysis.These approaches can 
be used proactively to perform an analysis of an initial 
database design, or reactively to analyze existing 
database schemas. Automated support for group and 
instance-tier data is still in the research stage and will 
be briefly described in Section 6, which looks to the 
future. 

The initial work in schema-tier inference detection 
was performed by Hinke for relational database 
schemas as part of the Advanced Secure DBMS 
research project at TRW in Redondo Beach, 
California, USA [7, 13].This project developed the 
concept of second-path inference detection. 
Additional research on second-path detection has 
been conducted by the US Government [14-171 and 
SRI International [18]. These approaches all use 
some form of path Jinding. Work on exploring infer- 
ence issues associated with functional and multival- 
ued dependencies was conducted by Su and 
Ozsoyoglu [ 19,201. In its Merlin schema analysis sys- 
tem, the AERIE project has addressed the mecha- 
nization of inference detection using second-path 
analysis based on functional dependencies. The 
Merlin tool uses an algorithm that is faster than path 
finding to perform the initial analysis [21]. In Merlin, 
path finding is used only to elaborate those paths that 
are identified as problems. As will be described, 

For relational databases, the value of second-path 
inference detection is that it does not require a deep 
knowledge level, as does the detection of some other 
types of inference signatures; it requires only analysis 
of the schema. The schema analysis will indicate 
whether a second path could be constructed with a 
series ofjoins. However, actual data instances will have 
to be consulted to determine if the potential vulnera- 
bility is realized in practice. In the company-project 
example, the inference vulnerability is of concern only 
for classified projects. If all visitors for classified meet- 
ings refused to divulge their company afliliations, then 
the database modelled in Figure 1 would not contain 
instances to support the derivation of the classified 
relationship between company and project. This 
means that a second path leading to a sensitive associ- 
ation could not be generated using the database data. 
Of course, it is possible that an adversary with access 
to this database could use information external to the 
database (e.g. company parking stickers on the visitor’s 
car or company afEliation information from profes- 
sional society or conference attendance lists) to make 
the link from visitor to company 

The Merlin system automates this second-path detec- 
tion. In the next section, we will describe the path 
detection approach used in Merlin. Following that we 
will describe a path grouping approach that can be 
used if the schema under analysis contains security 
labels. We will conclude this discussion of automated 
techniques with a description of how Merlin provides 
assistance in breaking second paths. 
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Project Relation (rl) 
Job_Number[u,u] 1 Project_Number[u,u] 

Figure 3: Project Relation 

Job-Cost Relation (r2) 
Employee_Number[u,u] 1 Job-Number [u,ul 1 Week_DaWwl 1 Hours[u] 

Figure 4: Job-Cost Relation 

Visitor-Log Relation (r3) 
Visitor_Name[u,u] 1 Date[u,u] 1 Companyhul I EscoNu9ul 

Figure 5:Visitor Log Relation 

Project Company Relation (r4) 
Job_Number[s,s] 1 Project_Name[s,s] ( Company[s,sl 

Figure 6: Company Project Relation 

4.1 Merlin Path Detection 
The basis for Merlin’s path detection approach is an 
algorithm for testing a relational database decomposi- 
tion for the lossless join property [22, 231. We have 
adapted this algorithm for use in the detection of sec- 
ond-path inferences within schema-tier data. We have 
also extended this algorithm to include subtype rela- 
tionships.3 The complete algorithm is described in [l] 
and a comparison between the performance of this 
algorithm and conventional path finding is presented 
in [21]. However, a brief overview of this algorithm is 
presented here. 

To assist in the description of this algorithm, an 
example that embodies the company-project second 
path of Figure 2 will be used. The database for this 
example consists of the four relations: project shown 
in Figure 3; job-cost shown in Figure 4; visitorJog 
shown in Figure 5 and project-company shown in 
Figure 6. The classifications associated with each 
attribute are shown.The letters (e.g. [s,s]) associated 
with each attribute indicates its minimum and max- 
imum classification, with the left s indicating a min- 

3 A subtype has all of the characteristics of its supertype, but adds some 
additional constraint. For example, a company escort may be an employee 
who has been given the responsibility of escorting visitors. This would 
make the escort a subtype of employee. Any mention of escort also consti- 
tutes a mention of employee. 

imum classification of secret and the right s indicat- 
ing a maximum classification of secret. All of the 
attributes shown indicate a single classification level 
for all of the attribute values, either all are unclassi- 
fied, u, or all are secret, s. However, Merlin will allow 
for the case in which an attribute has a range of val- 
ues, such as [u-s]. 

The Merlin algorithm represents the schema as a 
matrix consisting of rows (representing relations) and 
columns (representing attributes). For each row, the 
initial state of the algorithm contains an ‘ai’ under each 
attribute column ‘i’ if the relation represented by that 
row contains the attribute represented by the column. 
Also, for each row, a unique ‘bi is placed under each 
column for which the relation represented by row ‘j 
does not contain such an attribute. Because of its use 
of a’s and b’s, the matrix is called the AI3 matrix.The 
Al3 matrix for our example is shown in Figure 7. It will 
be noted that the range of security levels associated 
with each attribute is also indicated in the matrix. 
These will be used for ranking the second paths that 
are found. It should be noticed that the last row con- 
tains only b’s. The reason is that in order to address 
multilevel security, the Merlin algorithm is run sever- 
al times; once at each classification level. In this cur- 
rent example, the run level is unclassified, which 
means that the information contained in the relation 
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Initial Setting of Matrix S 
Relation 1 job_ 1 project_ ) Employee_ 1 week-date 1 hours 1 visitor _ 1 company 1 escort ) date 

Rl 
R2 
R3 
R4 

number name number 
aO[wl al[u,u] b0 
aO[u,u] bl a2 bwl 
b2 b2 b2 
b3Ts,sl  b3[s,sl b3 

b0 
a3 bwl 
b2 
b3 

name 
b0 b0 b0 b0 b0 
a4[u,u] bl bl bl bl 
b2 a5 b,4 a%.wl a7[u,u] aS[u,u] 
b3 b3 b3[s,sl b3 b3 

Figure 7: Initial Matrix 

represented by the last row in the AB matrix, 
pmject_company is more highly classified than the run 
level. However, the classification level of these classi- 
fied attributes are still indicated in the AB matrix and 
will be used for path ranking. More will be said about 
this later in the paper. 

In addition to this AES matrix, the algorithm is also 
presented with a list of the functional dependencies 
that apply to the schema. A function dependency 
between some set of attributes X and some set of 
attributes Y is denoted by X + Y, and is read as “X 
functionally determines Y.” The meaning of this func- 
tional dependency is that if for any two tuples ti and 5 
in any relation contained in the database to which the 
functional dependency applies, if the values of the X 
attributes of tuple ti, represented as ti[Xj, is equal to the 
value of the X attributes of tuple 5, ,represented as 
t.[Xj, then ti[ yl = tj[YJ. In other words, if the values for 
h t e set of attributes represented by X are the same in 
both tuples, then the values for the set of attributes 
represented by Y will also be the same in both tuples. 
The functional dependencies that apply to our exam- 
ple are as follows: 

1. employee-number + job-number, which means 
that an employee number uniquely determines the job 
number on which the employee is currently working. 
This assumes that an employee works only on a single 
project. 

2. visitor-name + company, which means that a visi- 
tor works for only a single company 

3. visitor-name, date + escort, which means that each 
visitor is escorted by a single escort. 

4. job-number + project-name, which means that a 
job number uniquely determines a project name. 

5. employee-number, job-number, week-date + 
hours, which means that the combination of employ- 
ee number, job number and week date, such as the 
Friday date for each week can be used to identify the 
number of hours worked. 

6. project-name + company, which means that a pro- 
ject name uniquely determines a single company that 
is supporting the project. 

7. project-name + job-number, which means that a 
project name uniquely determines the job number to 
which the employee charges his or her time. 

The other two types of information that this algo- 
rithm uses are the subtype relationship and the foreign 
keys. For this example, an escort is a subtype of employ- 
ee_ntrmber. This means that any time a row contains a 
reference to escort, we can also fill in a similar reference 
to employee_number.A foreign key is an attribute in one 
relation that references an attribute that is a key for 
another relation. The referenced key attribute may 
have a different name than the non-key attribute that 
references it. Merlin treats foreign keys as synonyms. 
Thus, any time that a row contains a reference to a 
foreign key, we can also fill in a similar reference to the 
key to which it refers, and vice versa. 

The algorithm works in cycles. In a single cycle of the 
algorithm, all of the functional dependencies are 
matched with the AB matrix. Each functional depen- 
dency X + Y is considered in turn and is matched 
against the AB matrix to see if there are two or more 
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rows that have identical values for the X attributes, 
where these identical values can be ‘a values, ‘b’ values 
or ‘c’ values (the meaning of c will be described short- 
ly). If there are two or more rows that match, these 
rows are considered to form a set R. The Y values for 
the set R are then set to equal values using the fol- 
lowing method: if none of the rows in R contains an 
‘a’ or ‘c’ value for Y, then all of the Y values are set to 
the lowest ‘b’ value in the set R. If one row in the set 
contains an ‘a’ or ‘2 value for Y, then all of the other 
rows in R are changed from ‘bj’ to ‘5’ for the respective 
attribute in column 7. If one of the ‘b’ values changed 
to a ‘c’ value is identical to some ‘b’ value not in R, then 
all of those ‘b’ values not in R are also changed to ‘L'. 
The ‘t’ value is used to represent places in the AB 
matrix where a ‘b’ (which means that it was not visi- 
ble in the relation) is changed to an attribute that is 
visible, based on the application of a functional depen- 
dency. 

For example, using the first tinctional dependency 
job-number -+ projkct_name, the Merlin algorithm will 
scan the X column, job-number, and find that both the 
R, and R, rows have identical values, a0 in this case. 
These two rows constitute the set R for this stage. 
Now the Merlin algorithm will scan the Y column, 
project_rzame looking only at the R rows (in this case 
R, and Rz) and find that row R, has an al and R, has 
a bl. The bl value in R, will be replaced with a cl 
value. The replacement is cl rather than al so that 
newly replaced attributes can be identified.These pro- 
vide the basis for a second path. What this replacement 
means is that since a functional dependency exists and 
since a mapping in R, exists for this functional depen- 
dency, this mapping can be used in R, to fill in the val- 
ues for all project-names, based on the Rl mapping. In 
essence, R2 is being expanded via a mock join opera- 
tion that is based on functional dependencies. 

A single cycle is completed once all of the functional 
dependencies have been checked against the AE3 
matrix.The algorithm terminates following a cycle in 
which no changes are made to the AE3 matrix. 

In this algorithm, a second path exists between two 
attributes if there exists some row such that the two 
attributes are represented by two ‘c’s’ or a ‘c’ and an ‘a’. 

If a row represents these two attributes as both ‘u’s’, 
this is not a second path, since this indicates that the 
relation initially contained both attributes. We call this 
a ‘first path’. 

The meaning of second path as used for the Merlin 
algorithm is that an association exists between all of 
the ‘a’ and ‘c’ attributes that share a row. Since all of the 
non-key attributes within a relation are functionally 
dependent upon the primary key of that relation, all 
non-key attributes in a relation have a functional 
dependency relationship with the key of that relation- 
ship. Also, since the Merlin algorithm ‘grows’ each row 
by adding new attributes (based on a match on the 
left-hand side of the functional dependency) that have 
a functional dependency relationship with an attribute 
that is already in the row, this new attribute will also 
have a functional dependency relationship with the 
primary key of that row. It can be observed, however, 
that some of the second-path associations will show a 
second path between two non-key attributes. These 
may or may not provide useful information. As will be 
described shortly, Merlin has an approach to rank the 
paths discovered so that the most promising second 
paths can be readily identified. 

As mentioned earlier, to address multilevel security, 
Merlin can be executed at different security classifica- 
tions, called rtrn levels.At a particular run level, the AI3 
matrix is constructed from only those attributes that 
are visible at that run level.This means that the secu- 
rity level of the attributes used in the AB matrix must 
be dominated by the run leveL4 

The final AE% matrix is shown in Figtrre 8. This algo- 
rithm has detected that a second path exists between 
project-name and company. Since there exists a row that 
contains an a and a c for company and project-name, this 
means that there exists the ability to build an associa- 
tion between a project-name and the external company 
that is supporting that project, based on an employee 
of that company being escorted by an employee who 

4 In terms of security policies used by the US Department of Defense [12, 
241, a security classification Li dominates another security classification L. 
if the hierarchical component of L, (e.g. top secret > secret > confidenti& 
> unclassified) is greater than or equal to the hierarchical component of L. 
and the set of non-hierarchical categories associated with Lj is a subset o k 
the set of categories associated with L, 
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Figure 8: Find Matrix 

is working on the project. Of course, we cannot be 
certain this association does exist, because the person 
who performed the escort fimction may not necessar- 
ily be associated with the project for which the person 
is visiting the facility. Still, assuming that escorts nor- 
mally escort visitors for their projects, this method will 
provide a reasonable means of detecting real inference 
vulnerabilities. 

It will also be noted that the row for relation R4 still 
shows all b’s. However, the classification range infor- 
mation available to the Merlin path ranking code indi- 
cates the initial classification for each of the three 
attributes for the R, relation.This information will be 
used for the path ranking, which will be described in 
the next section. 

This algorithm is fast and will identifj that a second 
path exists by indicating those attribute pairs that are 
joined by a second path. However, the algorithm does 
not indicate the various attributes that provide the 
realization of this path beyond the two endpoints.This 
detection of a path’s existence without the actual 
identification of the components of the path results in 
a considerable speed-up in the inference detection 
process. Comparisons between the Merlin second- 
path detection algorithm and a conventional path- 
finding algorithm showed that for a test database, 
called the AERIE database schema (consisting of 
33 relations and 104 distinct attributes) the Merlin 
second-path detection algorithm took 7.23 seconds, 
which was 10.9 times faster than the time it took a 
conventional path-finding algorithm to find the first 
path for all possible combinations of attributes. On 
another test schema developed by SRI International 
fi-om a ER-diagram supplied by the US Air Force 

Rome Laboratory [25], consisting of 48 relations and 
253 distinct attributes, the Merlin algorithm took 72.2 
seconds, which was 20.1 times faster than the path 
finding algorithm. [21] As can be noted, the value of 
the Merlin path detection increases as the size of the 
database increases. 

The computational complexity of this algorithm is 
based on the fact that for each cycle of the algorithm, 
each attribute A of each relation R (row of the matrix) 
must be considered with respect to each of the fLnc- 
tional dependencies D. For C cycles, this results in 
processing complexity of 0( C * R * A * 0). 
Assuming under worst case conditions that one 
attribute of one relation is changed for each cycle, the 
number of cycles is bounded by the number of 
attributes times the number of rows, which is R * A. 
Substituting this for C, we have processing complexi- 
ty of 0(R2 * A2). In actual practice this algorithm is 
much better than this since our experience has been 
that much fewer than R * A cycles are required. In 
tests using both the AERIE and the SRI database 
schemas, we have found that only four cycles were 
actually required. 

The next section presents Merlin’s path ranking 
approach. 

4.2 Merlin Path Analysis 
To use the Merlin tool, an analyst encodes the 
attributes and associated attribute security levels for 
each relation in the database. The analyst will then 
select a run level (which is lower than the most classi- 
fied data in the database) at which to perform the 
analysis.The purpose of this run level is to determine 
the second paths that exist at this particular security 

697 



T H. Hinke et al. / Protecting Databases From Inference Attacks 

level. As was noted in the previous section, Merlin 
operates in cycles. In each cycle, all of the functional 
dependencies are applied to the AI3 matrix to see if 
additional changes result. When one complete cycle 
results in no additional changes in the AB matrix, 
Merlin reports its results.These results are reported in 
terms of attribute pairs. Each row of the AB matrix is 
scanned to determine which attributes are associated 
with what other attributes. Those attribute pairs that 
are new indicate a second path.The Merlin algorithm 
does not, however, identi6 the components of this 
path, only the end-point attributes of the path. 
Standard path-finding techniques must be used if the 
set of attributes that constitutes this path is to be iden- 
tified. 

The results of a Merlin analysis on a database of even 
moderate size (e.g. 50 relations) will be a considerable 
number of second paths (attribute pairs). In general, 
the database designer must analyze each of the 
attribute pairs that have second paths to determine 
which may be sensitive and which may be ignored. 

The database designer can be assisted in this task of 
path analysis if the schema contains security labels.The 
AERIE project has developed a technique of auto- 
matic path grouping based on a schema that has secu- 
rity labels assigned to the attributes of the schema.The 
AERIE path grouping is based on schemas described 
in the MSQL (multilevel SQL) language, a multilevel 
extension to the SQL database language developed by 
SRI International.[26] However, the technique is not 
specific to MSQL; any schema classification language 
would support this path-grouping technique. MSQL 
provides the capability for the database designer to 
specie the classification of each attribute in a relation. 
If all of the values associated with a particular attribute 
of a relation are uniformly classified at the same secu- 
rity level, then a single classification is associated with 
the attribute. If the values associated with an attribute 
are not uniformly classified, then a classification range 
is associated with the attribute.This range indicates the 
lowest and highest classifications that apply to all of 
the values that are associated with the attribute with- 
in the relation. The security classifications of a given 
attribute may differ in different relations. An attribute 
could, for example, be unclassified in one relation but 

be secret to top secret in another relation.This can be 
seen in Figure 3, where the project-name attribute in the 
Project relation is unclassified, while it is secret in the 
Project_Company relation, Figure 6, because of its asso- 
ciation with the company. 

Under the AERIE path-ranking technique, the 
schema is used as a classification guide for paths that 
are detected by Merlin. Each relation can be viewed as 
a set of attribute pairs consisting of each attribute in 
the relation associated with each of the other 
attributes in the relation. Looked at in the most gen- 
eral sense, each attribute within any relation has two 
classifications, representing the minimum and maxi- 
mum security levels for the attribute’s values. For the 
case of uniformly classified attributes, the minimum 
and maximum security levels are the same. Each 
attribute pair association would have four classifica- 
tions, representing the minimum and maximum of 
both of the associated attributes. For example, the 
association between job-number and company in rela- 
tion R4 has the classifications minimum s and maxi- 
mum s for job-number and minimum s and maximum 
s for company. 

Identical attribute pairs may exist in different relations, 
and it is possible that they will have different classifi- 
cations. This difference may reflect the fact that the 
relations from which these attributes were taken rep- 
resent different entities, but have some of the same 
attribute names. For example, in an aircraft relation, 
the attributes of speed and range may be classified 
secret; in a motor vehicle relation, both of these 
attributes may be unclassified. Since there may be a 
number of identical attribute pairs with differing clas- 
sifications, the set of attribute pairs and their associat- 
ed classifications does not constitute a real class&ca- 
tion guide; however, it does provide some indication 
of the possible classification of paths and a use&l basis 
for ranking the paths. 

As has been mentioned, Merlin is executed at a par- 
ticular run level. This run level represents a potential 
access level of an adversary. At the run level, Merlin 
can view only those attributes whose classification is 
dominated by the run level, but, as shown in Figure 8 
the AEJ matrix contains classification level information 
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for all levels. The second paths that are generated use 
only those attributes that are dominated by the run 
level. To detect inferences, Merlin’s run level will be 
below that of the most highly classified attributes in 
the database.Thus there will be attributes to which the 
Merlin second-path detector does not have access, 
since they exist at a security level that strictly domi- 
nates the run level, where a security level strictly dom- 
inates another level if it dominates it but is not equal 
to it. 

A path discovered by Merlin is described in terms of 
the pair of attributes that delineate the end-points of 
that path.To perform the path rankings, each new path 
discovered by Merlin is compared with the set of 
attribute pairs that are generated from the schema. 
This set of schema-based attribute pairs reflects the 
entire schema; they are not limited to the attributes 
that are viewable at the run level. The groupings will 
be made based on this comparison. 

Using a refinement of the approach presented in [21], 
the various paths are ranked into grades, which differ 
in their potential security vulnerability These grades 
are defined in terms of four predicates. The values of 
the predicates IV, lN, AV and AN are based on an 
analysis of the schema with respect to the newly 
detected path that has been found (and is to be 
ranked) and the run level.The schema can be viewed 
as a set of path templates, each template being desig- 
nated by a pair of attributes that exist within at least 
one relation as specified in the original schema. For 
example, the Company_Project relation in Figure 6 con- 
tains three path .templates Gob-number, project-name), 
(job-number, company) and @oject_name, company). 
Multiple instances of a path template can exist, one for 
each relation that contains the two attributes that 
define the path template. Each path template instance 
has a lower and upper security level associated with 
each of the attributes of the path template instance. 
Thus the path template instance for the (job-number, 
project_name) template fi-om the Company_Project rela- 
tion has a lower and upper security level of secret for 
both attributes. The instance of this path template 
from the Project relation has a lower and upper bound 
of unclassified for both attributes. 

The predicates used to group the paths are defined in 
terms of the relationship between the run level, the set 
of path template instances that are viewable at the run 
level and the new path, (i,]) that is to be ranked.The 
security level of each path template instance, consist- 
ing of attributes i and j, can be defined in terms of the 
lowest security level of i, Li, the lowest security level of 
j, L? the upper security level of i ,Ui, the upper secu- 
rity level ofj, Uj and the security level of the run LR. 
In the predicate definitions we will use the notation 
X I Y to mean that Y dominates X. 

The following define each of the four predicates: 

l The predicate 1V (at least one path potentially visi- 
ble) is true for path (i,]) if at least one path template 
instance (i,j) in the schema is potentially visible.This 
is true if there exists some path template instance 
such that Li I LR AND Lj I L,.What this says is that 
for a path to be visible in the schema, both of its 
end-points must be visible. Note that this does not 
say that the actual data will contain a realization of 
this path. Since each attribute can be represented by 
a range of security levels, it is possible that the 
schema indicates that a path could be visible, since 
the lower bound of both of the end-points of the 
path is at a security level dominated by the run level. 
However, the upper bound on the attribute classifi- 
cation for one or both end-points could strictly 
dominate the run level. In this case, all of the actual 
database data that would permit a realization of this 
path could be above the run level. This is why it is 
said that a path is potentially visible. 

l The predicate 1 N (at least one path is potentially not 
visible) is true for path (i,J if at least one path tem- 
plate instance (i,J in the schema is potentially invis- 
ible. This is true if there exists some path template 
instance such that Ui > LR OR Uj > L,.What this 
says is that a path is invisible if at least one of its end- 
points is invisible. 

l The predicate Al/ (all paths visible) is true for path 
(i,J if all path template instances (i,j) in the schema 
are visible. This is true if for all path template 
instances, vi 5 LR AND Uj I LR. This says that all 
paths are visible if the upper bound on the end- 
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points of the path has a classification that is domi- 
nated by the run level. 

The predicate AN (all paths are not visible) is true 
for path (i,~) if all path instances (i,j in the schema 
are invisible. This is true if for all path template 
instances Li >LR AND Lj >LR. This says that all 
paths are invisible if the lower bound on the securi- 
ty levels of the end-points of the path is classified at 
a security level that strictly dominates the run level. 

Using the predicates, newly discovered paths are ana- 
lyzed and partitioned into vulnerability grades. In all 
cases, this grading process is triggered by the discovery 
of a new path in the AI3 matrix (e.g. at least one 
attribute in an attribute pair is a ‘c’).The following are 
the criteria for each grade: 

Red: AN = true. All of the templates for the newly 
discovered path are invisible at the run level.Thus, red 
paths represent a very high potential inference vulner- 
ability, since all examples of these paths taken from the 
schema are classified at a level that strictly dominates 
the run level. 

Yellow: 1 I/ = True AND 1N = True. At least two 
path templates matching the newly found path exist in 
the relation schema, and at least one path template 
instance is visible and at least one is invisible at the run 
level.Thus, yellow paths may or may not be a problem, 
since we have examples of paths taken fi-om the 
schema that are both visible and invisible at the run 
level. In general, while there is a high probability that 
red paths are a problem, there is a smaller probability 
that yellow paths are a problem. 

White: No path template matching this newly found 
path exists in the relation schema. Thus, the schema 
classification can provide no guidance as to the poten- 
tial classification of this newly found path. White paths 
must be carefully reviewed by a knowledgeable analyst. 

Green: AV = true. The only instances of these paths 
exist in the relation at levels that are dominated by the 
run level. In terms of what can be inferred about this 
association from the original schema, green paths do 
not appear to represent a problem. 

In addition to being ranked into colour grades, each 
path can be further ranked into three subgrades, 
depending upon whether the attributes that designate 
the second paths are primary keys, including near keys5 
or non-keys-The following are the three subgrades: 

Subgrade 1: both attributes of the second path are 
primary keys, near keys or part of a primary key; 

Subgrade 2: only one of the attributes of the second 
path is a primary key, near key or a part of a primary 
key, and 

Subgrade 3: neither of the attributes of the second 
path are a primary key, near key or a part of a prima- 

ry key. 

While not currently supported by the implementa- 
tion, one of the reviewers of this paper suggested that 
it would be useful to order the white relationships 
according to transitivity - the number of hops 
involved in the transitive association. This would be a 
useful means of partitioning the paths, since longer 
paths would normally be viewed as less problematic. 
This would require path instantiation, which is dis- 
cussed in the next section. 

An example of the path grades from the company- 
project example are shown in Figure 9. Green paths 
are not shown since they are not considered to be a 
problem. 

Having found the paths and ranked them by potential 
vulnerability severity, Merlin can then be used to pro- 
vide automated assistance in determining where a 
path can be broken. It should be noted that at this 
point in the analysis, Merlin knows that a second path 
exists, but it does not know the series of attributes that 
comprise the path; it knows only the attributes that 
serve as the end-points of the path. In order to break 
a path, the attributes that comprise the path must be 
known.A path will then be broken by classifying one 
or more of the attributes that contributes to it. 

5 An attribute that, while not technically a key, is sutticiently close to a key 
that in most cases it will designate a specific tuple in a relation. 
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Figure 9: Path Grading Example 

4.3 Merlin Path Breaking 
Path breaking in Merlin is based on path finding followed 
by a manual analysis of the components of the path to 
determine the most attractive places to break the path. 

As has been described, the path-detection capability of 
Merlin determines the existence of all paths that con- 
nect two attributes. One of the ways that these two 
end-points can be related is though a series of timc- 
tional dependency relationships. Because of the transi- 
tivity property of functional dependencies, this pro- 
vides the most meaningful association Corn an infer- 
ence perspective, since the end-points will themselves 
have a functional dependency relationship. As was pre- 
viously noted, not all of the paths found by Merlin fall 
into this category Because of this, Merlin supports two 
different path finding approaches, based on whether 
the path is a functional-dependency-based path or a 
path based on attribute associations. 

A functional-dependency-based path consists of a 
sequence of links that are drawn from the set of func- 

tional dependencies applicable to the database. An 
attribute-association-based path is comprised of links 
drawn from the set of attribute pairs that the Merlin 
tool has indicated have second paths associating them, 
or attribute pairs that are members of the same rela- 
tion and thus are joined by what we call first paths. 

Merlin can compute all paths connecting two 
attributes using either functional-dependency-based 
paths or attribute-association-based paths. As has been 
noted, the functional-dependency-based paths are the 
most meaningful. However, it some cases, there may 
be a second path that is not based on a functional- 
dependency-based path. In this case, the attribute- 
association-based path must be computed. In either 
case, once these paths are computed, they must be ana- 
lyzed to determine which attribute should be classi- 
fied to break the path. Since each pair of attributes 
may have a number of second paths connecting them, 
a number of different attributes may have to have their 
classification raised in order to break all of these paths. 
This identification of which attribute selected to have 
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their classification increased is a manual process. 
However, since the Merlin tool is fast, one approach is 
to analyze the path and then reclassify particular 
attributes and re-run the Merlin tool to determine if 
the path has been broked. In this way, Merlin can be 
interactively used to ask “What if questions“ much as 
one uses spread-sheet programs in financial analysis. 

5. Manual Techniques: Penetration and Fix 

For group- and instance-tier data, the initial stage of 
inference-orientated database analysis and design is 
inference penetration testing of the database. 
Analogous to operating system penetrations, this is a 
manual process whose objective is to locate inference 
vulnerabilities in the database. Useful guidance in per- 
forming inference penetration testing of a database 
can be gained by reviewing the steps used for operat- 
ing system penetrations. A widely used operating sys- 
tem penetration methodology is Weissman’s Flaw 
Hypothesis Methodology (FHM) [lo]. This method- 
ology consists of the following four steps: generation 
of a set of flaw hypotheses; confirmation of each flaw 
through desk checking or testing; generalization of 
each flaw into a generic system vulnerability and elim- 
ination of each flaw through a change in the code or 
design of the system, as appropriate. 

These four steps are also applicable to inference pene- 
tration of databases, although the precise methods used 
for database inference detection will differ from those 
used for operating system penetrations due to the very 
different nature of operating system code and database 
data. In operating system penetrations, one is looking 
for flaws in the code that would permit one to gain 
access to unauthorized data or take control of the oper- 
ating system. In database inference analysis, in contrast, 
one is looking at ways that one can exploit the data that 
can be accessed to gain insight into data to which access 
is prohibited. Nevertheless, these four penetration steps 
provide a useful means for organizing our thinking 
about the task of inference penetrations. Each of these 
steps will be considered in the following discussion. 

5.1 inference Hypothesis Generation 
The initial stage of inference penetration analysis is the 
development of a list of sensitive targets. As has been 

noted, these targets represent the information that is to 
be protected from an inference attack that uses the 
database. In terms of the AERIE model, these sensitive 
targets can be expressed in terms of entities, activities 
and the various relationships between entities and 
activities. 

For each of these sensitive targets, the next step is the 
development of plausible hypotheses as to how these 
sensitive targets could be inferred from the particular 
database that is being analyzed-These hypotheses rep- 
resent the potential inference signatures that could 
potentially exist in the database for each of the sensi- 
tive targets that have been identified.A useful question 
to ask in the development of plausible inference 
hypotheses is, “Which data currently in the database 
would change if the inference target did not exist?” In 
answering this question, we are concerned with 
changes in the data at the group or instance tier. At the 
group tier, we are concerned not only about changes 
in the data, but changes in the statistical or multivari- 
ate properties of the data as well. 

Taking some guidance from the Flaw Hypothesis 
Methodology, the inference hypotheses should be 
rated according to two factors.The first is an estimate 
of the probability that the inference hypothesis will 
actually be confirmed as a valid signature for its spe- 
cific target. The second is an estimate of the damage 
that such an inference signature would cause if it were 
confirmed as a viable signature.These estimates repre- 
sent judgments of those conducting the inference 
penetration analysis and should be specified in terms 
of high (H), medium (M) and low (L).The combina- 
tion of these two ratings leads to nine different group- 
ings, with HH indicating those hypotheses that have 
the highest potential for damage and LL being those 
with the lowest.Those flaws with a high or medium 
rank for either factor are the first ones that should be 
investigated in the inference hypothesis validation 
phase. 

5.2 Inference Hypothesis Validation 
During this stage of the inference penetration analysis, 
each of the inference hypotheses must be assessed to 
determine if it represents a valid inference signature 
for the specified sensitive target.Again, using the FHM 
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as a guide, this assessment is made in terms of a 
‘gedanken’ (thought) experiment. These gedanken 
experiments can be organized in terms of various 
types of analysis techniques that can be applied to data. 
In general, these methods are tied to various types of 
signatures that exist within the various data tiers of the 
database. Group-tier inference hypotheses can be 
assessed in terms of various types of standard statistical 
or multivariate analysis [27] techniques. These are 
widely used in data analysis and are beyond the scope 
of this paper. 

One means of validating the instance-tier inference 
hypothesis that has resulted from the AERIE project is 
an inference-driven sensitivity analysis. This sensitivity 
experiment is based on asking questions that are related 
to the particular nature of the sensitive target, as exhib- 
ited by the AERIE model. For entities and activities, the 
question is: “How would the database change if the 
existence state of the entity or activity changed?” For 
example, consider an F-17 fighter aircraft as being a 
sensitive target. In a logistics database, the inference ana- 
lyst would ask how the database would change if there 
was suddenly no longer an F-17 fighter. Presumably 
this would mean that parts associated exclusively with 
an F-17 would disappear f?om the inventory list, and 
parts that were used on the F-17 - but not exclusive- 
ly - would have their part-count changed. These then 
represent the sensitive signatures for entities and activi- 
ties that must be addressed if inference signatures for an 
F-17 are to be eliminated. 

For the various types of relationships (R-s@), the 
question one would ask is how the database would 
change if the truth of the relationship changed. In a 
company-project relationship, where the sensitive 
target consists of the companies supporting the 
AERIE project, the question to be asked is, “What 
changes would exist if there were not a sensitive 
AERIE project that was related to a number of per- 
forming companies?” 

Another example of an instance-tier inference signa- 
ture comes from what we have termed the “California 
example”. This example inference involves a sensitive 
target that asserts that a significant number of people 
are moving out of California.The database of interest 

is f?om a truck rental company. However, it is not the 
database that shows the actual rentals of specific 
trucks, but one that indicates - on a location basis - 
the one-way rental rate between that particular loca- 
tion and every other location that is served by the 
company. Performing a sensitivity analysis on this 
database during the summer of 1992 one would have 
found that the rental rates out of California were sig- 
nificantly higher than the rates into California. This 
type of inference, while very difficult to model, could 
easily be identified by the sensitivity analysis conduct- 
ed as a gedanken experiment. This problem has been 
presented to a number of different audiences, and 
without exception, within a matter of seconds some- 
one can identify the sensitive field that would provide 
this inference. Therefore, we consider this sensitivity 
analysis as a reasonable means of validating potential 
inference vulnerabilities until more automated 
approaches are available. 

To infer a sensitive rule, we would look at states of the 
database before and after transactions that involve that 
rule.The question to be asked is how the database state 
after the transaction would change if the rule were not 
applied.The answer to this question will provide guid- 
ance on what must be protected if the rule signature 
is to be eliminated. 

5.3 Inference Flaw Generalization 
During this step, any inference signatures that are 
identified during the previous step are analyzed to see 
if they can be generalized to more generic inference 
problems. The flaw generalization may lead to addi- 
tional inference hypotheses that were not identified 
during the inference hypothesis generation stage. 

5.4 Inference Elimination 
The primary tool for protecting a database from infer- 
ence vulnerabilities is to classify the inference signa- 
ture data that was discovered in the two previous steps. 
A sufficient portion of the signature data must be clas- 
sified so as either to eliminate the signature totally or 
reduce the signature to a residue - one that when 
operated on by an INFER function provides little or 
no additional information about the sensitive target. 
At that point the residue of the signature would be of 
little value to an adversary 
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If the relational database management system supports 
element level classification, then each individual value 
within a tuple of a relation can have a distinct classifi- 
cation. With element-level classification, the inference 
channel can be closed by classifying the particular field 
value that provides the signature. If only tuple-level 
classification is available, then the entire tuple will have 
to be classified. If this is not acceptable, then the rela- 
tion will have to be split into one relation that con- 
tains the portion of the signature attributes that need 
to be classified, and another relation that contains the 
attributes that one does not desire to classi@ 

If a target has multiple signatures, each of which is 
reduced to a non-sensitive residue, care must be taken 
to ensure that these various signature residues cannot be 
intersected to result in a new signature that can still be 
used to perform the inference. For example, the initial 
signature might permit one to deduce a particular enti- 
ty. By classifying a portion of the signature, the number 
of entities to which the signature could refer would be 
increased. However, the intersection might permit the 
initial entity to be identi6ed.A~ an example, consider a 
person’s automobile that is identified by the signature, 
green Ford truck with license number California 
WIE188This could be reduced, through classification, 
to a residue consisting of green truck. Assume that 
another signature for the person who owns the truck is 
a dentist, license number K611744, in Twin Lakes, 
California. Assume that this signature was reduced to 
just Twin Lakes, California. However, by combining the 
two residues, we would have green truck inTwin Lakes, 
California. Since Twin Lakes has less than 100 homes, 
this might be sufficient to identify the particular person. 
Breaking this inference is diflicult since the set of prop- 
erty owners in Twin Lakes is so small. If the dentist is 
associated only with the county of residence (e.g. Mono 
County) rather than the area ofTtin Lakes, this infer- 
ence could be broken. 

This type of inference detection is usually associated 
with statistical databases. To preserve the security of 
these databases, responses which involve only a very 
small number of the subjects of the database, or which 
involve most of the subjects are not answerable, since 
they could be used to infer sensitive data about a sin- 
gle subject. A considerable amount of research has 

been performed on how to determine if sensitive data 
can be extracted from statistical databases. The work 
by Denning [28] considers how characteristic formu- 
las called trackers can be used to extract sensitive data 
from statistical databases. This aspect of database infer- 
ence differs fi-om the previously described Merlin 
work, in that it is concerned with inferring data about 
individual instances within an entity, while Merlin is 
concerned with inferring relationships between dif- 
ferent entities in the database. 

6. Future Directions in Inference Detection 
Approaches 

The checked cells in Figure 2 indicate the practical 
database design techniques we have provided for 
countering inference vulnerabilities for each of the 
three data tiers. Approaches for each of these checked 
cells have been presented in previous sections of this 
paper.This section discusses research that is currently 
underway to provide practical approaches for the 
other cells of Figure 2. In this paper, we will consider 
future research directions for the schema tier and for 
the lower tiers. 

6.1 Schema Tier 
At the schema tier, we have presented an example of a 
very fast schema analysis tool and indicated where 
other research centres have developed schema-tier 
tools. Research at SRI International focused on the 
ability to follow paths based on foreign keys. [18] For 
Merlin, this analysis is based on functional dependen- 
cies, foreign keys and subtypes. While this is a sound 
inference detection approach in that all paths that are 
detected have the potential to lead to an inference 
problem in the database, the approach is not complete, 
since there are legitimate inferences that will not be 
detected. As an illustration, in the company-project 
second path example, the critical functional depen- 
dency that permits the second path to be detected is 
employee-number + project. This implies that an 
employee (and an escort, since an escort is a subtype 
of employee-number) can work for only one project. 
If an employee could work on multiple projects, then 
a second path inference would not have been detect- 
ed, since we would no longer have the critical mnc- 
tional dependency. Likewise, if an escort could work 
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for two or more projects, then there would no longer 
be a functional dependency between escort and pro- 
ject.The removal of this functional dependency would 
mean that the Merlin tool would no longer be able to 
detect this second path. 

Note that this lack of completeness also occurs if a 
path-finding approach, such as that used by SRI 
International, is applied. In their path-finding 
approach, foreign keys are used to create the second 
path. If an employee can work on multiple projects, 
then employee-number would no longer be a key for 
the Project relation, since it would not uniquely iden- 
tify a tuple of the relation. In this case, the key for the 
Project relation would be the multi-attribute key 
job-number plus project-number. There is no foreign 
key in the Visitor_log relation to permit a path from 
Visitor_log to Job-cost in order to connect company 
with project number. 

One approach to addressing this problem is to permit 
the + relationships to include multivalued dependen- 
cies [22], which are those relationships in which the 
right-hand side of the arrow represents a set of values, 
rather than just a single value. For those cases in which 
the potential set of right-hand-side values is relatively 
small, then one can use Merlin to detect potential 
inference problems. What is given up in this case is 
soundness, since not all paths that are identified will be 
legitimate second paths. 

6.2 Group and Instance Tier 
The major challenge in inference-orientated security 
design techniques for databases is to push the group 
and instance-tier analysis technique to levels beyond 
the manual penetration approach described in this 

paper. This section will highlight research approaches 
that have been investigated for this area. 

One of the earliest efforts in this area was an approach 
by Buczkowski in which an expert system is used to 
encoded inference rules that can be used to detect 
inference vulnerabilities [29]. In this case, one must 
first know about the inference vulnerabilities and then 
encode the necessary rules in the expert system to be 
able to detect the existence of signatures for sensitive 
targets. 

The AERIE project has worked to extend the Merlin 
tool into instance-tier data. The challenges here are 
that the amount of data is significantly greater at the 
instance level than it is at the schema level and there 
may be significant inferences which are not built on 
functional dependency relationships. In [30] we have 
presented a model-based approach for detecting 
instance-level inferences that does not rely on fimc- 
tional dependencies. Under this approach two entities 
X and Y are related by a minimum and maximum 
association cardinality. A maximum association cardi- 
nality ACmax(X + Y) is the maximum number of 
Y instances that can be associated with a single 
X instance using joins (based on attributes that may or 
may not be keys). Similarly, the minimum association 
cardinality ACmin (X + y), is the minimum number 
of Y instances that can be associated with a single 
X instance, using joins. These minimum and maxi- 
mum association cardinalities can be used to annotate 
an object model of a database, such that the model can 
be used to assist in instance-tier analysis. 

Figure 10 shows a portion of a company database that 
has been modelled in a variation of the Unified 

1 name j 1..2 1.. few 1 number 1 1.. few 1.. many name 

Figure lO:Visitor-Employee Inference 
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Modelling Language [31] .The notation also shows the 
minimum and maximum association cardinalities 
between the various entities. For example, the 
AC_(Visitor + Office) is f&u, which means that a 
visitor visits only a maximum of a few offices, where 
few is defined as an application specific number that is 
sufficiently small to constitute an inference problem. 
The AC,, (Visitor + Office) is one, which means 
that each visitor visits a minimum of one office. In the 
opposite direction, the AC_ (Office + Visitor) is 
many, indicating that many visitors visit each office. In 
contrast tofew, many is an application specific number 
that is sufficiently large that it does not constitute an 
inference problem. The ACti,, (Office + Visitor) is 
one meaning that each office has a minimum of one 
visitor. These association cardinalities are based on 
knowledge that a security analyst has of the actual 
database, or they could result from accesses made to 
the database to verify or discover the association car- 
dinahties. Finally, the dotted line is used to indicate a 
sensitive association between visitors and employees, 
while the solid line indicates that the information is 
publicly available. 

By using this annotated model, the security analyst (or 
a program) can use the model to determine if the 
database is vulnerable to an inference problem. An 
inference problem in this case is defined as the ability 
to find the association between a visitor and an 
employee or an employee and a visitor, since this is the 
sensitive association. 

Since the association card&&ties are transitive, the 

AC_ (Visitor + Employee) = ACmax (Visitor + 
O&e) x AC,,,, (Ofice + Employee). In this case this is 
2 * few. Our view is that any relatively small constant 
times f&u or even a small number of multiples of fw  
constitutes an inference problem. In this case, each vis- 
itor can be associated with a small number of employ- 
ees and this could cause an inference problem, since 
this association is sensitive. 

In the opposite direction, AC,,,, (Employee + Vixifor) 
is few * many, which is not considered an inference 
problem. However, since ACmi, (Employee + Visitor) is 
one, this means that it is possible that an individual 
employee could be associated with a single visitor, and 

this would be an inference problem since this associa- 
tion is sensitive. For large object models, we have 
applied transitive closure algorithms (with appropriate 
adjustments for the association cardinalities) to deter- 
mine those entity-to-entity association cardinalities 
that could constitute a potential inference problem. As 
necessary, particular associations can be instantiated 
using standard database queries. 

Other instance-level inference detection research has 
also been performed by a research group at the 
University of Tulsa [32]. They have used joins to 
instantiate sensitive associations. 

Another very different approach that has been sug- 
gested uses the database itself to derive potential infer- 
ence relationships. Marks suggests that material impli- 
cations derived fi-om the actual data could be used as 
the basis for inference detection [33]. A material 
implication is not necessarily based on a causal rela- 
tionship, but indicates only that the particular values 
appear together.This could be due to coincidence or 
because there is some relationship between these val- 
ues. This requires that data be grouped and rules be 
available to relate one group to another. To illustrate 
this approach, Marks uses an example in which the 
names of the personnel assigned to the classified 
Manhattan Project are classified. However, if it is the 
case that all nuclear engineers in the company are 
assigned to the Manhattan Project, then there is an 
inference vulnerability between a skill category, nucle- 
ar engineering (which is not classified when associat- 
ed with an employee name) and the personnel 
assigned to a classified project.These types of relation- 
ships could be identified by scanning the database 
instances for groups, and then assessing whether mate- 
rial implications exist between these groups.This work 
appears to be in the early stages, but shows some 
promise of providing a way of using the data itself to 
assess potential inference vulnerabilities. 

An area that has considerable potential for addressing 
group-tier inferences is research on statistical 
databases.The US Bureau of the Census is noted for 
its effort in ensuring that personally identifiable data 
cannot be derived from the census data that is 
released. Work on multivariate analysis would also be 
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applicable to this area [27]. While consideration of 
statistical and multivariate approaches is beyond the 
scope of this paper, they are noted as areas that could 
be applied to group-tier inferences. The work of 
Denning [28] as previously noted, is one of the sem- 
inal works in this area. 

As one attempts to automate inference analysis for 
group and instance-tier data, one of the diflicult prob- 
lems that must be addressed is the deeper levels of 
knowledge that are now required, that were not 
required for schema-tier analysis. This knowledge is 
required since the adversary can be assumed to bring to 
the inference attack many years of education as well as 
specialized expertise in the areas of interest. In a previ- 
ous paper [l] we have suggested a depth-first knowl- 
edge acquisition approach based on microanalyzed 
knowledge chunk&, which involves an inference-ori- 
entated, in-depth encoding of knowledge relevant to 
each of the relations within a relational database. As 
research moves f?om schema-level data to instance-tier 
data, the need for deep knowledge greatly increases.The 
general solution of this problem is an open research 
question. We believe that the general approach lies in 
capturing inference-relevant semantics of the data to be 
analyzed using an approach such as the microanalyzed 
knowledge chunks described in [l]. 
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