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Abstract

Even though the quality of software requirements and software architecture
have a significant impact on the success and quality of a software project,
few tools exist to support the transition from requirements to architecture.
Many desired qualities in a software project that are expressed in the software
requirements can be achieved with software architectural styles. This paper
proposes an approach towards an automated approach that can help choose
an appropriate architectural style given a set of natural language software
requirements. The approach, Automated Architecture Scoring Method
(AASM), transforms software requirements into a formal model in conceptual
graphs which is analyzed for possible software architectural components,
and possible properties of those components. AASM then analyzes those
properties and develops a recommendation for an architectural style. This
paper focuses on using conceptual graphs to guide architectural style
selection, with a particular emphasis on software architectural connector
properties.

1. INTRODUCTION

When choosing the best software architecture for a project, a software
architect is influenced by many factors including time constraints, the
experience of his team, and his own biases towards (or against) certain
software architectures. A tool that provides an unbiased software
architecture recommendation based solely on the given requirements can
serve as a valuable starting point. Tools exist for automated requirements
analysis and development environments exist for constructing a software
architecture, but few automated approaches exist for choosing between
software architectural styles given a set of software requirements [Galster
2006]. The ultimate goal of our research is to develop automated tools to
select an architectural style from a given set of natural language software
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requirements. This paper will describe an approach towards that goal with
the focus on connector properties to help in choosing an architectural style.

1.1. Software Architecture in the Software Development Process

Many definitions of software architecture exist, although there is no
consensus on one single definition ([Kruchten 2006], [Clements 2003]).
Bass, Clements and Kazman propose the following general definition of
software architecture: “The software architecture of a program or
computing system is the structure or structures of the system, which
comprise software components, the externally visible properties of those
components, and the relationships among them” [Bass 2003].

Perry’s structural perspective on software architecture was chosen for
this paper because the research that most strongly contributes to this
paper’s focus, [Grüenbacher 2004] and [Bhattacharya 2007], build their
work on this perspective: “software architecture is a set of architectural …
elements that have a particular form. We distinguish three different classes
of architectural elements: processing elements; data elements; and
connecting elements” [Perry 1992]. Several other perspectives of software
architecture propel the definition beyond the structural perspective:
framework models, dynamic models, and process models [Clements 2003].
This paper will explore software architecture from the process model
perspective because it “focus[es] on construction of the architecture and
the steps or process involved in that construction. From this perspective,
architecture is the result of following a process script” [Clements 2003].

A semantic gap exists between requirements and software architecture
[Grüenbacher 2004]. Software requirements are typically gathered into
natural language and diagrams [Cyre 1997], even though more formal
notations have been developed [Grüenbacher 2004]. Software architecture
needs to be described in a formal approach [Pressman 2005] that allows
the architect to decompose and construct an architecture with components
and connectors. Many Architectural Description Languages (ADLs) have
been developed for this purpose, and the important ones include Rapide,
UniCon, Aesop, Wright, Acme, and UML [Land 2002]. Approaches that
attempt to bridge the semantic gap between requirements and architecture
are discussed further in sections Error! Reference source not found. and 2.2.

1.2. Selecting Architectural Styles

Software architectural styles are important because they enforce quality
attributes (e.g., modifiability, usability, scalability, performance, etc.) for
a system [Bhattacharya 2007]. “A style guides the architectural design of a
system, with the promise of desirable system qualities” [Grüenbacher
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2004]. Styles facilitate “high-level reuse and bring economy to the design
of software architectures” [Monroe 1996]. “An architectural style is a key
design idiom that implicitly captures a large number of design decisions,
the rationale behind them, effective compositions of architectural elements,
and system qualities that will likely result from the style’s use”
[Medvidovic 2003].

The challenge of automating architectural style selection is that “the
rules guiding the selection and application of a style … are typically semi-
formal at best, requiring significant human involvement. Furthermore,
multiple architectural styles may appear to be (reasonably) well suited to
the problem at hand, requiring additional work to select the most
appropriate style” [Grüenbacher 2004]. A way to address this problem is
to acknowledge that architectural styles are made of a common set of
architectural building blocks [Shaw 1997]. As summarized in [Bhattacharya
2007], Shaw and Clements show [Shaw 1997] that different styles can be
compared by analyzing the following common parts:

• Constituent Parts: the components and connectors;

• Control Issues: the flow of control among components (e.g.,
synchronicity);

• Data Issues: details on how data is processed (e.g., data continuity);

• Control/Data Interaction: the relation between control and data;

• Type of Reasoning: analysis techniques applicable to the style.

A software architecture is comprised of components and connectors
[Perry 1992], [Grüenbacher 2004]. The components can be computational
components or data components [Perry 1992]. As expressed in [Shaw 1996],
“the interactions among components are captured within explicit software
connectors (or buses)” [Grüenbacher 2004], and architectural styles “both
capture and reflect the key desired properties of the system under
construction (e.g., reliability, performance, cost)” [Grüenbacher 2004].

Choosing the most suitable software architectural style(s) can prevent
problems later in the software process. Finding a way to automate the
style selection should provide a valuable tool to software architects. The
approach proposed in this paper is called the Automated Architectural
Scoring Method (AASM). AASM builds on existing approaches that
transform requirements to architectural building blocks, and also on
approaches that analyze these building blocks to determine an architectural
style. The approach proposed in this paper includes transforming natural
language requirements to an intermediate model; however, the focus of
AASM will be detecting and analyzing the architectural building blocks
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from that intermediate model with an emphasis on architectural
connectors, and predicting an architectural style from the results. Section
2 will describe the background research, section 3 will describe the AASM
approach, section 4 will present the AASM results of two projects, and
section 5 analyzes those results.

2. RELATED WORK

The research goal for this paper is to identify approaches (on which to
base automated tools) that support the transformation of requirements to
a software architectural style. Previous work includes requirements
engineering (Section 2.1), the transformation of requirements to software
architecture (Sections Error! Reference source not found. and 2.2), and
conceptual graphs for modeling requirements and architecture (Sec. 2.4).

2.1. Requirements Engineering

Although this paper does not explore the requirements engineering part
of AASM in depth, it builds on two areas from the requirements
engineering field: natural language processing (Section 2.1.1) and
conceptual graphs, a notation that facilitates natural language processing
(Sections 0 and 2.1.2).

2.1.1. Natural Language Processing

Many tools have been developed for requirements engineering, “in
particular, requirements management tools (e.g., Rational RequisitePro
and Telelogic DOORS) and specification analysis tools” [Ambriola 2003].
The requirements engineering research for this paper is influenced mostly
by CIRCE [Ambriola 2003], a specification analysis tool. CIRCE analyzes
requirements through natural language processing (NLP). Natural
language processing is the “computer analysis and generation of natural
language text … In the computer analysis of natural language, the initial
task is to translate from a natural language utterance, usually in context,
into a formal specification that the system can process further” [McGraw-
Hill 2007].

It is important to automate the modeling of natural language software
requirements because “79% of requirements documents are couched in
unrestricted [natural language]” [Gervasi 2000]. The primary difficulty in
transforming natural language requirements into a form that can be
manipulated by a machine is the inherent ambiguity and imprecision of
natural language.

Conceptual graphs (CGs) are a logic-based graphical notation. CGs
complement the science of natural language processing because they can
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map directly to natural language. “Since conceptual graphs were originally
designed as a semantic representation for natural language, they can help
form a bridge between computer languages and the natural languages
that everyone reads, writes, and speaks” [Sowa 2000]. The remainder of
this section provides a very brief and informal introduction to the portion
of conceptual graph theory that relates to this paper.

CGs were first introduced by Sowa in [Sowa 1984]. Sowa derived CGs
from a syntax specifically developed to express logic in graphical notation.1
CGs provide a graphical way to express first-order logic statements. First-
order logic is a system of rules that can (1) express statements of existence
(or non-existence), (2) express a relation between statements, and (3) apply
a relation to a family of statements. A conceptual graph is a directed graph
with two types of symbols: concepts (shown as rectangles) and conceptual
relations (shown as ovals or diamonds) [Sowa 2000].

The appearance of a concept in a conceptual graph is an existential
assertion that the concept exists. To express that a concept does not exist,
the concept is surrounded by a rectangle with rounded edges (“negated
context”). For example, Figure 1(a) expresses the assertion that a Cat exists,
while Figure 1(b) asserts that a Dragon does not exist. Relations are shown
as ovals, connected by directed arcs whose direction is defined for the
semantics of each relation. Figure 1(c) shows a conceptual graph
representation of the sentence: “Elsie the cat sits on a mat.” In Figure 1(c),
the concept type Cat is shown with a referent to a specific individual named
Elsie.

Figure. 1: A CG Concept, Negated Concept and Sample Graph

Elsie is the agent of a Sit action. Mat is the location of the Sit action.

To add meaning to the conceptual graph, the concepts are organized
into a type hierarchy: a lattice that shows which concept types inherit
from other concept types. Figure 2 shows a possible type hierarchy for the
conceptual graph in Figure 1(c).
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Figure 2: Example of a CG type Hierarchy and CG Relation Hierarchy

In Figure 2, Cat is modeled to be a type of Animate_Entity, which in
turn is a type of Entity. The T type is the universal type from which all
concept types inherit [Sowa 2000].

In a similar way, the CG relations are categorized into a relation
hierarchy. Figure 2 shows a possible relation hierarchy for the conceptual
graph in Figure 1(c). It is common practice in relation hierarchies to assign
link as the “universal relation type” from which all relations inherit.

The way to impose restrictions on how conceptual graphs are formed
is to create CG definitions. CG definitions are conceptual graphs that serve
as templates for the way the concepts and relations may be connected in a
particular model. The CG definition applies the relation(s) depicted in the
graph to all concepts of the designated concept type. The designated
concept type can be shown with a @forall symbol, as in Figure 3, which
asserts that all instances of type Cat are Sitting on a Mat.

Figure 3: Example of a CG Definition Graph

2.1.2. Requirements and Conceptual Graphs

Research into the transformation of software requirements to conceptual
graphs includes work by Ryan, Delugach, and Cyre. In [Ryan 1993], Ryan
proposed a requirements collecting tool that aided the transition of
requirements from natural language to a formal notation. In [Delugach
1991], [Delugach 1992] and [Delugach 1996], Delugach transformed
requirements to conceptual graphs to analyze multiple views of
requirements. Conceptual graphs provide “a single knowledge
representation capable of capturing the information expressible in several
existing requirements notations” [Delugach 1992].

mailto:@forall
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In [Cyre 1997], Cyre explored automating the generation of CGs from
natural language requirements. Cyre’s goal was to “automatically translate,
evaluate, and interpret requirements expressed in natural language … so
that they may be integrated and analyzed automatically” [Cyre 1997]. In
later research, Glaze transformed requirements conceptual graphs to
software architecture in [Glaze 2004], which will be described in Section 2.2.

2.2. Approaches to Predicting Architectural Styles

Before discussing how to predict architectural style from requirements, it
is important to mention one approach to transforming requirements
directly into an architecture. The ArchE project [Bachmann 2003] is one
example of continuing research about constructing a software architecture
via the analysis of quality attributes. However, the research that lends
itself best to automatic architectural style prediction maps architectural
properties to architectural styles.

Approaches that predict architectural styles from specifications include
the Concept Scoring Method (CSM) [Glaze 2004], an approach by
Bhattacharya and Perry [Bhattacharya 2007], and CBSP (Component-Bus-
System-Property) [Grüenbacher 2004]. For CSM, Glaze devised an
automated approach to select an architectural style from software
requirements. He modeled requirements with conceptual graphs and
measured characteristics about the graphs to determine an architectural
style; he then used the conceptual graph model and the determined style
to manually generate the preliminary software design. Glaze searched for
characteristics in the conceptual graphs that would suit the Structured
Analysis and Design Technique (SADT) style and the Object-Oriented (OO)
style. He then used the resulting metrics to predict the more suitable style.

The approach developed by Bhattacharya and Perry [Bhattacharya
2007] searches architectural specifications (not requirements specifications)
for characteristics of the architectural building blocks described in [Shaw
1997] to predict an architectural style. Their assumption is that a repository
of reusable software components exists, and that the component
specifications are organized according to their proposed documentation
model. For each architectural building block, they search a list of the
relevant specifications for the characteristics.

Bhattacharya and Perry then compare the results with a table derived
from [Shaw 1997] that maps the architectural building block characteristics
to the architectural styles. Table 1 shows just a few of the styles from the
table Bhattacharya and Perry use.
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Table 1
Comparison of Architectural Styles (Bhattacharya & Perry)

Style

Pipes and Call based Layered
Filter Client Server –

Constituent Parts Components Transducers Programs –

Connectors Data Stream Calls or RPC –

Control Issues Topology Linear Star Hierarchical

Synchronicity Asynchronous Synchronous Any

Data Issues Topology Linear Star Hierarchical

Continuity Continuous Sporadic Sporadic

Control/ Data Isomorphic Yes Yes Often
Interaction Shapes

CBSP is an approach that uses architectural building blocks similar to
those described in Section 1.2 to transform requirements to architectural
styles. CBSP, developed by Grünbacher, Egyed, and Medvidovic, is “a
lightweight approach intended to provide a systematic way of reconciling
requirements and architectures using intermediate models” [Grüenbacher
2004]. In each step, the software architects vote on the topic(s) addressed.
The CBSP approach, a flexible five step process, allows iterations between
steps. The steps are as follows (the iterations are not shown):

Step 1 – Selection of requirements for next iteration

Step 2 – Architectural classification of requirements

Step 3 – Identification and resolution of classification mismatches

Step 4 – Architectural refinement of requirements

Step 5 – Trade-off choices of architectural elements and styles

In Step 1, the software architects distinguish which requirements are
architecturally relevant based on prioritizations set by the stakeholders.
In Step 2, the software architects rate each requirement for its suitability
for being transformed into each architectural building block and property.
In this step, the CBSP architectural building blocks are Data Component,
Process Component, Bus/Connector, and (sub)System. The CBSP
properties are Data Component Property, Process Component Property,
Bus/Connector Property, and (sub)System Property. In Step 3, the
architects vote again to exclude requirements that are irrelevant to the
architecture. In Step 4, the architects refine the intermediate model by
merging and creating new CBSP elements. In Step 5, the properties of the
resulting CBSP elements are compared with a table that rates the support
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provided by each architectural style. The properties in the table are meant
to be added as needed by the architects for the particular project. Table 2
is an abbreviated version of the CBSP table from [Grüenbacher 2004].

Table 2
Comparison of Architectural Styles (CBSP)

Style

Pipes and Client Server Layered
Filter

Data Component aggregated — ++ +

persistent o ++ o

Processing service o ++ o
Component provide/

consume only

loose ++ + —
coupling

Connector/ bus synchronous — ++ ++

asynchronous ++ — —

local + — ++

distributed + ++ —

(sub)System efficient — o o

scalable + + —

Legend: ++ extensive support + some support o neutral — no support

The approach in this paper can partially automate the CBSP approach.
The CBSP approach was chosen mainly because it supports the
transformation of software requirements to software architectural styles.
Also, CBSP supports creating a design that may include multiple software
architectural styles, a flexibility that software engineers often need in large
projects. The reason CBSP has this flexibility is because it transforms
requirements to architectural components; the properties of the
architectural components can then be analyzed by architectural style.

AASM adds automation to the CBSP approach, but we do not believe
than any approach should bypass or eliminate the architect’s experience
and expertise. That is why the AASM is presented in Section 3 within the
context of CBSP because it ensures the involvement of the software
architect.

3. THE AASM APPROACH

To select a software architectural style from software requirements, the
approach should be an iterative process ([Grüenbacher 2004], [Nuseibeh
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2001]) that analyzes both functional and quality requirements. AASM does
not yet handle quality requirements, but the approach provides the
groundwork for future work as discussed in [DeBraccio 2007].
Architectural refinement is an iterative process because “designing
architectures is necessarily an iterative activity … it is impossible to get it
completely right the first time” [Bengtsson 1999]. Software developers have
found that “the architecture design evolves with the detailed design and
often new requirements, requiring architectural changes, become apparent
when working on detailed design” [Gurp 2002].

AASM will focus on the partial automation of a small part of a larger
iterative process that helps software developers to select an architectural
style (or an architecture of multiple styles) from software requirements.
AASM can be applied in the context of the CBSP approach. AASM can be
described in the following steps:

(a) Model the software requirements into an intermediate formal
model (in conceptual graphs).

(b) Find architectural constraints.

(c) Find candidates for the CBSP architectural building blocks: Data
components, Process components, Connectors, and (sub)Systems.

(d) Find candidate properties of CBSP architectural building blocks.

(e) Determine the Architectural Style Prediction Scores.

AASM fits into the CBSP approach as shown in Table 3.

Table 3
Steps of AASM within the CBSP Context

Origin Step Main Supporting
References

AASM Step A Model requirements into [Ambriola 2003]
conceptual graphs

AASM Step B Find architectural [Svetinovic 2003], [Eden
constraints 2004]

AASM Step C Find candidate architectural [Grüenbacher 2004], [Glaze
building blocks 2004]

CBSP Step 1 Selection of requirements for

next iteration
AASM Step D Find candidate architectural [Grüenbacher 2004],

properties [Bhattacharya 2007]

CBSP Step 2 Architectural classification of

requirements Table 3 Contd...
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CBSP Step 3 Identification and resolution of

classification mismatches

CBSP Step 4 Architectural refinement of

requirements

AASM Step E Determine the Architectural Style [Grüenbacher 2004],

Prediction Scores [Bhattacharya 2007]

CBSP Step 5 Trade-off choices of architectural

elements and styles

Automating Step A requires a linguistic CASE tool such as CIRCE
[Ambriola 2003]. The work from [Svetinovic 2003], and the hypothesis for
a formal approach to categorizing design statements of different
abstraction levels from [Eden 2004] could support a partial automation of
Step B. Step C can be an automated way to search the requirements
conceptual graphs from CBSP Step 1 for candidate architectural building
blocks. AASM metrics and metrics from Bhattacharya and Perry’s
approach [Bhattacharya 2007] support the automation of finding some
candidate properties of the architectural components for Step D. Step E
depends on the style comparison tables from [Grüenbacher 2004] and
[Bhattacharya 2007] described in Section 2.2; automating Step E mainly
involves calculations of scores.

3.1. Step A: Model the Software Requirements in CGs

The requirements were modeled in CGs because 1) CGs are not biased for
or against any particular architectural style, and 2) CGs allow for modeling
requirements as a close approximation of natural language requirements,
and potential exists for the automation of modeling natural language
requirements ([Cyre 1997], [Lenat 1995], [Ambriola 2003]).

Figure 4: AASM Type Hierarchy

Table 3 Contd...
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The relation hierarchy for AASM (shown in Appendix A of [DeBraccio
2007]) is a small set of relations that are commonly used in conceptual
graph modeling such as attr (attribute), agt (agent), and obj (object). The
AASM type hierarchy as shown in Figure 4 was kept minimal to simulate
the lightweight ontology in CIRCE [Ambriola 2003].

The three basic types in the AASM type hierarchy are the Entity type,
the Action type, and the Characteristic type. Similarly to CIRCE, AASM
includes a System type; in AASM, this type inherits from the Entity type.
AASM also includes some of CIRCE’s basic actions such as the Send and
Receive types that inherit from the Action type. CIRCE lets the user
distinguish between a condition, an event, and an action. In AASM, an
Event is a subtype of the Action type so that the Event types are identified
as Process component candidates (see [DeBraccio 2007]). A type for
conditions was not included in the AASM type hierarchy because
conditions can be modeled as Event types in sequential order (see Section 0).

The CG definition in Figure 5 shows a portion of the AASM Action
Type CG Definition from Appendix B of [DeBraccio 2007]. Figure 5 shows
the basic schema for how the Action type concepts were modeled in this
paper.

Figure 5: Part of the AASM Action Type CG Definition

In AASM, the set of requirements that are the output of Step A will be
assumed to be as unambiguous as a tool such as CIRCE could make them.
It is further assumed that the Entity, Action, and Characteristic types are
already defined in the type hierarchy.
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3.2. Identifying the Architectural Requirements

AASM identifies architectural requirements in both Steps B and C.
Although we assume that Step A significantly reduces ambiguity in
requirements, it is not absolutely necessary that all ambiguity be
eliminated, since only some of the requirements are involved in identifying
the architecture [Kozaczynski 2002].

Architectural requirements are the requirements that “have the most
impact on the architecture” [Kozaczynski 2002]. In [Firesmith 2006],
Firesmith states that architectural requirements can be classified into three
categories: quality requirements, architecturally-significant requirements,
and architecture constraints. “Quality requirements specify a minimum
level of a quality factor such as … availability, … configurability, …
portability, reliability, … scalability” [Firesmith 2006] etc. Architecturally-
significant requirements “are functional, data, and interface requirements
that implicitly have a significant impact on the architecture” [Firesmith
2006]. An architecture constraint “is mandated on the architects as if it
were a normal requirement” [Firesmith 2006]. Firesmith does not give
further explanation of what an architectural constraint is, except that it is
a decision not made by the architect but nonetheless impacts the
architecture.

AASM is not able to distinguish who made the decision behind each
requirement, but it is able to detect requirements that impose some kind
of constraint on the architecture. In this paper, we do not show how AASM
detects quality requirements, but we do show how it detects architectural
constraints (Section 3.3) and architecturally-significant requirements
(Section 3.4).

3.3. Step B: Identify Constraints

For AASM to consider a requirement as having an architectural constraint,
the candidate requirement graph has to include a concept of type System.
For these candidate requirements, there are two ways to detect an
architectural constraint: 1) when there is a concept definition or other
universal assertion in the candidate requirement (Section 3.3.1) or 2) the
portion of the graph for the requirement contains a negated concept
(Section 3.3.2). If a requirements graph meets one of the two criteria listed
above, but does not include a System concept, AASM still considers it a
constraint, but not an architectural constraint.

3.3.1. CG Definitions as Constraints

Distinguishing architecture from design impacts the first way AASM
detects architectural constraints. Software requirements can be classified
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into different abstraction levels (business-level, domain-level, product-
level, design-level, code-level) [Svetinovic 2003]. “Architecture-level
specification lies conceptually between domain and product-level
specifications” [Svetinovic 2003]. We have not identified any previous
work that attempts to formally distinguish between architectural and
design requirements.

However, in [Eden 2004], Eden, Hirshfeld and Kazman proposed a
hypothesis to formally describe the distinction between architectural and
design statements. They divided statements into three abstraction levels,
listed here from most abstract to least abstract: “non-local” statements,
“local and intensional” statements, and “extensional” statements. They
placed architectural styles and design principles in the “non-local”
category, design patterns such as the “Gang of Four” catalog [GoF 1995]
in the “local and intensional” category, and class diagrams and program
documentation in the “extensional” category.

Eden, Hirshfeld and Kazman had intended the hypothesis to apply to
architecture and design statements; in this paper, part of the hypothesis
will be applied to requirements that have been modeled into conceptual
graphs. The goal in this paper is to distinguish between requirements that,
once transformed into formal statements, can be categorized as either the
“non-local” category or the “local and intensional” category. For brevity,
these two categories will be called non-local and local in this paper.
Informally, Eden, Hirshfeld and Kazman observed that “local statements
are usually in the form: ‘there exists an entity (or set of entities) that satisfies
this condition’, whereas non-local statements are in the form ‘for all entities
[that satisfy condition 1], condition 2 applies’” [Eden 2004].

The architectural constraints that would likely impact the software
architecture as a whole can be transformed to non-local design statements.
If a requirement containing an architectural constraint is modeled in a
conceptual graph as a non-local statement, it takes the form of a CG
definition.

3.3.2. Negated Concepts as Constraints

As mentioned in Section 0, when a concept in a conceptual graph is
negated, it means that the concept does not exist. Since software
requirements are intended to be incorporated into a software architecture,
a negated software requirement concept in a graph containing a concept
of type System means that the concept can never exist in the resulting
software system’s architecture. Therefore, AASM interprets negated
concepts as architectural constraints.
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3.4. Step C: Identify the Connector Components

One challenge of modeling architecture in conceptual graphs is that there
are no built-in architectural constructs. Therefore, AASM includes how to
detect candidates for the CBSP architectural building blocks (also called
architectural components). This paper will focus on describing connector
component candidates because we have found that they are better for
predicting architecture than the components [DeBraccio 2007]
[Bhattacharya 2007]. The AASM techniques for finding the other
architectural component candidates (i.e., the Data Component, the Process
Component, and the System Component) are described in [DeBraccio
2007]. We now describe what architectural connector components are, and
how AASM detects a connector component candidate.

Perry and Wolf describe connectors as “the glue that holds the different
pieces of the architecture together” [Perry 1992]. As Fielding notes in
[Fielding 2000], a more precise definition is provided by Shaw and
Clements: “A connector is a mechanism that mediates communication,
coordination, or cooperation among components … Examples include
shared representations, remote procedure calls, message-passing protocols,
data streams, and transaction streams” [Shaw 1997]. Bhattacharya and
Perry add to the list of connector examples with “static calls, dynamic
calls, … batch data, signals … and direct data access” [Bhattacharya 2007].

In conceptual graphs, we assume that action type concepts and CG
actors imply a need for some kind of communication between the concepts
they connect. Generally, a candidate connector component can be
identified when a system or a part of a system performs an action on any
concept outside the system. The type of each connector component will
not be explicitly shown in the conceptual graphs; only the need for a
connector component will be detected. The other type of connector
component that AASM detects connects events; this connector is modeled
in conceptual graphs by an ordering relation such as the follows relation.

AASM will detect a need for a connector component when a system
or a concept within one system performs an action on a different system
or on one of the different system’s concepts. An action can be performed
either by a CG actor (not discussed here) or an Action type concept. AASM
searches each Action type concept for direct and indirect objects that are
a part of a different system than the concept that initiated the action. In a
conceptual graph, systems can contain other systems, so connector
components can be found between sub-systems. See the following example
from [Grüenbacher 2004] for connector components:
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Requirement: “Manipulated spreadsheet data must be stored on the file
system.”

CBSP Connector Component: “Connector enabling interaction between
UI and persistency components.”

An ambiguity in the requirement is in identifying who or what stores
the data. The entity might be a user of the Cargo Router system interface,
or the Cargo Router system might be expected to automatically provide
that service. The CBSP provides a process to gather that information from
the stakeholders. AASM will assume that ambiguity was resolved in Step
A. Figure 6 shows one way the refined requirement can be modeled.

Figure 6: CG Model of a Requirement with Connector Components

The connector component is not explicitly shown in the conceptual
graph, but it can be automatically detected that one is needed between
the Cargo Router system and the File system. The UI entity which is a
sub-system of the Cargo Router system performs an indirect action on the
File system through the Store action. AASM detects that the receiving
concept of the ind_obj relation from the Store action does not belong to
the UI sub-system, and therefore flags that a connector was needed
between the UI sub-system and the File system.

3.5. Step D: Find Candidate Properties For Connectors

As mentioned above, candidate properties are only sought for connector
architectural elements. AASM focuses on the connector properties because
usually the properties that uniquely identify the style are the data and
control issues [Bhattacharya 2007]. Both data issues (Section 3.5.3) and
control issues (Section 3.5.2) can be considered connector properties.
Another reason this paper focuses on connector properties is because the
connector properties are more clearly defined in supporting references.

The potential candidate properties for buses include: locality (Section
3.5.1), synchronicity (Section 3.5.2), and data continuity (Section 3.5.3).
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Locality was chosen because it was a connector property in [Grüenbacher
2004]. Data continuity was chosen because it was used in [Bhattacharya
2007] to help determine an architectural style. Synchronicity was chosen
because it was both a connector property in [Grüenbacher 2004] and it
was used in [Bhattacharya 2007] to help determine an architectural style.
In both [Shaw 1997] and [Bhattacharya 2007], the synchronicity property
was considered a control issue and the data continuity property was
considered a data issue.

3.5.1. Locality

In AASM, the locality of a connector can potentially be either distributed
or local. A distributed connector connects concepts from different systems
or different collection types (different collection types imply different sub-
systems). A connector that connects sub-systems of same types of different
names that are a part of a larger system is identified as a local connector.

3.5.2. Synchronicity

“Synchronicity is the nature of the dependence of the component’s action
upon each other’s control state” [Bhattacharya 2007]. In [Shaw 1997], Shaw
and Clements describe the different synchronicity types as Sequential (or
lockstep), Synchronous, Asynchronous, and Opportunistic. When the
synchronicity of a system is Sequential, the components execute in order;
execution of one component cannot begin until its predecessor finishes
[Shaw 1997]. In Synchronous systems, components coordinate control
“regularly and often” [Shaw 1997]. In Asynchronous systems, components
coordinate occasionally, but the flow of control is mostly unpredictable
[Shaw 1997]. In Opportunistic systems, the components act as
“autonomous agents [working] completely independently from each other
in parallel” [Shaw 1997].

In [Bhattacharya 2007], Bhattacharya and Perry devised an algorithm
to detect these four synchronicity types. As mentioned in Section 2.2,
Bhattacharya and Perry proposed a way to organize architectural
specification documents to facilitate searching the documents for
architectural properties. Bhattacharya’s and Perry’s synchronicity
algorithm searches a list of input and output event specifications of the
Service Event Specifications as defined in their documentation model. The
algorithm determines that the synchronicity is Sequential if, in the process
of searching the list of software components, the output events of one
component match the input events of the next component; Synchronous
if at any point in searching the list, the output events of all preceding
components match the input event of the next component; Opportunistic
if the input events of a component all match the output events within the
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same component and do not match the output events of any other
component; otherwise, if no other synchronicity type is detected, the
synchronicity is Asynchronous [Bhattacharya 2007].

Bhattacharya and Perry detected synchronicity by analyzing the
behavior of events with respect to each other. Similarly, AASM will detect
synchronicity in conceptual graphs by analyzing how events relate to each
other. As stated in [DeBraccio 2007], AASM identifies an event type as a
process component. The events are identified as Sequential if an ordering
relation, such as the CG follows relation, is between the events. If more
than one event is connected to another event by an ordering relation, then
the synchronicity is Synchronous. All other potential connectors described
in Section 3.4 are considered Asynchronous. The opportunistic connectors
are handled in an alternate analysis (see Section 4.5).

A blurred line exists between process components and connectors
when identifying events. In [Mehta 2000], some types of connectors are
events themselves. It is not always clear whether the event type modeled
in a requirements conceptual graph should be an event connector
component or an event process component. This paper will focus on the
way in which the events interact with each other; in other words, the
property of the connector between the events.

3.5.3. Data Continuity

“Continuity is a measure of the flow of data through the system”
[Bhattacharya 2007]. Bhattacharya and Perry proposed two classifications
of data continuity: Sporadic and Continuous. “While in a continuous flow
system, new data is available at all times, in a sporadic flow system, new
data is generated at specific intervals” [Bhattacharya 2007]. Since data
continuity is a data issue, an architectural data component must be
involved in the portion of the model that is being analyzed.

Sporadic data would occur when a User type gives information to the
system. This is detected when a process is initiated by a User type that
acts on a data component. Continuous data is detected when data
components are transmitted via connectors from one main “input” to one
main “output” with little user interaction between (measured relative to
the whole graph) at a continuous rate.

3.6. Step E: Architectural Style Prediction Scoring

To determine the most applicable architectural style, Table 4 was modified
from the CBSP approach, to focus on the connector properties. The CBSP
connector properties from the example in [Grüenbacher 2004] that were
included in the table were Local, Distributed, Synchronous, and
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Asynchronous. As shown in Table 4 three rows were added for the three
additional properties that were explored in [Bhattacharya 2007]: Sequential
(a synchronicity issue), and Sporadic and Continuous (both data continuity
issues).

Table 4
Connector Property Support for Architectural Styles

Client- C2 Event- Layered Pipe-and-
Server Based Filter

Locality Local — ++ - ++ +

Distributed ++ ++ ++ — +

Sequential — — — ++ —

Synchronicity Synchronous ++ — + ++ —

Asynchronous — ++ ++ — ++

Data Sporadic ++ ++ ++ ++ —

Continuity Continuous — — — — ++

Legend: ++ extensive support + some support - marginal support — no support

In [Bhattacharya 2007], support for the three additional properties
among various styles was expressed in basically a “yes” or “no” answer,
but the properties were not rated for partial support. For this paper, the
“yes” rankings of support were interpreted as ‘Extensive Support’ and
the “no” rankings were interpreted as ‘No Support.’ Future work will
explore how to assign each style the partial support rankings for the three
additional properties (see [DeBraccio 2007]).

Neither [Bhattacharya 2007] nor [Grüenbacher 2004] provided any
information on C2 support for these three properties. The C2 support
rankings for data continuity were estimated based on the research of Taylor
et al., the authors that introduced the C2 architecture in [Taylor 1996]. C2
was designed (but not restricted) to support applications with a Graphical
User Interface (GUI) [Taylor 1996]. In GUI applications, “both users and
the application perform actions concurrently and at arbitrary times”
[Taylor 1996]. Because the actions taken at arbitrary times suggest sporadic
data flow, we assumed C2 provides ‘Extensive Support’ for Sporadic data.
Since the definition from Section 3.5.3 suggests that the data continuity
would either be Sporadic or Continuous, but not both, we assumed that
any one architectural style would probably only support one property or
the other. Consequently, the C2 support for Continuous data was estimated
as ‘No Support.’ Future work may explore multiple-style architectures
[DeBraccio 2007] in which the two types of data continuity can co-exist in
the same architecture. In this paper, C2 was assumed to provide ‘No
Support’ for the Sequential property because “while the style does not
forbid synchronous communication, the responsibility for implementing
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synchronous message passing resides with individual components”
[Medvidovic 1997].

[Bhattacharya 2007] and [Grüenbacher 2004] conflict regarding the
support that the Layered style provides for asynchronous connectors: in
[Grüenbacher 2004], the support is considered the lowest ranking, but in
[Bhattacharya 2007], the Layered style is considered capable of supporting
any synchronicity property, including the Asynchronous property. For
this paper, the support ranking from [Grüenbacher 2004] was chosen over
the support ranking from [Bhattacharya 2007]. [Grüenbacher 2004]
provides more of a granularity in support rankings, and recognizing partial
support for properties provides a finer distinction between the styles.

To determine an architectural style from the numbers of connector
properties, 0 was first converted to Table 3.1. Instead of using plus and
minus signs to convey the support ranking, numbers (0 to 3) were used,
the highest number being assigned to ‘Extensive Support,’ and the lowest
value being assigned to ‘No Support.’

Table 3.1
Number-based Connector Property Support for Architectural Styles

Client- C2 Event- Layered Pipe-and-

Server Based Filter

Locality Local 0 3 1 3 2

Distributed 3 3 3 0 2

Sequential 0 0 0 3 0

Synchronicity Synchronous 3 0 2 3 0

Asynchronous 0 3 3 0 3

Data Sporadic 3 3 3 3 0

Continuity Continuous 0 0 0 0 3

Legend: 3 extensive support 2 some support 1 marginal support 0 no support

To calculate the Architectural Style Prediction Score (ASPS), each entry
in Table 3.1 was treated as a multiplier for the corresponding number of
connector properties (to be tallied from the results table). The connector
properties scores were then added up per architectural style.

The following formula summarizes these steps:

ASPS =
=

×∑
1

INCP

i

CPSR ncp

• TNCP: The total number of connector properties. In this paper,
AASM searches for seven connector properties: Local, Distributed,
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Sequential, Synchronous, Asynchronous (or Opportunistic),
Sporadic, and Continuous.

• CPSR: The connector property support ranking for property i;
the values are from Table 3.1.

• ncp: The number of times each connector property iwas counted.

The resulting scores are then compared; whichever style receives the
highest score is the recommended style for the software architecture.

3.7. AASM Examples

This section illustrates AASM Steps A through D with several examples.
The examples show how AASM behaves 1) when architectural components
are detected in requirements (Section 3.7.2), 2) when architectural
constraints are detected in requirements (Section 3.7.3), and 3) when no
architectural constraints or components are detected (Section 3.7.1). The
requirements were taken from the Scheduler project discussed in Section
4. The full set of Scheduler software requirements are listed in Appendix
F of [DeBraccio 2007], the conceptual graphs for the Scheduler
requirements are in Appendix I of [DeBraccio 2007], and the AASM results
for the Scheduler are in Appendix J of [DeBraccio 2007].

3.7.1. Detecting a Non-Architectural Requirement

The conceptual graph model of the following requirement was found to
have no architectural constraints and no architectural components.

Scheduler Requirement #9:

Incident report records should show, date received; date forwarded for
action, date suspended; and date closed (incident report history).

The “Incident report” refers to the “Range Incident Report” form in
the Scheduler system. 0 shows how the requirement was modeled into a
conceptual graph.

CG Model of Scheduler Requirement #9
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AASM does not detect a system or a sub-system because none of the
CG concepts is a System type. AASM does not detect a Process component
because none of the CG concepts is an Action type. The Control concept
types inherit from the Entity type. They qualify as data attributes of the
Range Incident Report form. However, AASM does not detect them as
architectural data components since there is no Process component that
acts on the data. Table 3.2 shows the AASM table entry for Scheduler
Requirement #9.

Table 3.2
AASM Table Entry for Scheduler Requirement #9

Req’t Constraint (sub) Data Process Connector Connector

ID System Properties

9 not not (Local data not not not
identified identified attributes: identified identified identified

Control: Date

Received,

Control: Date

Forwarded For

Action,

Control: Date

Suspended,

Control: Date

Closed)

3.7.2. Detecting Architectural Components

AASM detected architectural components in the conceptual graph model
of Scheduler Requirement #13.

Scheduler Requirement #13:

The SR form shall integrate with the SOP database.

The “SR” form is the Schedule Request form for the Scheduler system.
“Integrate” was interpreted as an Access action type in the CG model
shown in 0.

CG Model of Scheduler Requirement #13

AASM does not detect a system or a sub-system because none of the
CG concepts is a System type. AASM detects the Access action type as a
Process component. The Database: SOP concept is detected as a data
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component because it is an Entity type concept and the Access process
component acts on it.

AASM detected a connector was needed between the Schedule Request
Form and the SOP Database because the two CG types, Form and
Database, are from different system types: the Form inherits from the
UserInterface type, which is a different system type from the Database
type. The fact that the Form and Database types are from different system
types also means that the connector property is detected to be distributed.
Table 3.3 shows the AASM table entry for Scheduler Requirement #13.

Table 3.3
AASM Table Entry for Scheduler Requirement #13

Req’t Constraint (sub) Data Process Connector Connector
ID System Properties

13 not not Database: Access Form: Distributed

identified identified SOP Schedule

Request &

Database:

SOP

3.7.3. Detecting an Architectural Constraint

This section provides examples for the two ways AASM detects an
architectural constraint as described from Section 3.3.2: by a CG definition
(Section 3.7.3.1) and by negated concepts (Section 3.7.3.2).

3.7.3.1. Detecting a CG Definition

AASM detected a CG definition in the conceptual graph model of
Scheduler Requirement #52.

Scheduler Requirement #52:

Clear shortcuts through the system should be defined.

As shown in 0, when Requirement #52 was modeled into a conceptual
graph, “Clear shortcuts” was interpreted as the Hyperlink type, and
“defined” was interpreted as defining the hyperlink by assigning it Name
and Destination attributes.

CG Model of Scheduler Requirement #52
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The system in Requirement #52 is the Scheduler system. AASM detects
this requirement as an architectural constraint because the Hyperlink
concept is labeled with the @forall symbol, meaning that the attributes
and other properties of the Hyperlink concept apply to all Hyperlink types
in the model. Table 3.4 shows the AASM table entry for Scheduler
Requirement #52.

Table 3.4
AASM Table Entry for Scheduler Requirement #52

Req’t Constraint (sub) Data Process Connector Connector
ID System Properties

52 Arch. Scheduler (Local data not not not
Constraint: attributes: identified identified identified
for all Name,
Hyperlinks Destination)

3.7.3.2 Detecting Negated Concepts

AASM detected negated concepts in the conceptual graph model of
Scheduler Requirement #50.

Scheduler Requirement #50:

SR work flow shall allow TD to go forward and or go and get needed

information without having to get out and restart the form again.

Figure 7 shows that the “SR” acronym was interpreted to be a Schedule
Request Form type. The “TD” acronym was interpreted to be a Test
Director User type. The “work flow” was interpreted to be an interrupt
initiated by the Scheduler system.

Figure 7: CG Model of Scheduler Requirement #50

The constraint was an architectural constraint because the Scheduler
system was included in the requirement, but AASM detected no
architectural components from the conceptual graph in 0 because all the
concepts were negated. Table 3.5 shows the AASM table entry for
Scheduler Requirement #50.

mailto:@forall
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Table 3.5
AASM Table Entry for Scheduler Requirement #50

Req’t Constraint (sub) Data Process Connector Connector
ID System Properties

50 Arch. not not not not not
Constraint: identified identified identified identified identified
Negated
concepts
involving a
system

4. RESULTS

To validate the AASM, the process was run on two sets of software
requirements. The first set of software requirements (from [Ambriola 1997])
describes how the CIRCE system works. Those requirements were chosen
because since they had already been validated by the CIRCE process, they
should already be relatively free of ambiguities. The second, larger set of
software requirements was taken from an industrial software project which
will be called Scheduler in this paper. The Scheduler requirements were
taken directly from the final draft of the requirements document for
Scheduler version 1.0; no formal process was taken to purge ambiguities
from the Scheduler requirements once they were taken from the
requirements document.

In Step A of AASM, the requirements were modeled in conceptual
graphs. Steps B and C (identifying the architectural requirements) were
performed in one stroke: architectural requirements are the requirements
that have an architectural constraint or they have at least one architectural
component. In Step D, the architectural connectors were analyzed to
determine properties. In Step E, the connector properties were compared
to predict a plausible overall architectural style.

4.1. CIRCE Results

The twelve CIRCE software requirements from [Ambriola 1997] and the
conceptual graphs that model those requirements are documented in
[DeBraccio 2007], as well as the tailored CIRCE type hierarchy. Table 4.1
is an excerpt from the AASM analysis for CIRCE. The table lists the
architectural constraints, architectural components, and the connector
properties that were found in the CIRCE conceptual graphs for the first
three CIRCE software requirements.
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Table 4.1
Excerpt of CIRCE Requirements Analysis

Req Constraint (sub) System Data Process Connector Connector
# Properties

1 not System: CIRCE, not not not not
identified System: Web identified identified identified identified

Interface,
System: View
Module,
System: Cico,
System: View
Selector

2 not Information: Information: Receive System:Web [Asynchronous
identified User Reqs User Reqs Interface & or

Information: Opportunistic]
User Reqs Distributed

not Information: Information: Receive System: Web [Asynchronous
identified Glossary Glossary Interface & or

Information: Opportunistic],
Glossary Distributed

3 not Information: not not not identified not identified
identified User Reqs identified identified

4.2. Scheduler Results

The eighty-eight Scheduler software requirements, the Scheduler type and
relation hierarchies, CG definitions, conceptual graph models, and AASM
results are documented in [DeBraccio 2007]. Table 4.2 is an excerpt of the
AASM results for Scheduler.

Table 4.2
Excerpt of Scheduler Requirements Analysis

Req Constraint (sub) Data Process Connector Connector
# System Properties

75 not Form: Form: Auto- Form: [Asynchrono
identified Firing Schedule populate Schedule us or

Program Request Request & Opportunistic],
Form: Firing Local
Program

77 not Schedule Query Clear System: [Asynchrono
identified r Scheduler & us or

Form: Firing Opportunistic],
Program Local

71 not Database :Form: Auto- Form: [Asynchrono
identified Tube Schedule populate Schedule us or

Request Request & Opportunistic],
Database: Distributed
Tube
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4.3. Requirement and Connector Totals

Table 4.3 lists the total numbers of requirements and the numbers of
potential architectural requirements for each project. As mentioned in
Section 3.2, the architectural requirements could be architecturally-
significant requirements or architectural constraints. The architecturally-
significant requirements are the requirements in which AASM found at
least one architectural component candidate. Some Scheduler requirements
qualified as both an architectural constraint and an architecturally-
significant requirement.

Table 4.3
Numbers of Architectural Requirements and Total Requirements

CIRCE Scheduler

Numbers of Architectural Constraints 0 8

Numbers of Architecturally-Significant 12 63

Requirements

Numbers of Architecturally-Significant 9 53

Requirements with at least one

Connector

Total Requirements 12 88

Table 4.4 shows the numbers of connector properties for each project.
A single requirement can have more than one connector, and a single
connector can have more than one property.

Table 4.4
Numbers of Connector Properties

CIRCE Scheduler

Locality Local 0 24

Distributed 19 8

Synchronicity Sequential 2 15

Synchronous 0  0

Asynchronous 23 62

Data Sporadic 2 22

Continuity Continuous 0 0

Total Connector Properties 46 131

4.4. Architectural Style Results with Asynchronous Connectors

The architectural style that has the highestASPS is the recommended style
for that project.



Table 4.5
Architectural Style Prediction Scores with Asynchronous Connectors

Client- C2 Event- Layered Pipe-and-Filter
Server Based

CIRCE ASPS 63 134 132 12 107

Scheduler ASPS 90 348 300 183 250

4.5. Architectural Style Results with Opportunistic Connectors

An alternative analysis of the AASM connector properties is to consider
the Asynchronous connectors as Opportunistic connectors instead.
Interpreting the connector properties found by AASM as Opportunistic
instead of Asynchronous would be a defendable viewpoint, since
conceptual graphs lend themselves to stating the existence of concepts
and groups of concepts that exist in parallel with each other. In
[Bhattacharya 2007], the only style of the five explored in this paper that
is shown to support Opportunistic connectors is the Layered Style. Table
4.6 shows a possible interpretation of how these five styles may support
the Opportunistic connector property.

Table 4.6
Opportunistic Connector Property support for Architectural Styles

Client- C2 Event- Layered Pipe-and-
Server Based Filter

Synchronicity Opportunistic 0 3 0 3 0

Legend: 3 extensive support  2 some support   1 marginal support  0 no support

No values for C2 were given in [Bhattacharya 2007] or [Grüenbacher
2004] for Opportunistic support, so the C2 support rankings were estimated
in this paper based on the research of Taylor et al. Since C2 was described
as supporting multiple threads in “multi-user and concurrent applications”
[Taylor 1996], C2 was assigned a high support ranking in Table 4.6.

Table 4.7 can be compared to Table 4.5; Table 4.7 shows the alternate
ASP scores if all the Asynchronous connectors in both projects were
considered instead as Opportunistic connectors.

Table 4.7
Architectural Style Prediction Scores with Opportunistic Connectors

Client- C2 Event- Layered Pipe-and-
Server Based Filter

CIRCE ASPS 63 134 63 81 38

Scheduler ASPS 90 363 114 369 64



5. DISCUSSION

This section will discuss 1) the analysis challenges encountered during
the AASM process (Section 5.1), 2) the numbers of requirements (Section
5.2), 3) the results of the analysis of asynchronous connectors (Section 5.3.1)
and opportunistic connectors (Section 5.3.2), and 3) the actual styles of
the projects (Section 5.4).

5.1. Analysis Challenges

During the analysis of each project, challenges were encountered in the
Software Requirements and in Conceptual Graph Modeling. The main
challenges regarding the software requirements were ambiguous
requirements, redundant requirements, and tasks that were bundled into
the software requirements that were not actually meant to be modeled
into the software project. The method in this paper needed the
requirements to be unambiguous enough to identify potential architectural
components and potential connector properties; whether or not the
requirements were unambiguous enough for software design tasks to
commence is outside this paper’s scope. If redundant requirements were
modeled into the conceptual graphs, any architectural components that
may have been detected were not double-counted. Also, when the
requirements were modeled into conceptual graphs, no attempt was made
to distinguish between the “real” requirements and any pre-requirement
tasks (meant for the customer(s) to perform prior to requirements
gathering) or pre-design tasks (meant for the software developers to
perform prior to modeling the software).

Conceptual Graph Modeling challenges included the need to add to
the conceptual graph definitions and to the type hierarchy, inaccurate or
ambiguous modeling into conceptual graphs, and the fact that there are
many different ways to model a software requirement into conceptual
graphs.

Part of the difficulty is the fact that conceptual graphs are limited when
attempting to model complicated expressions of time. As mentioned in
Section 0, conceptual graph notation does provide some symbols for
modeling temporal statements. Modeling temporal statements was
important, particularly for the Scheduler, a system whose central purpose
involved relating activities to time. In many cases, the problem was
overcome with the use of an ordering relation like follows (see Scheduler
Requirements #20, #34, #38, and #85 in [DeBraccio 2007]), with the use of
the past relation (see Scheduler Requirements #2 and #10 in [DeBraccio
2007]). Some requirements, though, were like Scheduler Requirement #50
(discussed in Section 3.7.3.2). Scheduler Requirement #50 included
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different verb tenses within the same sentence, so it had to be interpreted
broadly to model the meaning.

5.1.1. CIRCE Challenges

No challenges were encountered regarding the CIRCE requirements
because none of these particular requirements were found to be ambiguous
(that is, in some way that might hinder identifying candidates for
architectural components).

A conceptual graph modeling challenge was that many CIRCE entity
concepts seemed to fit into both the ‘Data’ component category and the
‘System’ category. This is important because AAMS’s method of detecting
connectors depends on whether a component was a system or not. In the
results table, these CG concepts were treated as candidates for both data
components and system components (see Appendix E in [DeBraccio 2007]
for requirements 2, 6, 8, 10 and 11).

5.1.2. Scheduler Challenges

Several ambiguous requirements were found in the Scheduler
requirements during the AASM analysis. The ambiguous requirements
often resulted in undefined connector properties.

This was because the entity type that initiates the action on the data is
not specific enough to determine which property should be chosen.
Theoretically, these ambiguities would have been purged if the software
requirements had gone through the same filtering process as the CIRCE
software requirements.

Redundant requirements that suggest an architectural component
means that the architectural component is listed twice in the results table;
however, the redundant components are not counted twice in the results.
We recognize that some requirements would have been detected as
constraints or as having architectural components if they had been
modeled in conceptual graphs more accurately.

5.2. Numbers of Requirements

In Table 4.3, the number of architectural requirements with respect to the
total number of requirements is usually expected to be small [Grüenbacher
2004]. The fact that AASM discovered most of the requirements as an
architectural requirement means that further research is needed for AASM
to distinguish between architectural-level requirements and design-level
requirements. However, AASM provided a high coverage of the
conceptual graphs, so a large percentage of the graphs contributed to the
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prediction of a suitable architectural style. The requirements that
contributed to the style prediction score were the architecturally-significant
requirements with at least one connector. That means 75% of the CIRCE
requirements and over 60% of the Scheduler requirements contributed to
the style prediction score in Section 4.4.

5.3. Analysis of Architectural Style Results

The ASPS scores within a particular project such as those in Table 4.5 are
meant to be interpreted relative to each other, and the scores for one project
are not meant to be directly compared with the scores of another project.
Section 5.3.1 discusses the Asynchronous Connector results and Section
5.3.2 discusses the Opportunistic Connector results.

5.3.1. Analysis with Asynchronous Connectors

In Table 4.5, both projects ranked C2 as the highest, Event-Based as the
second highest, and Pipe-and-Filter as the third highest. The reason is
probably because only the connector properties are analyzed. The C2 style
happens to support several different connector properties very well. Both
projects contained many potential candidates for asynchronous connectors
and sporadic connectors, and both the C2 and Event-Based styles support
both those types of connectors well. The Pipe-and-Filter style was ranked
third because it provides support for asynchronous connectors.

For the purposes of AASM, the scores for the C2 and Event-Based
styles were nearly identical for the CIRCE project. Both styles not only
received high scores, but they received similar scores, meaning that both
are a recommended choice for CIRCE. The style prediction scores could
be more reliable if the properties for the other architectural components
are analyzed in future work.

5.3.2. Analysis with Opportunistic Connectors

In Table 4.7, both the layered style and the C2 style are favored above the
other styles for both projects. The fluctuation in the scores for the Event-
Based, Layered, and Pipe-and-Filter styles shows that in this stage of
AASM’s development, AASM is very sensitive to different interpretations
of the conceptual graph model; ideally, the ASP scores would not fluctuate
as much among different interpretations. The sensitivity of AASM indicates
that further research is needed in how to distinguish between
Opportunistic and Asynchronous connectors in conceptual graphs.

5.4. Styles Implemented

Information on the actual architectural style(s) in which CIRCE was
implemented was not available for this paper. Scheduler 1.0 was developed
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into a web-based database application which was implemented with both
a layered style and a client-server style. It would be interesting to see in
future work, when the properties for the other architectural components
are analyzed, if the Scheduler AASM results would more closely favor
the actual chosen styles.

6. CONCLUSION

In the context of the human-intensive CBSP process, AASM could be a
valuable support tool because it would serve as a voter free of human
bias. In addition, AASM contributes to the following research areas:

AASM identifies some types of architecture-level requirements, a topic
of needed research ([Svetinovic 2003], [Firesmith 2006]).

AASM provides the potential for tool support in the transition from
software requirements to software architecture, described as a needed
research area in [Galster 2006].

AASM provides the groundwork for an automated tool that can help
a software architect construct a multiple-style architecture. Tool support
for multiple-style architecture recommendations was described as future
work for CBSP in [Grüenbacher 2004]. An important future goal for AASM
would be the realization of this potential.

In summary, AASM is an approach towards selecting an architectural
style from a given set of natural language software requirements with the
focus on automating the selection of styles.

No fully automated tools exist to achieve this goal; AASM provides
groundwork for future research in this area. As discussed in [DeBraccio
2007], AASM provides a starting point for a variety of research areas that
target bridging the gap between software requirements and software
architecture.
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