
CharGer Manual v4.2.1 2019-11-14 Page 1 of 54

 CharGer©
Conceptual Graph Software by Harry Delugach

 User’s Guide
Contents

Introduction ___ 3
Features currently supported __ 4

File features ___ 4
Editing features __ 4
Compatibility features ___ 5
CGIF Compatibility ___ 5

Features not currently supported __ 6
Why the name "CharGer"? ___ 6

Installation __ 6
System Requirements __ 6
Software ___ 6

Windows Install __ 6
macOS Install ___ 6
Running .jar file alone ___ 7
Files and folders used ___ 7
Configuration File __ 8

Documentation __ 8

General Information ___ 8
User Windows __ 8
The Graph Drawing Area ___ 10

Main Window ___ 10
Main Window Buttons __ 11
Main Window Menus ___ 11

File Menu __ 11
Tools Menu __ 12
Windows Menu ___ 12
Help Menu ___ 12

Editing Window ___ 13
Align Vertically ___ 13
Align Horizontally ___ 14

Menus __ 14
File Menu __ 14
Edit Menu ___ 16
Draw Menu __ 19
View Menu __ 20
Operation Menu ___ 21
Windows Menu ___ 22

Drawing Tools ___ 22
Selection Tool __ 22
Concept Tool ___ 22
Relation Tool ___ 23
Actor Tool ___ 23

CharGer Manual v4.2.1 2019-11-14 Page 2 of 54

Link Tool __ 23
Coreferent (Line of Identity) Tool ___ 23
Type Label Tool __ 23
Relation Type Label Tool ___ 24
Generalization/Specialization Line Tool __ 24
Note Tool __ 24
Delete Tool __ 24

Shortcut Keys ___ 24
Command Buttons ___ 25

Make Context __ 25
Make Cut __ 25
UnMake Context __ 25

Preferences Window __ 25
Appearance ___ 26

Current Default Colors ___ 28
Compatibility __ 29

CGIF options ___ 30
Other options ___ 31

Actor Settings ___ 31
Config __ 33
CRAFT Settings (optional) ___ 33

Actor Activation ___ 35

Database Linking __ 37

CRAFT Subsystem ___ 39
CRAFT main window ___ 39
The Grid Window __ 40

External Module Plug in Interface __ 42

Known Bugs and Restrictions __ 42

Frequently Asked Questions ___ 44

Technical Reference __ 45
CharGer XML File Format (version 3.1b and later) ____________________________________ 45
Repertory Grid Proprietary File Format (v. 3.2b and later) _____________________________ 50
CharGer Proprietary File Format (version 3.0b only) ___________________________________ 51
CharGer Proprietary File Format (versions 2.6b or earlier) ______________________________ 52
Development Details __ 53
Invoking CharGer from an application __ 53
Actor Plugin Interface __ 53
Recent Changes __ 54

Version 4.2.0 ___ 54

Figures

Figure 1. CharGer Main Window. ... 9
Figure 2. Editing Window. .. 10
Figure 3. Basic Editing Features. .. 13
Figure 4. Formatting toolbar .. 13

CharGer Manual v4.2.1 2019-11-14 Page 3 of 54

Figure 5. CGIF display window. ... 16
Figure 6. Appearance Preferences panel. .. 26
Figure 7. Enhanced "cut" display. ... 28
Figure 8. Font Chooser Dialog. ... 28
Figure 9. Compatibility panel. ... 30
Figure 10. Actors settings .. 32
Figure 11. CRAFT settings .. 34
Figure 12. Actor example. ... 35
Figure 13. Changed actor graph. ... 35
Figure 14. Illustration of the <dbfind> and <lookup> actor. ... 37
Figure 15. Database Linking Tool Window. ... 38
Figure 16. CRAFT main window. ... 40
Figure 17. CRAFT repertory grid window. ... 41

Introduction
CharGer is a conceptual graph editor intended to support research projects and education. Its
current version is primarily an editor to create visual display of graphs. It is a research tool for
conceptual graph researchers to explore implementation issues in conceptual graph interfaces. For
some specialized purposes, it also supports an interface to WordNet1 (a popular
dictionary/thesaurus), a repertory grid tool for acquiring requirements (CRAFT), and a generalized
module “plug in” facility. For troubleshooting, see the section on Known Bugs and Limitations.
Users of the software should have some familiarity with conceptual graphs, including concepts
and relations, type hierarchies and type/referent pairs. Knowing about actors will also be very
helpful. For more information about conceptual graphs, see the Web page:
http:;//conceptualgraphs.org.
If you use CharGer to prepare technical papers and presentations, you are requested to cite the
following as a reference (in addition to this manual):
Harry S. Delugach, “Implementation and Visualization of Conceptual Graphs in Charger,” Intl.
Jour. of Conceptual Structures and Smart Applications, vol. 2, no. 2, pp. 1-19, 2014.

1 WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. THIS SOFTWARE AND DATABASE
IS PROVIDED "AS IS" AND PRINCETON UNIVERSITY MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PRINCETON
UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANT- ABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE,
DATABASE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. The name of Princeton University or Princeton may not be
used in advertising or publicity pertaining to distribution of the software and/or database. Title to copyright in this
software, database and any associated documentation shall at all times remain with Princeton University and
LICENSEE agrees to preserve same.

CharGer Manual v4.2.1 2019-11-14 Page 4 of 54

Features currently supported
These features are currently supported:

File features

• Save and retrieve graphs from files, in an XML format called CGX (see Appendix). These are
ordinary XML text files and are portable across all platforms.

• Retrieve graphs from earlier CharGer files, in a proprietary (i.e., non-standard) text format.
These graphs have the extension .cg and are portable across all platforms.

• Save graphs in Conceptual Graph Interchange Format (CGIF) standard interchange format
conforming to ISO/IEC 24707:2007 Annex B. These graphs have the extension .cgif and are
portable across all platforms. Currently under revision.

• Display a graph's CGIF version or a graph's (crude) natural language paraphrase, copy it to the
clipboard as text, or save it to a text file.

• Save a graph in some graphics formats.

Editing features

• Copy/paste of graphs using an internal clipboard.
• Copy and paste from CharGer to other applications.
• Any number of graph windows may be opened for editing.
• Concepts, relations and actors are all supported for editing.
• Contexts and cuts are supported.
• Type and relation hierarchies are supported using a Charger-specific “generalization-

specialization” link.
• Custom colors for each kind of graph object, and the ability to set one’s own default color

scheme.
• Arbitrary text notes can be placed on a graph – they convey no semantics, but serve to annotate.
• Type and relation hierarchies may be edited and saved the same way as a graph, and may be

intermixed on the same sheet of assertion.

• Contexts are supported, including arbitrary nesting. Negated contexts (“cuts”) are also
supported.

• Save-before-close to prevent losing a graph, and other modifications to prevent losing data.
• Changes to graph elements are tracked with “history” records that are saved with the file.
• Zoom in and out on a graph’s view
• Several levels of undo/redo for editing changes (currently the last 15 changes)
• Adjustable text wrapping for object labels
• Ability to customize fonts for every node in a displayed graph
• Portability to all major platforms (i.e., as portable as Java based on JDK 1.7)

CharGer Manual v4.2.1 2019-11-14 Page 5 of 54

• Shortcuts to move and explicitly resize graph objects and contexts
• Shortcuts to switch editing tools.

Compatibility features

• Activation of some built-in actors, including several primitive ones for arithmetic and
elementary operations, with an optional “animation” to show their operation.

• Database access through actors, although restricted to tab-separated text file “databases” at
present.

• User-written (in Java) actor plug-ins with a published plug-in interface.
• Capability to automatically create a skeleton graph from a database suitable for providing

database semantics.

• A natural language paraphrase feature, to paraphrase a graph in English (other languages on
the way)

• Ability to set user preferences and save them between sessions.
• Some conceptual graph operations (e.g., join, match) (see Known Bugs and Restrictions)
• Ability to export / import CGIF (see below) including type hierarchies
• Ability to attach Wordnet glossary definitions or generic glossary entries to concepts and types
• Ability to perform some concept acquisition via repertory grids
• Ability to export a repertory grid to Burmeister (CXT) format.
• Ability to accommodate an external module (inserted into the Tools menu)

CGIF Compatibility
Charger’s support for CGIF has the following characteristics:
• Type identifiers and referent identifiers that contain only alphanumeric characters do not have

to be delimited in any special way. For example, the identifier Harry may be rendered simply
as Harry without delimiters. The set of alphanumeric characters is all the upper and lower
case Roman letters, digits 0-9, and the underscore.

• All other type identifiers and referent identifiers must be delimited by double quotes; identical
to the " symbol. A double quote itself may be included in the identifier as long as it is
escaped as per Linux convention. For example, Edwin ("Buzz") Aldrin would be rendered in
CGIF as "Edwin (\"Buzz\") Aldrin". The delimiting quotes are not part of the identifier
as processed internally.

• These constraints are obeyed whenever CharGer is writing CGIF to a file.
• When reading from a CGIF file, the presence of any other quoting convention will result in

unpredictable and probably undesirable behavior.

CharGer Manual v4.2.1 2019-11-14 Page 6 of 54

Features not currently supported
The following useful features are not currently supported; plans are to implement them in the
future. Users are urged to note the list of limitations and bugs.

• Validation facilities (except for enforcing CG formation rules)
• Pasting (as in copy/paste) from other applications to CharGer windows. It’s not clear how this

feature could work unless the other application’s image has the structure of a conceptual graph.

• Ability for actors to be themselves defined in CG form (actor plug-ins must be written in Java,).

Why the name "CharGer"?
The University of Alabama in Huntsville has several sports teams nicknamed the "Chargers"; a
catchy name at that. Since the "CG" initials appear in it, it seemed a natural choice. And I like the
notion of forging ahead, attacking research problems and leading the way. So there.

Installation

System Requirements
The minimum requirements for CharGer are:
• A color display, 800 x 600 resolution or higher.
• At least 1 GB of RAM

Software
There are three different ways to install CharGer on your machine. For Windows and macOS,
CharGer is distributed as an installer that will create a stand-alone application that you run just like
any other. For Linux (or for Windows or macOS users who are already familiar with running .jar
files under Java), the .jar file itself is also available. All these downloads are available at
http://www.cs.uah.edu/~delugach/charger.php. Click on the option you want.

Windows Install
• Find the CharGer4-Installer.exe file in your default Downloads folder.
• Double-click it. You’ll see a license agreement to accept, then click Next.
• After the installation is completed, CharGer will automatically run.
• The next time, you’ll find CharGer in your list of available programs to run.

macOS Install
• Find the Charger4.dmg file in your default Downloads folder Double-click it and agree

to the license terms. There should then be a disk in your Finder called Charger4.
• Open the new disk named Charger4. Drag Charger4.app to Applications. If you've

installed it before, you should see a warning that you're going to replace it with this version.
If that appears, Click "Replace".

• Launch “Charger4.app" from your Applications folder. Double-click to open as any
other application.

CharGer Manual v4.2.1 2019-11-14 Page 7 of 54

NOTE: If you see a dialog warning you that CharGer4.app is from an unknown
developer or that it was downloaded from the Internet, try double-clicking
while holding the control key as above, or control-right-click and “Open”.

• After a moment, you should see the CharGer Main Window (see below).

Running .jar file alone
You must have Java installed (not Javascript) to run the software. A Java VM of version JDK 8 or
higher is required (either a JRE or JDK); see http://java.oracle.com for information on how to get
a freely available version, or use any commercial Java package. Java may already be installed on
your system; to find out, get to a command prompt and enter “java –version”. If the command
doesn’t return an error, make sure the version is 7 or higher.
To run the software, do either of the following:
1. Double-click the CharGer4.jar file that you downloaded, and you’re on your way!

Alternatively, you may want to run it from the command line as follows.
2. Run CharGer under JRE/JDK through the command-line interface, invoking the following

command in the top-level folder:
...> java -jar CharGer.jar <arguments>

This should invoke the application and bring up the CharGer Main Window.
• If you are unable to run a jar file directly like this, you should be able to unpack the .jar file

(using the “jar xvf CharGer.jar” command) and work with the classes themselves. In
that case, the command to run CharGer would be as follows (note the “.” for the class path):

• ...\CharGer> java –cp . charger.CharGer

COMMAND LINE ARGUMENTS
Charger accepts these command line arguments:
-p <pathname> Tells Charger the folder to initially look for its graphs. Default is

“Graphs” in the user’s home folder.
-logFile
(true|false)

If true, then direct all standard output/error messages to the
CharGerLog.txt inside the folder .edu.uah.Charger in your
home folder. Default is true.

-diagnostics Tells Charger to show diagnostic information on the console. Enables
Admin mode. Default is present.

Files and folders used
A simple folder structure is typical when running CharGer. Your own graphs and database folder
can be located anywhere you want; see the Preferences Panel for how to tell CharGer where they
are.
A brief explanation of these is as follows:

Graphs Where CharGer expects to find graphs (*.cgif, *.cgx files) by default. Graphs
can be opened and saved from/to any folder, however. See the Compatibility
Panel in Preferences.

CharGer Manual v4.2.1 2019-11-14 Page 8 of 54

Databases Where CharGer expects to find its tab-separated text databases for the
<lookup> or <dbfind> actor. See below for more information. See the Actors
Panel in Preferences.

Grids Where CharGer expects to find its RGX repertory grid files. If you are not using
CharGer for repertory grid acquisition (i.e., if CRAFT is disabled), then you
won’t need this directory. See below for more information. See the Craft Panel
in Preferences.

There is no particular reason why the Graphs, Databases and Grids directories are specified
separately, except for convenience. There is a Set all folders button in Preferences that will
allow you to select one common directory to hold all three kinds of files.

Configuration File
CharGer's preferences panel allows each user to save their own set of preferences. These are saved
in the CharGerUserPrefs.props file within a “hidden” folder in your home folder
named.edu.uah.Charger. There is only one configuration per user. Although users shouldn’t
usually need to edit this file directly (Save Preferences does this for you), the entries in the file
consist of two kinds of lines:
• Parameter lines of the form expected by the Properties class:

Parametername = parametervalue

• Comment lines are of the form
anything…..

Documentation
Documentation of CharGer consists of a set of HTML files (generated from javadoc) documenting
the classes (primarily useful for developers), some tool tips and informative messages during
execution, and this manual, which can be found at http://www.cs.uah.edu/~delugach/charger.php.

General Information
The CharGer software is offered without guarantees or warranty of any kind. Although it is
unlikely to do serious damage to your computer files, it may not be useful at all. Please report all
bugs, suggestions, etc. to the author: Harry Delugach (delugach@uah.edu). The usual disclaimers
hold with respect to my responsibility for any problems you may have with this software. In other
words, use at your own risk.

User Windows
There are several kinds of windows in CharGer. One is the Main Window, which looks something
like Figure 1. The version number displayed on your Main Window may be different; yours reflects
the actual version you’re using.

CharGer Manual v4.2.1 2019-11-14 Page 9 of 54

Figure 1. CharGer Main Window.

From this window, one or more editing windows may be opened. An editing window looks
something like Figure 2. Details of its components and buttons are given below.

CharGer Manual v4.2.1 2019-11-14 Page 10 of 54

Figure 2. Editing Window.
There are additional window types (e.g., Database Linking Tool Window and other display
windows) described below.

GETTING HELP
Many buttons, fields, etc. have “tool tips” that will help you understand what they do. To view a
tool tip, place the cursor above some element in a window. After a short pause, a one-line help
description will appear. If nothing appears, then there’s no tool tip for that element; if you think it
needs one, send a note to the author. In the meantime, look in this manual for more help.

GRAPH STRUCTURE
A graph in the CharGer environment is any collection of concepts, relations, actors and type
labels, linked by their appropriate arrows, co-referent links, input/output arrows or super/sub-type
arrows. A collection of un-connected elements is still considered a graph. All the elements of each
graph are contained in a single file. The notion of multiple graphs means elements in multiple files.
We have introduced two new graphical elements not previously defined in conceptual graph
display environments, namely, a typelabel and relationlabel shown as a text string above
a horizontal line, as ANIMAL, This gives us an easy facility to draw type hierarchies and have them
stored either separately, or included as part of another graph.

The Graph Drawing Area
There is a drawing area in an editing frame that serves as the “canvas” on which the user draws a
graph. This area operates as a constrained version of a typical picture-drawing program, except
that it will try to enforce the conceptual graph formation rules.

Note: The “philosophy” behind the editor is that it supports an open world. That is, the
user may enter anything he/she wants as long as it is well-formed by the general
rules of conceptual graphs. If the user enters some element that is already
defined, then the system will try to use that definition to enforce any constraints
that result from it. If the user enters an element that is not already defined in the
system, it can still be included, but no constraints will be enforced on it and little
processing should be expected. Of course, the user is free to then provide
definitions, facts, etc. that deal with the new elements.

Main Window
The main window lists the available graphs. This scrollable list has all the graphs available to the
CharGer editor in the Graphs folder. The default naming scheme is as follows.
 <GraphName>.cgx
Selecting one or more graphs from the list will cause each of them to be opened in an editing
window when the Open Selected button is clicked. (see below).

Note: Use the Quit button or menu item to end the session.
Graphs are currently saved in a standard XML form. This CharGer XML form is an easy-to-use
text form, strictly for purposes of saving graphs within the CharGer editor. As text, they are

CharGer Manual v4.2.1 2019-11-14 Page 11 of 54

intended to be portable across all platforms. This format is not intended as a replacement or
alternative for the standard CGIF format.

Main Window Buttons
The following buttons in the Main Window are supported:

SET FOLDER…
Lets you select a directory where your graph files are located. Once chosen, it will become the
default directory for opening/saving and all the .CG files in that directory will appear in the
window.

NEW
Creates an empty editor window, ready for creating a graph from emptiness.

OPEN SELECTED
Opens the selected graph(s) in the displayed list. Double-clicking a single name will do the same
thing for a single graph. This button only opens graphs from the list; to open graphs from anywhere
else, use the Open… menu item in the File menu.

OPEN ALL
Opens the selected graph(s) in the displayed list. Double-clicking a single selection will do the
same thing. This button opens all the graphs in the list from the default directory; to open graphs
from anywhere else, use the Open… menu item in the File menu.

SAVE ALL CGIF
Converts every graph in the list to CGIF form.

CLOSE ALL
Close all editing windows. If a graph has been edited but not saved, you’ll be prompted for each
changed file as to whether you want to save it or not.

QUIT
Aborts the entire CharGer thread, after giving the user a chance to save any un-saved graphs or
grids.

Main Window Menus
There are three menus associated with the main window — the File menu, the Tools menu, and
Windows menu. The menus are explained below.

File Menu

NEW
Creates a new editing window. Does the same thing as the New button.

CharGer Manual v4.2.1 2019-11-14 Page 12 of 54

OPEN …
Lets the user choose a graph using a standard file selection dialog window. Operated the same way
as the Open button.

OPEN CGIF …
Lets the user open a CGIF (*.cgif) graph as chosen through a standard file selection dialog window.
CGIF is defined as per ISO/IEC 24707:2007 – Annex B.

PREFERENCES…
There is a preferences panel that allows the setting of some preferences by the user. Such settings
are in effect for the current session only – CharGer always starts up with the preferences set from
the Configuration file (see above).

QUIT
User gets a chance to save un-saved changes before finally quitting.

Tools Menu
There are three tools: the Database Linking Tool (described in Database Linking below) and
Requirements Acquisition (see CRAFT subsystem, below). If any of these are dimmed, that
means they are disabled, and you probably don’t need to worry about it. Hint: if you want to enable
all the tools, hold down the shift key and the control key while selecting “Tools” in the menu bar;
this will enable all the tools for the remainder of your session.
(If you want to start up with the tools enabled, see the command line arguments for enabling them.)

Windows Menu

<GRAPH LIST>
If there are any already open graph editing windows, their names will appear here. The naming
scheme is similar to the one that governs the file names (see above).

Help Menu

CHARGER MANUAL
Open the CharGer4 Manual in PDF form in the local browser.

ABOUT CHARGER4…
Displays basic information about CharGer4 as well as buttons for email support and the CharGer
web site.

CharGer Manual v4.2.1 2019-11-14 Page 13 of 54

Editing Window
This is where most interesting work gets done. There are some editing and tool buttons to the left
of the drawing area. The upper set of tool buttons are editing modes; the lower set are one-time
command directives. Figure 3 is an overview of the primary editing window.

Figure 3. Basic Editing Features.

There are five menus on the Editing Window, three of which are shown in Menus below.

Figure 4. Formatting toolbar

The formatting toolbar is shown in Figure 4. Its features are similar to those available in the Edit
Menu and in the Appearance preferences. There are buttons for aligning objects vertically and
horizontally, pull-down menus for both font style and font name, as well as bold and italic button.
Both the text color and fill color can be set for selected objects as well. When something is selected,
the toolbar shows their current values. If the selected objects have different values, then nothing is
shown, but any changes you make will be applied to all the objects that are selected.

Align Vertically

 Aligns all objects in the current selection vertically, along their center points.

CharGer Manual v4.2.1 2019-11-14 Page 14 of 54

Align Horizontally

 Aligns all objects in the current selection horizontally, along their center points.

Menus
Some of the menu items are also found as command buttons.

File Menu
The File Menu items are as follows. Many of them perform the same
functions as the tools and commands below.

NEW
Opens a new editing window, with an empty graph.

OPEN …
Invokes a file open dialog for locating a graph file to be loaded. If the current
file is un-saved, user has a chance to save it before opening a new one.

OPEN CGIF …
A parser for CGIF files is being developed. Some basic features of CGIF as
per ISO/IEC 24707:2007 – Annex B have been implemented.

CLOSE
Closes the current graph. If it has not been saved in its present form, user is prompted before it
closes.

SAVE
Saves the current graph without prompting for its name.

SAVE AS …
Invokes a file dialog for naming a graph file to be saved.

SAVE AS CGIF…
Opens a file dialog where the user can specify a file in which to save a CGIF version of the graph.
The graph's CharGer information (i.e., the screen layout) will be embedded in the CGIF form if
the "Export CharGer layout with CGIF" preference is checked in the Preferences Panel. Type
hierarchy information will be included if “Export subtypes as relations in CGIF” is checked.

CharGer Manual v4.2.1 2019-11-14 Page 15 of 54

EXPORT TO IMAGE

Opens a sub-menu of format options that each open a file dialog
where the user can specify a file in which to save an image of
the file into several popular graphics formats. The file is then
usable for inserting/editing by other software. The following
export formats are generally supported:
 Raster (bitmap, generally low resolution)
BMP (Windows Bitmap)
JPG, JPEG
GIF (Graphics Interchange Format)
PNG (Portable Network Graphics)
WBMP

Vector (line-oriented, generally higher resolution)
PDF (Portable Document Format)
EPS (Encapsulated Postcript)
SVG (Scalable Vector Graphics)
There is no way to import a graphics file into CharGer.

PAGE SETUP…
Invokes a page setup dialog, platform-specific to your operating system. Even if there are no
changes to make, it’s probably a good idea to click OK or Apply anyway (see Print… below). Page
setup must be called once for each separate editor window you want to print.

PRINT…
Prints the display form of the graph on the currently selected printer. When invoking print in an
editor window for the first time, you are first subjected to a page setup dialog with landscape mode
already selected (see Page Setup above). It is recommended that you select landscape mode when
printing out wide graphs. CharGer will attempt to scale your graph so that it will fit on a single
page; there is no multi-page printing supported. (Page setup must be called once for each separate
graph window you want to print.)

SHOW XML…
Displays the XML form of the graph in a separate window. The window's Edit menu allows you
to copy part or all of the contents as text.

SHOW CGIF…
Displays the CGIF form of the graph in a separate window. The display looks like Figure 5. The
window's Edit menu allows you to copy part or all of the contents.

CharGer Manual v4.2.1 2019-11-14 Page 16 of 54

Figure 5. CGIF display window.

SHOW METRICS…
Some rudimentary metrics on the graph are displayed. This can be considered experimental at
present; suggestions from users are welcome.

QUIT
User gets a chance to save un-saved changes before actually quitting.

Edit Menu
The items in the menu are as follows. Many of them perform identical
functions to the tools and commands below.
Selections
When an edit item refers to “the selection” the reader should keep in mind
some simple conventions:
• Edges (arrows, co-referent links, etc.) are in the selection if they are

clicked on, shift-clicked on, or if the nodes they connect are selected.
• If a concept, relation, actor or type label is cut or cleared, its arrows,

co-referent links, etc. are cleared with it, even if they lie outside the
selection; it makes no sense to have an arrow without a graph node at
both its ends.

• If a selection is pasted, only those arrows, co-referent links, etc. that
are entirely within the selection are pasted; other arrows, co-referent
links, etc. are not pasted, even if they were selected; this is because
there is no practical way to connect the links’ other ends.

CharGer Manual v4.2.1 2019-11-14 Page 17 of 54

Note: Cut, Copy and Paste operate on either regular text (when editing labels in
graphs) or on graph objects (when drawing). They operate separately,
however; cutting or copying text has no effect on cut or copied graph objects
and vice versa.

UNDO/REDO
CharGer supports a limited number of levels of "undo". Undo does not operate within the editing
of a text field, although the previous contents of a text field (i.e., before you start editing) can be
restored through Undo/Redo.
Undo restores the graph to its state prior to the last altering action. A subsequent undo restores the
state prior to that one, and so on. Redo "undoes" undo -- i.e., it restores the graph to its state after
the last altering action was performed. After choosing "undo" or "redo" any action other than a
subsequent undo or redo will erase any further actions to "redo", but leave the "undo" actions
unaffected. Dimmed if there is nothing prior to undo or nothing to redo.

CUT
Copies the selection to the (internal) clipboard and deletes it from the graph. Undo restores it, but
leaves it on the clipboard. If the user is editing a text field (see below), the system clipboard is
used, allowing transfer of the text to another application. If the user has selected one or more
contexts, all the contents of the context are also selected and cut to the clipboard. Dimmed if there
is no selection.
If the user then pastes into CharGer, they are pasted as CharGer objects and can be edited in the
usual way. If the user pastes into some other application, the selected objects will be pasted as a
raster image and treated the same way that application treats other raster figures. The format of
what’s pasted can be controlled by a preference in the Compatibility pane.

COPY
Copies the selection to the clipboard, leaving it intact for the current graph. If the user is editing a
text field (see below), the system clipboard is used, allowing transfer of the text to another
application. If the user has selected one or more contexts, all the contents of the context are also
selected and copied to the clipboard. Dimmed if there is no selection.
If the user then pastes into CharGer, they are pasted as CharGer objects and can be edited in the
usual way. If the user pastes into some other application, the selected objects will be pasted as a
raster image and treated the same way that application treats other raster figures. The format of
what’s pasted can be controlled by a preference in the Compatibility pane.

PASTE
Inserts the contents of the clipboard. If graph objects were cut/copied in CharGer, then they are
pasted into the current editing window, where they can be edited in the usual way. Paste leaves
the clipboard contents intact. If the user is editing a text field (see below), whatever text is on the
system clipboard is used, even if it was copied/cut from another application. If the contents of the
clipboard are from some other application besides CharGer, unpredictable actions may occur.
Dimmed if there is nothing on the clipboard.

CharGer Manual v4.2.1 2019-11-14 Page 18 of 54

CLEAR
Erases all the selected objects, without affecting the clipboard. Undo restores them. Dimmed if
there is no selection.

DUPLICATE
Makes a copy of the selected objects, without affecting the clipboard. They are automatically
selected so that you can move the selection. Undo removes them. Dimmed if there is no selection.

SELECT ALL
If editing in a text box, the entire contents of the text box are selected. Otherwise, everything on
the drawing window is selected.

CHANGE FONT…
Select a new font for all selected items. Brings up a font chooser similar to the preferences one.

CHANGE COLOR
Change the color of the selected objects. Dimmed if there is no selection.

There are six choices:
Text… Change the text color of all selected objects, regardless of what kind.
Fill… Change the fill color of all selected objects, regardless of what kind.
To Current Defaults Change both the fill and text color of all selected objects to whatever

default color scheme is currently set for their kind of object (see
Preferences)

To Factory Defaults Change both the fill and text color of all selected objects to CharGer’s
“factory” defaults (you can’t change these).

To Black and White Change the fill to white and the text color to black. Turn on the visible
borders for each concept, relation, etc. Good for exporting and/or
pasting when you’re going to use a black and white printer.

To Grayscale Change the fill to a gray scale color and change the text to either black
or white. Suitable for higher-resolution printing

SHRINK SELECTION
Make the selected objects as small as possible, shrinking around their centers. The same effect can
be achieved by pressing the "-" key repeatedly. Dimmed if there is no selection.

ALIGN VERTICALLY
Aligns all objects in the current selection vertically, along their center points.

CharGer Manual v4.2.1 2019-11-14 Page 19 of 54

ALIGN HORIZONTALLY
Aligns all objects in the current selection horizontally, along their center points.

AUTO LAYOUT
Applies a force-based layout to the graph and re-arranges it so that it is visually more pleasing and
attempting to eliminate overlapping objects. Can be repeated and/or undone to get more desirable
results.
The algorithm attempts to make all edges the same preferred length. This can be changed in the
Appearance Preferences (see below).

Note: The default maximum number of iterations can be changed in the Admin
panel (see below).

PREFERENCES…
Open the Preferences Window to make changes to the global configuration (see Configuration
below).

Draw Menu

The Draw menu duplicates the commands available in the toolbar, for
ease of accessibility. The tool modes of the editor are all available, as
well as the following.

MAKE CONTEXT
Make the current selection into a context. Use the Selection Tool to
establish a selection before using the MakeContext Tool. If the
selection would cause overlapping contexts, the user is prevented with
a warning. Dimmed if there is no selection, or if the selection is already
a context/cut. There is no direct way to make a cut into a context – you
must first unmake the cut and then re-make it into a context.

MAKE CUT
Make the current selection into a “cut” (negated context). Use the Selection Tool to establish a
selection before using the MakeCut Tool. If the selection would cause overlapping contexts, the
user is prevented with a warning. Dimmed if there is no selection or if the selection is already a
context/cut. There is no direct way to make a context into a cut – you must first unmake the context
and then re-make it into a cut.

UNMAKE CONTEXT/CUT
Removes the outermost context/cut border in the selection, thus attaching its contents to the graph
in which it is nested (or the entire graph if the context was not nested). If there are concepts, etc.
selected that are not in the outermost context, they are ignored. If there is more than one equally
nested outermost context, one of them is chosen arbitrarily to be un-made. Dimmed if there is no
selection.

ALIGN HORIZONTAL
Same as Align Horizontal command button. Dimmed if there is no selection.

CharGer Manual v4.2.1 2019-11-14 Page 20 of 54

ALIGN VERTICAL
Same as Align Vertical command button. Dimmed if there is no selection.

View Menu
The view menu aids in navigation and also controls some of the
auxiliary content that is shown. Zooming is a feature of the graph’s
appearance on the screen at a given moment; the graph itself keeps
the same size it had when you began zooming.

ZOOM IN
Increase the size of the graph’s appearance by an increment
(currently 10% each time).

ZOOM OUT
Decrease the size of the graph’s appearance by an increment (currently 10% each time).

ACTUAL SIZE
Restore the graph’s appearance to its normal 100% size.

CURRENT SIZE
Shows the current zooming percentage. This is also shown in the graph summary at the top border
of the drawing canvas. Not selectable by the user.

FIND…
Allows searching for a string anywhere in the current graph. If not found, a message will appear
in the message box.

FIND AGAIN
Look for the previous string again. If not found, a message will appear in the message box.

SHOW OBJECT HISTORY
Shows the life story of this object within the current session. This will indicate whether it was
inferred by an internal process, provided by the user, or read from a file.

SHOW GLOSSARY TEXT
Toggle to indicate whether glossary (definition) entries are to be displayed when some node is
selected. This is either grayed out or absent unless Wordnet has been enabled in the configuration
file.

CharGer Manual v4.2.1 2019-11-14 Page 21 of 54

Operation Menu
This menu invokes operations that can be performed
on a graph or selection. In the future, there are more
operations planned for this window.

ATTACH GLOSSARY TEXT
Allows the user to associate a glossary entry with this
particular graph node. A glossary entry may be one of
two kinds: one chosen from a set of Wordnet
definitions or one supplied by the user. In order to use
Wordnet definitions, you must have Wordnet 2.0 or
later installed on your system.

DELETE GLOSSARY TEXT
Remove the associated text from the particular node. Of course, Wordnet itself is unaffected.

JOIN SELECTED NODES IN OPEN GRAPHS
Performs a join operation using two or more graphs, starting with the current graph. Each graph
should have its own set of one or more selected items. If there is a valid way to join the graphs,
according to the current matching scheme, a joined graph is created and opened in its own new
window.

Note: Each graph has its own selection set, which can be maintained when
switching between graphs. Be sure not to click on the drawing canvas when
switching graphs, since clicking on the bare canvas will de-select whatever
was previously selected. Use the graph window margin or the Windows
menu.

MATCH TO OPEN GRAPHS
Matches the current graph to any other graphs in an open window. If a match is found, its result is
displayed in a new window.

MAKE GENERIC
Remove the referents of the selected concepts and contexts. In other words, make individual
concepts into generic ones. If a concept or graph has no referent, then it is unchanged. If a context
has a graph descriptor, that descriptor is unchanged. Relations, actors, and types are unaffected.

MAKE TYPE HIERARCHY
Find all super- and sub-type links in all open files and attempt to construct a consistent hierarchy
out of them. This hierarchy will be placed in a new untitled graph window and can be edited as the
user wishes.

SUMMARIZE EVERYTHING
Using all open graphs and all open repertory grids (if any), paraphrase their content in poor
English. The paraphrase appears in a text window that can be copied, saved, etc.

CharGer Manual v4.2.1 2019-11-14 Page 22 of 54

Windows Menu
The Windows menu consists of the following items:

<GRAPH LIST>
If there are any already open graph editing windows, their names will appear here. The naming
scheme is similar to the one that governs the file names (see above).

BACK TO MAIN WINDOW
Allows convenient return to the main window.

Drawing Tools

Selection Tool

 The selection tool is the basic way to make a selection or to move graph objects. In general,
connecting lines are selected with what they connect. Double-clicking with the selection tool will
invoke the EditText operation on whatever object has been selected.
• To move a single object, click on it and drag it where you want it. To move an object from

one context to another, click on it and drag the same way.
Note: Moving an object in or out of a context will delete any links it has between

relations and concepts. This is because CG rules don’t allow a relation to
cross context boundaries. Coreferent links are preserved however. Links to
actors can be preserved if the option is set in the Preferences Panel.

• To select one or more objects as a group, drag a rectangle across the objects you want
selected. The objects should be "highlighted". You can then move them by moving any of the
selected objects, or you can perform other operations. See Make Context, Shrink
Selection, or the cut/copy/paste operations.

• To add objects to a selection, hold down the SHIFT key while dragging a new rectangle.
• To select a context, click somewhere on its outlined border.
• To select an arc (rendered as an arrow), a line of identity (coreferent link), or a

generalization/specialization arrow, click on the solid dot (•) at its midpoint. In general,
selection ignores arcs, because their meaning is inherent in the concepts/relations/actors/types
that they link. In other words, as the nodes are selected/deleted/moved, so are their
corresponding arcs.

• To cancel a selection, click somewhere on the drawing area that is not occupied by a graph
element, or click another tool.

The selection tool can be chosen by pressing "S" or the space-bar.

Concept Tool

 The concept tool allows you to insert a new concept onto the graph drawing area. To insert
a concept on the drawing area, select the concept tool, then click where you want the new concept
to appear. A new concept has a type label of T with no referent. To change a concept type or

CharGer Manual v4.2.1 2019-11-14 Page 23 of 54

referent, open a Text Edit Box (see p. 24) on its name. The tool remains selected until another tool
is selected. The concept tool can also be chosen by pressing the "C" key on the keyboard.

Relation Tool

 The relation tool allows you to insert a new relation onto the graph drawing area. A new
relation has the name link. To insert a relation on the graph drawing area, select the relation tool,
then click where you want the new concept to appear. To change a relation’s link name, open a
Text Edit Box (see p. 24) on its name. The tool remains selected until another tool is selected. The
relation tool can also be chosen by pressing the "R" key on the keyboard.

Actor Tool

 The actor tool allows you to insert an actor onto the graph drawing area. To insert an actor
on the graph drawing area, select the actor tool, then click where you want the new concept to
appear. The actor has the name f, which can be changed with the text editing features. The tool
remains selected until another tool is selected. The actor tool can also be chosen by pressing the
"A" key on the keyboard.

Link Tool

 The link tool allows you to connect concepts with relations or actors, according to the
normal rules of conceptual graphs. To draw a link, select the tool, then click and drag from one
concept (relation or actor) to a relation or actor (concept). The link tool can also be chosen by
pressing the "." (period) key on the keyboard.

Coreferent (Line of Identity) Tool

 This tool draws a coreferent link or line of identity between two concepts, thereby
connecting members of a coreference set. To create a coreferent set of more than two members,
each member must be linked (via the identity link tool) to at least one other member of the set.
Coreferent links for a single coreference set should be drawn between a "dominant" concept and a
"subordinate" concept. Redundant links are permitted but add no new information to the graph.
The line of identity tool can also be chosen by pressing the "I" key on the keyboard (for line of
identity)

Type Label Tool

 The type label tool allows you to insert types (usually in a hierarchy) onto the graph
drawing area. The type label tool can also be chosen by pressing the "T" key on the keyboard. The
original formulation of conceptual graphs did not include any graphical way to show type labels,
other than including them in concepts.

CharGer Manual v4.2.1 2019-11-14 Page 24 of 54

Relation Type Label Tool

 The relation type label tool allows you to insert relation types (usually in a hierarchy) onto
the graph drawing area. The relation type label tool can also be chosen by pressing the "L" key on
the keyboard. The original formulation of conceptual graphs did not include any graphical way to
show type labels, other than including them in relations.

Generalization/Specialization Line
Tool

 This tool draws a generalization/specialization relationship between two concept types or
between two relations. The generalization/specialization tool can also be chosen by pressing the
"," (comma) key (an un-shifted "<") on the keyboard. The original formulation of conceptual
graphs did not include any graphical way to show subtypes or supertypes.

Note Tool

 With this tool chosen, you can insert an arbitrary text note. This note appears as a “dog
eared” box (similar to a UML note). It can be moved, edited, included in a context, etc. Although
it does not affect the semantics (i.e., the meaning) of the graph, it can help explain something.

Delete Tool

 With this tool chosen, clicking on a concept, relation, actor, context border, or type will
delete it. To delete an arc (rendered as an arrow), click on the solid box (n) at its midpoint.

Shortcut Keys
Certain keystrokes can be used in the editing window, when not editing text. The shortcuts shown
in menu items are available whenever their corresponding menu command is available. In addition,
the following hotkeys perform some useful functions:
SHIFT adds to the current selection when clicking the mouse or dragging across a selection
 increases increment when moving or resizing with arrow keys
ARROW KEYS:
LEFT moves the selected object(s) to the left one pixel (with SHIFT key, four pixels)
RIGHT moves the selected object(s) to the right one pixel (with SHIFT key, four pixels)
DOWN moves the selected object(s) down one pixel (with SHIFT key, four pixels)
UP moves the selected object(s) up one pixel (with SHIFT key, four pixels)

S or SPACE make the selection tool active
C make the concept tool active
A make the actor tool active
, (comma) make the arrow tool active (unshifted “>”)

CharGer Manual v4.2.1 2019-11-14 Page 25 of 54

I make the line of identity tool active
T make the type label tool active
L make the relation type label tool active
N make the note tool active
. (period) make the generalization/specialization tool (unshifted “<”)
= enlarge the selected objects by one pixel each (with SHIFT key, four pixels)
- (minus) reduce the selected objects by one pixel each (with SHIFT key, four pixels)

 Note: due to a Java compatibility issue, you may need the "-" key on the numeric
 keypad to achieve this operation

Command Buttons

Make Context

 Make the current selection into a context. Use the Selection Tool to establish a selection
before using the MakeContext Tool. If the selection would cause overlapping contexts, the user
is prevented with a warning.

Make Cut

 Make the current selection into a negated context (“cut”) displayed with a rounded
rectangular border. Use the Selection Tool to establish a selection before using the MakeCut Tool.
If the selection would cause overlapping contexts, the user is prevented with a warning.

UnMake Context

 Removes the outermost context border in the selection, thus attaching its contents to the
graph in which it is nested (or the entire graph if the context was not nested). If there are concepts,
etc. selected that are not in the outermost context, they are ignored. If there is more than one equally
nested outermost context, one of them is chosen arbitrarily to be un-made.

Preferences Window
There is a preferences window available that allows the user to adjust some settings for their own
use. These settings will override those in the CharGerUserConfig.conf file, which is loaded
at CharGer startup, but they will persist for that session only, unless the user presses the Save
Preferences button. User-saved changes are in the optional CharGerUserConfig.conf file.
No changes are made by CharGer to its own CharGerDefaultConfig.conf file; those changes
must be made through a regular text editor outside of CharGer.

Note: Changes in the Preferences window take effect immediately, except for
font/color changes which are reflected in future windows, but not current
ones.

CharGer Manual v4.2.1 2019-11-14 Page 26 of 54

Preferences are arranged in three panels, Appearance, Compatibility, and Actor Settings. All of
them have the following common options.
Set all folders
Set the graphs folder, the database folder and the repertory grid folder (if CRAFT is enabled) to
the same folder.
Make Preferences Permanent
Ordinarily, changes made in the preferences panel take effect immediately, but do not persist
between sessions. In order to make the preferences permanent, choose Save Preferences. This
updates the CharGerUserConfig.conf file (or creates it, if the file does not already exist).
Close
Dismiss the window.

Appearance
The appearance panel looks similar to Figure 6:

Figure 6. Appearance Preferences panel.

Show edge selection handle
Display the small selection box at the midpoint of each edge; this is automatically disabled for
printing regardless of the setting shown.

CharGer Manual v4.2.1 2019-11-14 Page 27 of 54

Show "shadows" on nodes and contexts
Draw a gray "shadow" to give a three-dimensional effect. This option affects both the screen
display and printing. The color sample will reflect the current setting.
Show “outline” on nodes and contexts
Show a solid border on all nodes and contexts; this is useful in black-and-white color schemes
according to the user’s color preference. The color sample will reflect the current setting.
Wrap long node labels using wrap columns
Wrap text in labeled nodes so that they are a given number of columns wide (approximately).
Width (chars) to wrap
The approximate number of characters per line when wrapping text.
Preferred edge length
Used by Auto Layout to determine the best layout.
Image/copy quality
Specifies the resolution multiplier for images, either when exporting as an image or when copying
(for pasting into another application). A value of 1.0 is the same resolution as the screen. Higher
values give progressively higher resolution (and take up more memory). For print-quality images,
use a value of 10 or higher. Values of less than 1.0 are not recommended.
Show footer when printing
Include a footer when printing a graph that will show the graph’s full path name.

LINES AND ARROWHEADS

Arrowhead width
How “spread out” to draw an arrowhead.
Arrowhead height
How “long” to draw an arrowhead
Line thickness
Thickness in pixels of lines, arrows and coreferent links.

CONTEXTS AND “CUTS”

Default context/cut label
Choose what label will be used for contexts or cuts when they are first formed. This was suggested
as a way to make un-labeled cuts without having to edit the context name every time. Of course,
the user can change any context’s or cut’s label by double-clicking on its border, which will bring
up an editing box on the context/cut label.
Enhance display of each “cut”
Apply shading to the cuts so that they are more prominent and more distinct from non-negated
reqular contexts. Figure 7 shows an example of the enhancement effect:

CharGer Manual v4.2.1 2019-11-14 Page 28 of 54

Figure 7. Enhanced "cut" display.

 When checked When un-checked
Border Width
Width in pixels of a context's drawn border. Sets the margin width automatically.
Change Font
Brings up a brief dialog box to set the display font for graph labels. A sample showing the name,
style and size of the font is shown. The dialog box looks something like Figure 8.

Figure 8. Font Chooser Dialog.

To make the displayed font active, click on "Use Font" in the dialog box, which will make the
displayed font active and close the font window. This font change will take effect immediately but
will not be remembered between sessions. To make the font change permanent for subsequent
sessions, click on "Save Preferences" in the Preferences Panel.
Include all system fonts
Includes all fonts available on the system. This may be a very long list, and the selected font may
not be available if the graph files are moved to another system where it may not be installed. If left
un-checked, only a small set of platform-independent font names will be shown.

Current Default Colors
There are several features which you can use to control the colors of graphs you draw. They are
grouped together in the Current Default Colors section of the Appearance Panel.
Object Pull-down menu (Concept, Relation, etc.)
Use this to select which kind of object’s colors are to be examined/changed. The Color Sample
area shows you what that object currently looks like.
Text

CharGer Manual v4.2.1 2019-11-14 Page 29 of 54

Click here to change the color of the text for the kind of object you’ve selected. The Color Sample
area shows you what that object currently looks like. No graphs are changed yet.
Fill
Click here to change the color of the fill for the kind of object you’ve selected. The Color Sample
area shows you what that object currently looks like. No graphs are changed yet.
Factory Defaults
Changes the text and fill colors to the factory default scheme (you cannot change it). No current
graphs are changed; that is accomplished by the Change Color menu item in the editing window.
The Color Sample area shows you what the current object looks like; however, ALL object types
have been restored to these defaults.
Grayscale
Changes the text and fill colors to a pre-defined grayscale scheme (you cannot change it). This
scheme can be useful when printing to a black and white printer. No current graphs are changed;
that is accomplished by the Change Color menu item in the editing window. The Color Sample
area shows you what the current object looks like; however, ALL object types have been restored
to these defaults.
Black and White
Changes the text and fill colors to a pre-defined black and white scheme (you cannot change it).
This scheme can be useful when printing to a black and white printer. No current graphs are
changed; that is accomplished by the Change Color menu item in the editing window. The Color
Sample area shows you what the current object looks like; however, ALL object types have been
restored to these defaults.
Make these preferences permanent
See above.

Compatibility
The Compatibility panel looks like this:

CharGer Manual v4.2.1 2019-11-14 Page 30 of 54

Figure 9. Compatibility panel.

Graphs Folder
The default folder from which the graph list in the main window will be constructed. Saved graphs
will ordinarily be saved in the same directory from which they were read. In open and save file
dialogs, the user can navigate to whatever folder they wish. The Set folder… button allows the
user to change this default folder. Set all folders… sets the graph, database and grid folders to
the same name.

CGIF options

Export CharGer layout as comments
Include the CharGer layout information as CGIF comments, most importantly each component's
layout on the canvas. This affects both the Display CGIF command and saving to a CGIF file. The
information kept is the same information that appears in the <layout> xml tag of a .cgx file. The
entire tag itself is wrapped in a CGIF comment that appears immediately after the opening “[“ or
“(“ of a CGIF concept or relation. The comment is of the following form:

/**CG4L; <layout> ….. </layout> */

The introductory string "*CG4L;" can be changed in the Charger source through the
Global.CharGerCGIFCommentStart variable.
Export subtypes as relations

CharGer Manual v4.2.1 2019-11-14 Page 31 of 54

This option controls whether to export subtypes or not. Since subtypes are not explicitly defined
in Common Logic, CGIF does not have an explicit way to represent subtypes. The convention
adopted in Charger is the following: Given a type label A and another type label B, Charger will
generate the following to indicate that A is a subtype of B:

[Type: A] [Type: B] (subtype A B)
As a matter of convention, Charger will write these before any other type or relation elements
within the same graph.

Other options

Save history records
Save the record of changes to this graph along with the graph itself. Note that the changes are
recorded internally in all cases, and any history records in a graph file are automatically read in.
This option affects only the storing of such records. Note: If un-checked, then ALL history is
removed when the graph is saved, not just the current session.
Enforce standard relation arguments
Enforce the standard relation rule such that a relation has at most one output argument. Never
enforced for actors, except that pre-defined actors must adhere to their specified input/output arity
signatures.
Enable label glossary and Wordnet
Enable the feature of including a glossary entry with each concept or relation. If Wordnet is not
available, you can still include your own glossary entries with each concept or relation.
Wordnet dict folder
Wordnet’s dictionary is a set of files usually found within a folder named dict; here is where you
specify its actual location. Browse… lets you look for the folder’s files on your system. This should
usually need to be set only once; moving Wordnet around on your system ought to be a rare
occurrence.

Actor Settings
The Actor Settings panel looks like this:

CharGer Manual v4.2.1 2019-11-14 Page 32 of 54

Figure 10. Actors settings

Database Folder
The default folder in which database files will be looked for. Database files are used in activating
actors (see Database Linking Tool). The Set folder… button allows the user to change this
default folder. Set all folders… sets the graph, database and grid folders to the same name.
Allow actor links across contexts
The ANSI standard does not allow relation links across context boundaries (whether an actor or
relation). Strictly speaking, an actor should link to a concept in its own context, with a coreferent
link from that concept into the other context. Checking this box allows an actor link to connect to
any concept, regardless of its context.
Allow null actor arguments
If checked, considers a null argument legal to an actor. Usually means that the actor will ignore
the argument.
Enable actors and copy referents from now on
If checked, actors will be enabled for the rest of the session. Un-checking it later may cause
unpredictable and/or undesirable consequences, particularly if some actors involve executable
plug-ins that are active.
Animate actor activation

CharGer Manual v4.2.1 2019-11-14 Page 33 of 54

Whether to activate actor firings in increments, visually marking those actors and concepts that are
involved in each firing.
Animation delay
The time increment between firings, in milliseconds. Not visible unless actor firing is animated.

Note: The Preferences panel is under constant development. Use tool tips to find
out more about individual options – hold the cursor over the option you
want to find out more about.

Warning: If an option is shown in the preferences panel as “unstable”, use them
at your own risk; they are unlikely to help you out very much and will likely
lead to errors.

Enable 1_0 actors (requires save and restart)
There are a number of built-in comparison actors that produce a zero or one, rather than a true or
false. If you want to use these, then check this box, save the preferences and then quit and restart
CharGer to take effect.

Config
Although most users will be able to ignore this panel even if it present, it is documented here. To
enter admin mode, use –diagnostics as one of the options on the command line.
Tool Menu (check to enable)
Shows a checkbox for each tool that’s available in your installation of Charger. Check the ones
you want, and un-check those you don’t. To remember these between sessions, click the “Make
These Permanent” button. If you mouse over the tool’s name, you’ll see a brief description of the
tool, as provided by the tool’s implementer.
Show internal info (boring)
Display some internal information in the editing window, and on the console (command-prompt
window). This is primarily useful in reporting a problem to the developer(s). Most users probably
want to leave it unchecked.
Number of iterations (Spring Layout Algorithm)
Change the default number of times the spring layout operates on the graph. The default is
currently 5000. If the algorithm detects a nearly optimal layout, it will stop before that. Note that
a user may invoke the auto layout option as many times as they want until they’re satisfied with
the appearance.

CRAFT Settings (optional)
Note: If you aren’t interested in the repertory grid tools, then ignore this section!

Also make sure that craftEnabled is set to false in your local configuration
file.

CharGer has a built-in experimental repertory grid interface that can be used for your
entertainment. To enable CRAFT, quit CharGer and use the “-craft” command line option when
running it.

CharGer Manual v4.2.1 2019-11-14 Page 34 of 54

These settings involve the CRAFT knowledge acquisition subsystem. The CRAFT Settings panel
looks like this:

Figure 11. CRAFT settings

Grid Folder
The default folder in which repertory grid files will be looked for. Grid files are the result of
acquisition using a repertory grid (see Requirements Acquisition). The Set folder… button
allows the user to change this default folder. Set all folders… sets the graph, database and grid
folders to the same name.
Ask for free form definitions in rep grids
If checked, will allow the user to provide their own definitions in addition to Wordnet’s. If un-
checked, then only Wordnet senses will be accessed. If Wordnet is unavailable and this is un-
checked, then no glossary entries (definitions) will be accessible.
Use only binary relations for acquisition
If checked, only relations with exactly one input and one output will be included in the CRAFT
main window. If un-checked, every pair of related concepts (or contexts) will be included in the
CRAFT main window.

CharGer Manual v4.2.1 2019-11-14 Page 35 of 54

Actor Activation
CharGer supports actors, generally using the techniques described in Sowa’s original book. There
are a few built-in actors, with pre-defined semantics. Most of these are simple arithmetic
operations. For example, there is a plus actor to implement addition. Consider the following graph.
It would be good practice for you to draw the graph in Figure 12 before proceeding:

Figure 12. Actor example.

Note that the output number’s referent is the sum of the two input number’s referents. To
understand how an actor works, draw the graph above, and then change the input Number: 10 to
read Number: 5. Note how the output number changes, as shown in Figure 13:

Figure 13. Changed actor graph.

Now change the output concept Number: 13 to some other number. Note how it changes back to
13. The reason is that the plus actor denotes a functional dependency where the output concept is
functionally dependent upon the input concepts; thus changing it causes the graph to re-evaluate
itself and restore the original constraint.
The following executable actors are built-in to CharGer. T means any type; null means bottom
(^). In general, actors’ inputs are not commutative (i.e., their order matters, as denoted by the
numbers on their input arcs.) Future versions will also allow actors to have a varying number of
input concepts, when the meaning would be clear (e.g., plus could have two or more numbers to
be added).

Compatibility Note: The actors whose names contain “1_0” are numeric versions
of the logical actors returning T or null. They are by default disabled. You
can enable them using the Preferences Panel.

 Input Concepts Output Concepts

CharGer Manual v4.2.1 2019-11-14 Page 36 of 54

Actor Name Numbe
r

Type(s) Number Type(s) Semantics

copy One T One T Input (referent only) is copied to
output concept.

dbfind
lookup

Two Database
T

One Number Output concept is the value associated
with T’s referent in the file denoted by
the Database concept.

divide Two Number One Number Output number is concept 1 divided by
concept 2.

displaybar One Number None Input number is displayed as a bar in a
separate window.

equal Two T One T or
null

Output type is T if inputs are strictly
equal; otherwise null

equal_1_0 Two T One 1 or 0 Output referent is 1 if inputs are
strictly equal; otherwise 0

exp One Number One Number Output number is input’s referent
raised to the power 2.718….

greaterequal Two T One T or
null

Output type is T if input 1 greater than
or equal to input 2; otherwise null

greaterequal_1_0 Two T One 1 or 0 Output referent is 1 if input 1 greater
than or equal to input 2; otherwise 0

greaterthan Two T One T or
null

Output type is T if input 1 greater than
input 2; otherwise null

greaterthan_1_0 Two T One 1 or 0 Output referent is 1 if input 1 greater
than input 2; otherwise 0

lessequal Two T One T or
null

Output type is T if input 1 less than or
equal to input 2; otherwise null

lessequal_1_0 Two T One 1 or 0 Output referent is 1 if input 1 less than
or equal to input 2; otherwise 0

lessthan Two T One T or
null

Output type is T if input 1 less than
input 2; otherwise null

lessthan_1_0 Two T One 1 or 0 Output referent is 1 if input 1 less than
input 2; otherwise 0

minus Two Number One Number Output number is concept 1 minus
concept 2.

multiply Two Number One Number Output number is product of the two
inputs. Commutative.

notequal Two T One T or
null

Output type is T if inputs are strictly
not equal; otherwise null

notequal_1_0 Two T One 1 or 0 Output referent is 1 if inputs are
strictly not equal; otherwise 0

CharGer Manual v4.2.1 2019-11-14 Page 37 of 54

plus Two Number One Number Output number is sum of the two
inputs. Commutative.

There is as yet no actor-definition mechanism in CGs; that is a future enhancement. (Suggestions
for appropriate mechanisms are welcome.)
An actor plug-in interface has been developed as of CharGer 2.6b or later. See the technical
reference below for details on how to write your own actors for CharGer.

Database Linking
One of CharGer’s features is its ability to use an external “database” that actor <lookup> can use.
This ability is built into CharGer’s actor definitions. For CharGer’s purposes (as of the current
version) a database file is a tab-separated tabular text file. For example, suppose the file
DBElement.txt contains the following tab-separated values:

Number Element Symbol
1 Hydrogen H
2 Helium He
3 Lithium Li
… … …

CharGer’s <lookup> actor is designed to illustrate CharGer’s interface to a database. The graph
in Figure 14 shows how the database would work.

Figure 14. Illustration of the <dbfind> and <lookup> actor.

To see how the actor works, use the “T” tool to change “Hydrogen” to “Lithium”. Note how the
Symbol and Number concepts now have new referents! Another example is to change the Element
referent to “Earth” (which is not an element) and note how both Symbol and Number become null
(which is equivalent to ^ in conceptual graph terms).
There are a few important guidelines for how the lookup actor works. First, it requires an input
concept of type Database whose referent is a real file name. Second, another input must have a
type which exactly matches some field type (i.e., a header name from the file). Third, there must
be a single output concept, whose type also matches some field type. (It’s permitted for the input
and output types to be the same; it’s a good way to see whether the input concept’s referent value

CharGer Manual v4.2.1 2019-11-14 Page 38 of 54

is actually found in the database.) Use the Database Linking Tool to see what type names are
valid in a given database.
A database with no tab characters will be treated as a one-column table whose entire first line is
considered the only valid field name.

Restrictions: At present all databases must be in the same folder; the default is
the Databases folder under the “top-level” folder; but this may be changed
in the Preferences panel. Other restrictions probably exist regarding spaces
in field names and things like that. There is also no type checking performed
with actual values from the database; i.e., if the value of field Number is not
a number, lookup won’t care.

To make it easier for users to create usable graphs with database actors, the Database Linking
Tool window has been provided. It is accessed through the Tool menu in the Main Window.
When activated, the window looks something like Figure 15:

Figure 15. Database Linking Tool Window.

This window helps the user determine what are valid inputs and outputs to the database lookup
actor(s). The window can also be used to set up a template graph for defining a database’s
semantics (with or without a primary key).
Examine: will open the “database” file whose name is shown. The first line of the file must be a
header consisting of a series of two or more tab-separated strings, each of which is the field name
corresponding to the subsequent lines in the file. At present, CharGer only works with text-only,
tab-separated lines.
Select new DB… will open a file dialog giving the user a chance to pick a database file. The
database file must reside in the chosen Databases folder; CharGer's default, or a folder selected by
the user. This is a known limitation to be rectified in the future.

Note: Regardless of the folder one has reached through the file dialog, it will be
ignored and the folder “Database” substituted.

CharGer Manual v4.2.1 2019-11-14 Page 39 of 54

Use as input concept indicates the valid input concept representing the database, to be used as
an input to a <lookup> actor for effective lookup operations using this database.
Database Fields contains the exact names of the columns in the database file. These names are to
be used as type-labels for the input concepts to the lookup actor. Referent values for such actors
can be any value for the type. For example, [Number: 5] would be a valid input concept for the
fields given in the example screen. Selecting one of the database fields puts its sequence number
into the Sequence box.
Database Values contains the values, for a given record (line) in the database file. The “>>”
button skips to the next line. This lets the user confirm that the database is well formed and that
the field names correspond to the desired values. There is no way to skip backward.
Set Primary Key makes the selected field name into the database file’s primary key. When one
of the field names is selected, show index will give its sequence number in the list. This is the
same sequence number that will be used for the primary key sequence number.
Set Up Graph creates a new graph, in an editing window, with the database concept as input to a
set of <lookup> actors, a primary key set up as the other input (if a primary key has been selected),
so that the user can begin a graph already connected to a database. This is a handy tool for
describing database semantics in a conceptual graph, and checking the semantics of the graph
using actual values in a database.

CRAFT Subsystem
As of CharGer 3.3b, CharGer has been extended to include a repertory grid acquisition interface
called the Conceptual Requirements Acquisition and Formation Tool (CRAFT). This tool allows
repertory grids to be acquired based on an underlying conceptual graph. The workflow supported
is as follows:
� Create one or more conceptual graphs with generic concepts representing parts of the domain

you want to model.
� Make sure the graphs you want are opened in CharGer.
� If you want to include a type hierarchy, have exactly one CharGer window with type labels

in it. These can be included with other graphs if you want.
� Invoke the CRAFT main window. It should display a list of phrases with their associated

concepts and relationships.
� Choose a line and invoke “Start Grid”. A new blank grid will open and a simple acquisition

dialog will proceed.
There are two relevant windows and a glossary dialog box associated with CRAFT. They are
explained in this section.

CRAFT main window
The CRAFT main window looks like Error! Reference source not found.Figure 16:

CharGer Manual v4.2.1 2019-11-14 Page 40 of 54

Figure 16. CRAFT main window.

The main window has the following buttons. Buttons are not shown unless they can be invoked.

CLEAR SELECTION
If a row is selected, then un-select it. Selecting more than one row is not recommended and
probably will have no positive effect.

SHOW SUBGRAPH
Each phrase is based on a relationship in a conceptual graph in an open window. This button
reveals the concepts and relations for the selected phrase by showing a selection box around them
wherever they are present.

START GRID
Based on the selection, start a new repertory grid and begin acquiring rows and columns for the
grid using the Grid Window.

The Grid Window
The repertory grid window is used to acquire and summarize knowledge through a repertory grid
elicitation process. Consider this an experimental capability. The acquisition facility will acquire
instances and attributes of whatever relation was chosen in the CRAFT window (see above).
Choosing a relation in the CRAFT window selects a concept-relation-concept triple that will form
the basis for the grid. Show Subgraph will remind the user of what relationship he/she chose.
Note that not all buttons will appear on the window at any given time; the buttons are set to appear
only when they are applicable. Figure 17 shows an example of the repertory grid window.

CharGer Manual v4.2.1 2019-11-14 Page 41 of 54

Figure 17. CRAFT repertory grid window.

CONCEPT 1 TYPE
This is the type label for the first concept in the relation. This label is filled in from the original
concept-relation-concept triple.

RELATION
This is the relation label for the first concept in the relation. This label is filled in from the original
concept-relation-concept triple.

CONCEPT 2 TYPE
This is the type label for the second concept in the relation. This label is filled in from the original
concept-relation-concept triple.

ADD (INSTANCE OF CONCEPT 1)
Using the type label of concept 1, this button will allow you to add an instance of that concept to
the grid as a column label. You may change it later by double-clicking on the column label.

SHOW SUBGRAPH
Takes the user back to the original conceptual graph and highlights the concept-relation-concept
subgraph which forms the basis for this grid.

ADD (INSTANCE OF CONCEPT 2)
Using the type label of concept 2, this button will allow you to add an instance of that concept to
the grid as a column label. You may change it later by double-clicking on the column label.

FILL IN ALL BLANKS
If there are any blank entries in the grid (cells), then this button will start a filling-in process that
will consider each of the one by one, asking a grid question that should assist the user in providing
an answer.

CharGer Manual v4.2.1 2019-11-14 Page 42 of 54

FILL IN BY TWO’S
Use a simplified dyadic elicitation technique to acquire new instances and attributes.

CHECK SIMILARITY
Look for columns with the same set of attributes. This will automatically invoke an acquisition
process to acquire some new attribute(s) where the instances in those columns are different.

MAKE SPECIALIZATIONS

External Module Plug in Interface
Since Charger is freely available as open source software, you’re free to distribute it under the
terms of the LGPL license and of course add your own capabilities to be distributed freely under
that license. Some users, however, may want to develop their own proprietary software using
Charger. In that case, the architecture supports a facility known internally as a “module” and
displayed to users as a “tool”.
To prepare a module, first build a plugin class that extends the ModulePlugin abstract class (part
of Charger’s freely available code). This class serves as a sort of “boot” class which invokes
whatever methods in whatever other packages you want in your external module.
The code in your module will have complete access to Charger and in general will need to be
compiled with all the Charger packages in the class path. To make your module accessible to
Charger, you create a module plugin class to provide the hooks to your module, one that controls
the rest of your plugin operation, subject to the following constraints:

• The plugin’s “hooks” must be in a class in the chargerplugin package. Your plugin's actual
code package can be positioned anywhere you want.

• The plugin may have any name, but it’s recommended that you indicate it’s a plugin.
• As required by Java, it must implement all the methods of the ModulePlugin class (see

ModulePlugin.java).
Once you've done all that, your module’s name (as specified in its getName() method) will appear
on the Tools menu. When selected, Charger will invoke the startup() method of your boot
class. After that, it's up to you!
Modules that are available in Charger aren’t automatically enabled. You have to select them in the
Config panel of the preferences.

Known Bugs and Restrictions
Most of these are meant to be handled in future versions. In the meantime, I hope you find CharGer
to be useful in some way. Please let me know (delugach@cs.uah.edu) about other bugs.

KNOWN BUGS
• Undo does not work within a text field, although an entire editing operation can be undone

once it is completed.
• Some CGIF files may cause a non-fatal, but perplexing Java parser error.

CharGer Manual v4.2.1 2019-11-14 Page 43 of 54

RESTRICTIONS
• Input and output routines generally depend on Java’s Locale.ENGLISH settings, meaning that

number formatting is in English conventions. Wherever possible, these dependencies have
been removed, but some (e.g., graph dimensions) remain.

• Moving (or attempting to move) parts of a graph out of the current drawing area is not
supported. Auto-scrolling is not supported.

• The actor plugin interface does not yet operate with contexts as input or output, although actors
with such input and output contexts can be created, edited and saved. Inputs and outputs for
operational actors must be simple concepts. The concepts themselves may be nested in
contexts.

• The lookup actor uses databases that must all be located in the same folder; this is the folder
named Databases within the top-level CharGer4 folder, or you may select a different one in
the Actor Settings panel of the Preferences window. There is no pathname in the Database
input concept to lookup. It is possible to work around this with aliases, links or shortcuts. It
may be possible to play around with the actual referent of a Database concept to include a
path, but I wouldn’t rely on it, especially if graphs are to be used on more than one platform.

• The bottom symbol, ^ is represented by the type or referent “null” in referents or concepts.
There is no provision for a " or $ symbol in a referent. Charger follows the CGIF convention
of using @every and @exists. The vertical bar "|" is otherwise illegal in a type or referent.

• In general, text in CharGer is case-sensitive, meaning that strings are compared “as is”. The
only exception is that when dealing with filenames, case sensitivity may depend on the
conventions of the underlying platform operating system.

• Actors can only be activated by editing one of their input or output concept referents, or the
actor name itself. There is no explicit activation of the actor on its own.

• Lambda expressions are not yet supported.
• Arithmetic with real numbers lacks precision; CharGer is not a reliable calculator for real

numbers.
• When moving a context, all its contents go with it logically; if the move causes additional

graph elements to appear enclosed visually, those additional elements are not logically part of
the context!

• A concept can safely be a member of only one coreference set. It is not yet clear to this author
(and others) how to interpret the semantics of a concept that might be a member of more than
one coreference set.

• When joining or matching forms a new graph, elements of the new graph may overlap, since
each set of elements is derived from a separate graph. The graph is stored internally in its
correct form (as would be displayed by the CGIF format).

• Matching is not completely implemented. That is, several combinations and/or matching
parameters will either not work at all or produce unpredictable results. The matching in
CharGer is provided by Notio, which is currently undergoing additional development.

• Graph modality labels are for convenience only; no operational difference occurs in CharGer.
(They can be turned on and off in the Compatibility panel of the Preferences window.)

CharGer Manual v4.2.1 2019-11-14 Page 44 of 54

• LINUX only: running CharGer will often show errors such as “cannot convert string …. To
type VirtualBinding”. These are really Motif errors and can be safely ignored. If you are
interested in the cause of the errors, see Google’s newsgroups and search on “cannot convert
string” VirtualBinding and you’ll find out more.

Frequently Asked Questions

What does n mean on the linking lines?
Linking lines in conceptual graphs can be labeled. Generally relation arrows are to be numbered,
although in many cases that's not necessary, since the types which are linked will serve to
distinguish the arrows. The n is a selection handle merely for convenience in selecting a line for
editing its label or deleting. If you click on the dot when deleting, then the arrow is deleted. If you
click on the dot when you are editing text, you can change the relation label. The handle does not
appear when printing.
To make the handles invisible (and thus render all lines unable to be selected!) un-check the Show
line selection handle option on the Preferences->Appearance Panel.

How do I select a context?
Click somewhere on the border of the context. This is also how you select the context’s label for
editing. This allows moving the context, deleting the context or editing its name, just as you would
any other graph component.

How do I change the text label in a context?
Double-click somewhere on the border of the context. The context name should appear in an
editing field and you can change it.

How do I delete an arc/arrow?
Choose the Delete Tool and then click on the arrow’s handle. If there is no handle showing, be
sure to check the Show line selection handle option on the Preferences Panel.

How do I delete a concept/relation without deleting its linking arrows?
You can’t. CharGer cannot show a line unless there is an element at both of its ends. Deleting or
moving a concept/relation also deletes or moves its lines.

How do I re-size a concept/actor/relation node?
There is no explicit way to just re-size a node. CharGer chooses the size of a node automatically,
based on its text label, fonts and some additional cosmetic considerations. A context is expanded
to enclose its contents. The “+” and “–“ keyboard hotkeys will enlarge or reduce one or more
selected nodes one pixel at a time. Holding down the SHIFT key while pressing “+” or “–“ will
enlarge or reduce the selected nodes more quickly. The “Shrink Selection” menu item will also
change the size of nodes and contexts. A context can be expanded by moving its contents out
toward its edges – the context border will expand to fully enclose them.

I opened a CGIF/CGX graph file and all the objects are crowded into the top left corner.
Why?
Either a saved CGI graph did not have embedded CharGer layout information in its comments (see
Compatibility Preferences panel) or a CGX file was created outside Charger and did not have any

CharGer Manual v4.2.1 2019-11-14 Page 45 of 54

explicit layout information. Without this information, CharGer is unable to draw the graph on the
screen, although its contents (semantics) should be preserved. To automatically lay out a graph on
the screen, use the Auto-Layout feature in the Edit Menu.

How do I change a regular (non-negated) context to a “cut” and vice versa?
There is no way to do this directly. The only way to reverse the sense is to un-make the context/cut
and then re-make it as a cut/context.

Is it possible to change the text color in all concepts or all relations at once?
The best way to do this is to create a new session default color set. This is done in the Preferences-
>Appearances panel. You can create a separate color scheme for each kind of node in a graph.
Note that if the fill and text colors are the same, the text will seem to “disappear”.

Technical Reference

CharGer XML File Format (version
3.1b and later)

As of version 3.1b, CharGer’s stored graphs are in an XML format. Graphs in this form are suffixed
with “.cgx” to distinguish them from the earlier versions.
The syntax of XML itself is beyond the scope of this manual. A DTD may be forthcoming, but in
the meantime, this section describes the XML syntax.
The meaning of a “graph” in CharGer is a set of (possible unconnected) CharGer nodes, some of
which may have links between them. The links are stored separately in the XML file.
The formal grammar for the file is as follows. Note that there must be space between characters
unless they are special characters and that all parameter values within a tag must have double
quotes around them. See general XML documentation for the syntax

CharGerXMLfile ::= xmlheader “<conceptualgraph” cgparmList “>” cgElementList
“</conceptualgraph>”
xmlheader ::= “<?xml version="1.0" encoding="UTF-8"?>”
cgparmList ::= empty | cgparm | cgparm cgparmList
cgparm ::= “creator=” string | “version=” string | “created=” datestring | “modified=” datestring |
“user=” string | “wrapLabels=” Boolean | “wrapColumns=” string
cgElementList ::= empty | cgElement | cgElement cgElementList
cgElement ::= cgNode | cgGraph | cgEdge
cgGraph ::= “<graph” objectParmList “>” objectTagList cgElementList “</graph>”
cgNode ::= “<” cgNodeName objectParmList “>” objectTagList “</”cgNodeName “>”
cgLine ::= “<” cgLineName objectParmList edgeParmList “>” objectTagList
“</”cgLineName “>”
cgNodeName ::= “concept” | “relation“ | “actor“ | “typelabel“ |
“relationlabel“ | “note”

CharGer Manual v4.2.1 2019-11-14 Page 46 of 54

cgEdgeName ::= “arrow“ | “genspeclink“ | “coref“
objectParmList ::= empty | objectParm | objectParm objectParmList
objectParm ::= “id=” idstring | “owner=” idstring | “label=” string | “negated=” boolean
boolean ::= “true” | “false”
edgeParmList ::= empty | edgeParm | edgeParm edgeParmList
edgeParm ::= “from=” idstring | “to=” idstring
idstring ::= string | “0”
objectTagList ::= empty | objectTag | objectTag objectTagList
objectTag ::= typeTag | referentTag | layoutTag | historyTag
typeTag ::= “<type>” typePartList “</type>”
typePartList ::= typePart | typePart typePartList
typePart ::= label | typeDescriptor
referentTag ::= “<referent>” referentPartList “</referent>”
referentPartList::= referentPart | referentPart referentPartList
referentPart::= label | referentDescriptor
referentDescriptor ::= string /* Note: currently undefined */
label ::= “<label>” string “</label>”
typeDescriptorPartList ::= typeDescriptorPart | typeDescriptorPart typeDescriptorPartList
typeDescriptor ::= wordnetDescriptor | genericDescriptor
wordnetDescriptor ::= “<wordnet-descriptor” wordnetParms “/>”
wordnetParms ::= “version=” version “pos=” partofspeech “offset=” uniqueoffset
partofspeech ::= “noun” | “verb” | “adjective” | “adverb”
uniqueoffset ::= positiveNumber
genericDescriptor ::= “<generic-descriptor” genericParms “>” typeDescriptorPartList “</generic-
descriptor>”
genericParms ::= “pos=” partofspeech “definition=” string
layoutTag ::= “<layout>” layoutPartList “</layout>”
layoutPartList ::= empty | layoutPart | layoutPart layoutPartList
layoutPart ::= rectangle | color | font | edge
rectangle ::= “<rectangle” “x=” int “y=” int “width=” int “height=” int ““depth=” int “/>”
color ::= “<color” “foreground=” rgb “background=” rgb “/>”
rgb ::= int “,” int “,” int
font ::= “<font” “name=” fontname “style=” fontstyle “size=” fontsize “/>”
edge ::= “<edge” “arrowHeadWidth=” int “arrowHeadHeight=” int “edgeThickness” double
historyTag ::= “<history>” historyEventList “</history>”
historyEventList ::= empty | historyEvent | historyEventList
historyEvent ::= eventTag eventDescription
eventTag ::= “<event” eventClass timestamp eventType “>”

CharGer Manual v4.2.1 2019-11-14 Page 47 of 54

eventClass ::= “class=” + historyRecordClassname
timestamp ::= “timestamp=” timestampString
eventType ::= “type=” validtype (currently “FILE”, “USER”, “DERIVED” or “CUSTOM”)

There are certain constraints to make a well-formed graph for the CharGer parser, mostly due to
the fact that it’s a one-pass parser.
� All owner objects must appear before any “owner=” parameters.
� An edge must appear after both of its endpoint objects have been listed (this can be a bit

tricky with respect to contexts and coref lines; I’ve found it best to put corefs at the very
end).

� If a parameter appears more than once, the last one will be accepted. (This is XML’s default
behavior.)

� The best rule of thumb is to show elements in a specific order; i.e., graphs and nodes first,
followed by arrows, finally followed by coreferent links (because they can cross graph
boundaries)

Here is an example graph, whose file is shown below it:

<?xml version="1.0" encoding="UTF-8"?>
<conceptualgraph editor="CharGer" version="4.0.3" created="Sep 29, 2014 9:41:59 AM"
modified="Sep 29, 2014 9:45:31 AM" user="hsd" wrapLabels="true" wrapColumns="22">
<graph id="5494ec11:148c1dc59e9:-7ff3" owner="0">
 <type>
 <label>Proposition</label>
 </type>
 <layout>
 <rectangle x="5" y="5" width="1,200" height="900"/>
 <color foreground="0,94,192" background="0,94,192"/>

 </layout>
 <graph id="5494ec11:148c1dc59e9:-7fe4" owner="5494ec11:148c1dc59e9:-7ff3">

CharGer Manual v4.2.1 2019-11-14 Page 48 of 54

 <type>
 <label>Proposition</label>
 </type>
 <layout>
 <rectangle x="78.5" y="289.25" width="259" height="189.5"/>
 <color foreground="0,94,192" background="0,94,192"/>

 </layout>
 <relation id="5494ec11:148c1dc59e9:-7fed" owner="5494ec11:148c1dc59e9:-7fe4">
 <type>
 <label>object</label>
 </type>
 <layout>
 <rectangle x="264" y="360.5" width="52" height="25"/>
 <color foreground="0,0,0" background="255,231,100"/>

 </layout>
 </relation>
 <actor id="5494ec11:148c1dc59e9:-7fec" owner="5494ec11:148c1dc59e9:-7fe4">
 <type>
 <label>function</label>
 </type>
 <layout>
 <rectangle x="92" y="365.5" width="68" height="25"/>
 <color foreground="0,0,0" background="255,255,255"/>

 </layout>
 </actor>
 <concept id="5494ec11:148c1dc59e9:-7fef" owner="5494ec11:148c1dc59e9:-7fe4">
 <type>
 <label>Talk</label>
 </type>
 <layout>
 <rectangle x="208" y="428.5" width="40" height="25"/>
 <color foreground="255,255,255" background="0,94,192"/>

 </layout>
 </concept>
 <concept id="5494ec11:148c1dc59e9:-7ff0" owner="5494ec11:148c1dc59e9:-7fe4">
 <type>
 <label>Person</label>
 </type>
 <referent>
 <label>Harry</label>
 </referent>
 <layout>
 <rectangle x="159" y="316.5" width="104" height="25"/>
 <color foreground="255,255,255" background="0,94,192"/>

 </layout>
 </concept>
 <arrow id="5494ec11:148c1dc59e9:-7fe6" owner="5494ec11:148c1dc59e9:-7fe4"
label="-" from="5494ec11:148c1dc59e9:-7fef" to="5494ec11:148c1dc59e9:-7fed">
 <layout>
 <rectangle x="257.83" y="404.09" width="5" height="5"/>
 <color foreground="0,0,0" background="255,255,255"/>

 <edge arrowHeadWidth="6" arrowHeadHeight="6" edgeThickness="1.5" />
 </layout>
 </arrow>
 <arrow id="5494ec11:148c1dc59e9:-7fe5" owner="5494ec11:148c1dc59e9:-7fe4"
label="-" from="5494ec11:148c1dc59e9:-7fed" to="5494ec11:148c1dc59e9:-7ff0">
 <layout>

CharGer Manual v4.2.1 2019-11-14 Page 49 of 54

 <rectangle x="251.98" y="350.94" width="5" height="5"/>
 <color foreground="0,0,0" background="255,255,255"/>

 <edge arrowHeadWidth="6" arrowHeadHeight="6" edgeThickness="1.5" />
 </layout>
 </arrow>
 <arrow id="5494ec11:148c1dc59e9:-7fe9" owner="5494ec11:148c1dc59e9:-7fe4"
label="-" from="5494ec11:148c1dc59e9:-7fec" to="5494ec11:148c1dc59e9:-7fef">
 <layout>
 <rectangle x="170.88" y="404.95" width="5" height="5"/>
 <color foreground="0,0,0" background="255,255,255"/>

 <edge arrowHeadWidth="6" arrowHeadHeight="6" edgeThickness="1.5" />
 </layout>
 </arrow>
 </graph>
 <relation id="5494ec11:148c1dc59e9:-7fee" owner="5494ec11:148c1dc59e9:-7ff3">
 <type>
 <label>attr</label>
 </type>
 <layout>
 <rectangle x="245.5" y="101.83" width="40" height="25"/>
 <color foreground="0,0,0" background="255,231,100"/>

 </layout>
 </relation>
 <typelabel id="5494ec11:148c1dc59e9:-7feb" owner="5494ec11:148c1dc59e9:-7ff3">
 <type>
 <label>T</label>
 </type>
 <layout>
 <rectangle x="442" y="101.83" width="40" height="25"/>
 <color foreground="0,0,0" background="255,255,255"/>

 </layout>
 </typelabel>
 <typelabel id="5494ec11:148c1dc59e9:-7fea" owner="5494ec11:148c1dc59e9:-7ff3">
 <type>
 <label>Person</label>
 </type>
 <layout>
 <rectangle x="392.5" y="190.5" width="57" height="25"/>
 <color foreground="0,0,0" background="255,255,255"/>

 </layout>
 </typelabel>
 <concept id="5494ec11:148c1dc59e9:-7ff1" owner="5494ec11:148c1dc59e9:-7ff3">
 <type>
 <label>EyeColor</label>
 </type>
 <referent>
 <label>brown</label>
 </referent>
 <layout>
 <rectangle x="203.5" y="163.5" width="124" height="25"/>
 <color foreground="255,255,255" background="0,94,192"/>

 </layout>
 </concept>
 <concept id="5494ec11:148c1dc59e9:-7ff2" owner="5494ec11:148c1dc59e9:-7ff3">
 <type>
 <label>Person</label>
 </type>

CharGer Manual v4.2.1 2019-11-14 Page 50 of 54

 <referent>
 <label>Harry</label>
 </referent>
 <layout>
 <rectangle x="76" y="101.83" width="104" height="25"/>
 <color foreground="255,255,255" background="0,94,192"/>

 </layout>
 </concept>
 <genspeclink id="5494ec11:148c1dc59e9:-7fe2" owner="5494ec11:148c1dc59e9:-7ff3"
label="-" from="5494ec11:148c1dc59e9:-7fea" to="5494ec11:148c1dc59e9:-7feb">
 <layout>
 <rectangle x="439.5" y="156.67" width="5" height="5"/>
 <color foreground="0,0,0" background="255,255,255"/>

 <edge arrowHeadWidth="6" arrowHeadHeight="6" edgeThickness="1.5" />
 </layout>
 </genspeclink>
 <arrow id="5494ec11:148c1dc59e9:-7fe3" owner="5494ec11:148c1dc59e9:-7ff3" label="-
" from="5494ec11:148c1dc59e9:-7ff2" to="5494ec11:148c1dc59e9:-7fec">
 <layout>
 <rectangle x="125" y="244.22" width="5" height="5"/>
 <color foreground="0,0,0" background="255,255,255"/>

 <edge arrowHeadWidth="6" arrowHeadHeight="6" edgeThickness="1.5" />
 </layout>
 </arrow>
 <arrow id="5494ec11:148c1dc59e9:-7fe8" owner="5494ec11:148c1dc59e9:-7ff3" label="-
" from="5494ec11:148c1dc59e9:-7ff2" to="5494ec11:148c1dc59e9:-7fee">
 <layout>
 <rectangle x="211.04" y="112.33" width="5" height="5"/>
 <color foreground="0,0,0" background="255,255,255"/>

 <edge arrowHeadWidth="6" arrowHeadHeight="6" edgeThickness="1.5" />
 </layout>
 </arrow>
 <arrow id="5494ec11:148c1dc59e9:-7fe7" owner="5494ec11:148c1dc59e9:-7ff3" label="-
" from="5494ec11:148c1dc59e9:-7fee" to="5494ec11:148c1dc59e9:-7ff1">
 <layout>
 <rectangle x="263.5" y="142.68" width="5" height="5"/>
 <color foreground="0,0,0" background="255,255,255"/>

 <edge arrowHeadWidth="6" arrowHeadHeight="6" edgeThickness="1.5" />
 </layout>
 </arrow>
</graph>

</conceptualgraph>

Repertory Grid Proprietary File
Format (v. 3.2b and later)

RepGridXMLfile ::= xmlheader “<repertorygrid>” rgheader rgattrList

rgelemList rgcellList “</repertorygrid >”

CharGer Manual v4.2.1 2019-11-14 Page 51 of 54

xmlheader ::= “<?xml version="1.0" encoding="UTF-8"?>”
rgheader ::= “<header>” headerLabelList “</header>”
headerLabelList ::= empty | headerLabel | headerLabel headerLabelList
headerLabel ::= “<headerlabel>”
cgparmList ::= empty | cgparm | cgparm cgparmList
cgparm ::= “creator=” string | “version=” string | “created=” datestring
cgElementList ::= empty | cgElement | cgElement cgElementList
cgElement ::= cgNode | cgGraph | cgEdge

CharGer Proprietary File Format
(version 3.0b only)
See the .cg files to see what they look like. Edit them at your own risk! Here is a brief specification
of the format. An example file is “catonmat.fact.cg” which looks like this:
CharGer|version=3.0b|creation=Feb 25, 2003 7:42:06 PM
Graph|17,0|Proposition|0,0,1000,1007|0,0,175|0,0,175
Concept|22,17|SIT|312,123,35,25|255,255,255|0,0,175
Relation|21,17|agent|203,224,55,25|0,0,0|255,231,100
Concept|20,17|Cat: Axel|63,123,113,25|255,255,255|0,0,175
Relation|19,17|location|385,243,80,25|0,0,0|255,231,100
Concept|23,17|MAT|488,123,45,25|255,255,255|0,0,175
Arrow|27,17|-|374,193,6,6|0,0,0|0,0,0|22,19
Arrow|26,17|-|171,183,6,6|0,0,0|0,0,0|21,20
Arrow|25,17|-|276,183,6,6|0,0,0|0,0,0|22,21
Arrow|24,17|-|464,193,6,6|0,0,0|0,0,0|19,23
\\

The formal grammar of the file is as follows:
The first line is of the form CharGer|version=<versionnumber>|creation=<date>
Succeeding lines are of the form
<ObjectType>|<ID>,<EnclosingID>|<TextLabel>|<Rectangle>|<textColor>|<fillColor>|<fromto
ID>
• <ObjectType> Valid object types are: Graph, Concept, Relation, Actor, TypeLabel,

RelationLabel, Arrow, Coref, and GenSpecLink. Spelling and capitalization must match
exactly.

• <ID>,<EnclosingID> The first number <ID> is the unique identifier for this graph object. No
two objects can have the same one in the same file. The second number <EnclosingID> is the
unique identifier number for that object’s “owner”. In the 5th line of the example, Concept
number 20, which is [Cat:Axel], is enclosed by Graph numbered 17. Note that Graph 17 itself
has owner zero; that indicates this is the top-level graph in the file. If a context appears, it will
have the type “Graph” and its owner will be whatever graph logically encloses it. There is no
explicit provision for a graph to be a referent; its name constitutes its referent designator.

• <TextLabel> the text label for the object. For the top-level graph, it is often convenient to use
the file’s name, although that is not required. Otherwise any text (except for a vertical bar and
a newline) may appear in this term. Connecting lines may have a label, if so, it appears here.

CharGer Manual v4.2.1 2019-11-14 Page 52 of 54

• <Rectangle> the object’s display rectangle. Four numbers are required. They denote in order
the upperleft corner’s x-coordinate, upper-left corner’s y-coordinate, width, and height. The
coordinate system used is Java’s, where x increases going to the right and y increases going
down.

• <textColor> a set of three integers representiing the RGB color value of this object’s text. No
alpha channel is supported for colors.

• <fillColor> a set of three integers representiing the RGB color value of this object’s
background fill. No alpha channel is supported for colors.

• For nodes in a graph (Graph, Concept, Relation, Actor and CGType) only five terms are
present. For connecting lines in a graph (Arrow, Coref and GenSpecLink), a sixth term is
present. It consists of two numbers, the first denoting the unique identifier of the source node,
the second denoting the destination node. In the example, Arrow with ID 26 goes from ID 20
to ID 21, which means the arrow goes from the Relation “agent” to the Concept “Cat: Axel”.

The file must be terminated by two backslashes “\\” on its own line.

CharGer Proprietary File Format
(versions 2.6b or earlier)
CharGer can still read the old files (setting colors to the current default color scheme), but it can
no longer save them in that form. All .cg files will be saved in the new format (see above). See the
(old) .cg files to see what they look like. Edit them at your own risk! Here is a brief specification
of the format. An example file is “catonmat.fact.cg” which looks like this:
Graph|12,0|catonmat.fact.cg|0,0,1000,1000|0,0,1000,1000
Concept|18,12|Cat: Albert|81,158,100,25|81,158,100,25
Concept|17,12|SIT|305,158,40,25|305,158,40,25
Concept|16,12|MAT|467,158,40,25|467,158,40,25
Relation|15,12|agent|191,263,56,18|191,263,56,18
Relation|14,12|location|357,263,77,18|357,263,77,18
Arrow|20,12|-|403,183,72,80|436,220,6,6|14,16
Arrow|19,12|-|141,183,70,80|173,220,6,6|15,18
Arrow|22,12|-|228,183,84,80|267,220,6,6|17,15
Arrow|21,12|-|333,183,55,80|357,220,6,6|17,14

\\
Each object in the graph is specified by a single line. Terms on each line are separated by a vertical
bar.
• The first term is the graph object type. Valid types are: Graph, Concept, Relation, Actor,

CGType, Arrow, Coref, and GenSpecLink. Spelling and capitalization must match exactly.
• The second term consists of a pair of numbers. The first number is the unique identifier for this

graph object. No two objects can have the same one in the same file. The second number is the
unique identifier number for that object’s “owner”. In the 2nd line of the example, Concept
number 18, which is [Cat:Albert], is owned by Graph 12. Note that Graph 12 has owner zero;
that indicates this is the top-level graph in the file. If a context appears, it will have the type
“Graph” and its owner will be whatever graph logically encloses it. There is no explicit
provision for a graph to be a referent; its name constitutes its referent designator.

• The third term is the text label for the object. For the top-level graph, it is often convenient to
use the file’s name, although that is not required. Otherwise any text (except for a vertical bar

CharGer Manual v4.2.1 2019-11-14 Page 53 of 54

and a newline) may appear in this term. Connecting lines may have a label, if so, it appears
here.

• The fourth term is the object’s display rectangle. Four numbers are required. They denote in
order the upperleft corner’s x-coordinate, upper-left corner’s y-coordinate, width, and height.
The coordinate system used is Java’s, where x increases going to the right and y increases
going down.

• The fifth term is a relative rectangle, currently not used. Make it the same as the fourth term.
• For nodes in a graph (Graph, Concept, Relation, Actor and CGType) only five terms are

present. For connecting lines in a graph (Arrow, Coref and GenSpecLink), a sixth term is
present. It consists of two numbers, the first denoting the unique identifier of the source node,
the second denoting the destination node. In the example, there is an arrow which goes from
ID 15 to ID 18, which means the arrow goes from the Relation “agent” to the Concept “Cat:
Albert”.

The file must be terminated by two backslashes “\\” on their own line

Development Details
For any developers who are interested, the editor up to version 2.6b was developed under
Metrowerks’ CodeWarrior for the Macintosh. Since then, development has proceeded under Mac
OS X using Project Builder, then Xcode, and now NetBeans. CharGer 4.0.4 consists of 221 Java
classes in 24 packages, which make up approximately 57,000 lines of code (including comments).
A description of these classes can be found in the Javadoc accessible at
http://www.cs.uah.edu/~delugach/charger.php.
The Java console (i.e., the command line window) may display messages from time to time. In
general, users can safely ignore them. If errors occur, the console may have information that can
be useful in figuring out if there’s a bug to report.

Invoking CharGer from an application
If you have your own Java application (or possibly some other language’s application) you may
invoke CharGer quite easily, I think. The steps should be as follows:
• Make sure that the charger package is included in your Java project or environment.
• In your Java program, invoke the following call.
charger.Hub.setup();

• In the places where the driver needs to exit, the call
charger.Hub.closeOutAll();

That’s all I had to do in my own main class. You may encounter problems; if so, report them and
I’ll do my best to figure them out.
In the future, interface calls will be provided to allow users to construct graphs in other programs
and pass them into CharGer for editing.

Actor Plugin Interface
Starting with CharGer 2.6b, there’s an actor plugin architecture whereby you can write your own
actors that CharGer will incorporate. Of course, you’re responsible for the reliability, etc. of the

CharGer Manual v4.2.1 2019-11-14 Page 54 of 54

actors you write. If you want me to include them in the release (once you’ve tested them
thoroughly!) send them to me for consideration.
The actor plugin interface provides a mechanism for creating external actors that can be
incorporated into CharGer. Java classes that implement this interface are allowed to "plug in" to
CharGer and show up in the actor list just as the primitive actors are. Classes implementing the
ActorPlugin interface must appear in a package named "plugin". Responsibility for extracting
referents from the charger.Concept arguments lies with the class implementing the interface;
some convenience methods are found in GraphUpdater.
The Javadoc for the actor plugin interface can be found at:
http://www.cs.uah.edu/~delugach/CharGer/javadoc/charger/act/ActorPlugin.html.

Recent Changes

Version 4.2.0

2019-08-21 Redesigned the module definition and invocation process, so that users can choose
at runtime which modules (“plugins”) they want to access. No longer do modules
have to be specified as arguments on the command line.

2019-08-22 Added a preference setting under “Appearance” labeled “Image/copy quality”
which takes a floating point value as its argument. This affects the pixels per inch
of either an exported image or a copied part of the canvas that you want to paste.

