Asynchronous Transfer Mode (ATM)

- Background
- Physical and ATM Layers
- AALs
- Applications

ATM Quick Highlights

- The Telecom Industry’s thrust into multi-media data networking
- Comm unit is small, fixed-sized “cell” (53 bytes)
- Built to provide Quality-of-service
- Connection-oriented
- Designed to run over SONET/SDH

ATM History

- 1980: ISDN
- 1985: B-ISDN Study Group
 - ITU chooses ATM approach B-ISDN
- 1990: ATM Forum founded
- 1995: Anchorage Accord Stabilizes Specifications
- 2000:

The B-ISDN ATM Reference Model

- Plane Management
- Layer Management
- Data Transfer
- User and Control
- Packets
- Cells, VC's
- Physical Medium

Convergence Sublayer
Segmentation and Reassembly Sublayer
Transmission Convergence Sublayer (Framing)
Physical Medium Dependent Sublayer
Why?

- Why a small cell instead of a large packet?
 - Queue delays tend to grow as packet size grows. A small cell helps maintain streamlined flows.
 - No/little performance loss due to padding large fields
 - Small cells better for voice
 - No need for in-route fragmentation

Why?

- Why a fixed cell size instead of variable-size packets?
 - Switch architecture can be optimized to the fixed size, so switching can be done in hardware
 - Scalable parallel switch designs

Why?

- Why 53 bytes?
 - US wanted 64 payload bytes, Europe wanted 32
 - Compromised on 48
 - +5 header = 53

Why?

- Why start out with 9% Overhead?
 - Overhead isn’t everything...
 - Ethernet / SS10: 9 Mb/s BW, 900 μsec overhead
 - ATM Synoptics: 7.8 Mb/s BW, 1.250 μsec overhead.
 - NFS trace over 1 week: 95% mins < 200 bytes
ATM + and –

+ OoS
 + Multimedia Support
 + Hardware Switching -> High Speed
 + Connection-Oriented (-?)

- IP Support
 + LAN arena dominated by huge installed Ethernet base
 + Ethernet growing toward MAN, WAN
 + Connection-Oriented (+?)
 + Living up to the hype of the early 90’s

ATM Architecture

ATM

- Physical and ATM Layers
 - Background
 - Physical and ATM Layers
 - Cells, Formats, and Addressing
 - Virtual Circuits
 - Switches and Media
 - Interfaces
 - AALs
 - Applications

Cell Format

- Header
 + UNI Header
 - GFC
 - VPI
 - VCI
 - PTI
 - HEC
 + NNI Header
 - VPI
 - VCI
 - PTI
 - HEC

- Payload
Header Error Control (HEC)

HEC covers the header only, not the payload -- the goal is to ensure correct delivery.

- **First Four Cell Header Bytes**

\[x^3 + x + 1 \]

- **Remainder**

\[01010101 \]

If \(P(\text{bit error}) = 10^{-9} \), then \(P(\text{Undetected header error}) = 10^{-90} \)

at OC-3, about 1 per 90,000 yrs

HEC also assists in synchronizing:
- Look at 53-byte sequences until you find one where the HEC field works correctly
- If this holds up for 0 sequences in a row, assume you’ve synched
- \(p(\text{bad synch}) = 2^{-30} \)

UNI Header Fields

- **GFC** - General Flow Control
 - Only used between host and network. Overwritten by first switch
- **VPI** - Virtual Path ID
- **VCI** - Virtual Circuit ID
- **PTI** - Payload type ID
- **CLP** - Cell Priority (ID’s cells for deletion when congestion experienced)
- **HEC** - Header Checksum (all 1-bit errors corrected, 90% of multi-bit errors detected)

NNI Header Fields

- **VPI** - Virtual Path ID
- **VCI** - Virtual Circuit ID
- **PTI** - Payload type ID
- **CLP** - Cell Priority (used to ID cells for deletion when congestion experienced)
- **HEC** - Header Checksum (all 1-bit errors corrected, 90% of multi-bit errors detected)

PTI Field Codes

- **000** - User Data Cell Type 0 - No congestion experienced
- **001** - User Data Cell Type 1 - No congestion experienced
- **010** - User Data Cell Type 0 - Congestion experienced
- **011** - User Data Cell Type 1 - Congestion experienced
- **100** - Maintenance info between adjacent switches
- **101** - Maintenance info between source and destination switches
- **110** - Resource management cell (for ABR congestion control)
- **111** - Reserved

Explicit Forward Congestion Indicator (EFCI)

Set by Congested switch

Used by AAL5 to denote end of message
ATM Addressing

E.164: Telephone Numbers - up to 15 digits
ATM End-System Addresses (AESAs) – 20-byte Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>US Code</th>
<th>Formal Indicator</th>
<th>Org. ID</th>
<th>Specified by Organization</th>
<th>Sub-address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Org. ID</td>
<td>840F</td>
<td>Specified by Organization</td>
<td>80</td>
<td>809134.0001</td>
<td>01</td>
</tr>
<tr>
<td>Example</td>
<td>Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Address Aggregation (Hierarchical Routing)

- 39.840F.80.809134.0001
- 39.840F.80.809134.0001.01
- 39.840F.80.809134.0001.0F
- 39.840F.80.809134.0001.0F.01
- 39.840F.80.809134.0001.0F.02

Example of Addressing:
- BigCorp, Inc.
- Plant 1
- Plant 15
- Bldg 2
- Bldg 1

Virtual Circuits

- Normally Unicast, but one-way Multicasting Supported
- Unidirectional, but a pair can be created with same ID – effectively full-duplex
- Customers can lease a VP, then allocate VC’s within it ("Permanent VP")
- Types of VC’s:
 - Standard VC ("PVC") – Static route
 - Soft VC – Route can be changed in event of failure
 - Signalled VC ("SVC") – Demand connection initiated by user
VC Connection

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning (if from host)</th>
<th>Meaning (if from Network)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETUP</td>
<td>Call request</td>
<td>Incoming call</td>
</tr>
<tr>
<td>CALL PROCEEDING</td>
<td>ACK Incoming call</td>
<td>ACK Call request</td>
</tr>
<tr>
<td>CONNECT</td>
<td>Incoming call accepted</td>
<td>Call request accepted</td>
</tr>
<tr>
<td>CONNECT ACK</td>
<td>ACK Call request accepted</td>
<td>ACK incoming call accepted</td>
</tr>
<tr>
<td>RELEASE</td>
<td>Terminate request</td>
<td>Terminate req from remote</td>
</tr>
<tr>
<td>RELEASE COMPLETE</td>
<td>ACK Terminate from remote</td>
<td>ACK terminate request</td>
</tr>
</tbody>
</table>

Virtual Circuit Setup Process

- Source Host
- Switch 1
- Switch 2
- Destination Host

ATM Broadcasting /Multicasting

- Cells to be Broadcast
- Destinations

Operation Administration and Maintenance (OA&M)

- Supervision, Maintenance, Testing, Performance Measurement, Loopbacks
- Organized into levels according to Network Segment Type
Preassigned VPI and VCI Numbers

<table>
<thead>
<tr>
<th>VPI</th>
<th>VCI</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Unassigned</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Metasignaling</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>F4 Flow (segment)</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>F4 Flow (end-to-end)</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>Signaling</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>SMDS</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>Intermediate Layer Management Interface (ILMI)</td>
</tr>
</tbody>
</table>

Switch Operation

Switching Table

<table>
<thead>
<tr>
<th>IN Port</th>
<th>OUT Port</th>
<th>Label Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Transmission Media

- Baseline is SONET (B-ISDN)
- Short runs, Cat 5 TP OK
- All runs point-to-point
SONET / SDH

- **Bell:** Synchronous Optical Network (SONET)
- **CCITT:** Synchronous Digital Hierarchy (SDH)

- Only minor differences

SONET Multiplexing

- Synchronous, frame-oriented, TDM
- For basic SONET:
 - 6480 bits/125µsec = 51.84 Mbps total ("STS-1")
 - User data rate =~ 50Mbps

SONET/SDH Data Rates

<table>
<thead>
<tr>
<th>SONET</th>
<th>SDH</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>Optical</td>
<td>Gross</td>
</tr>
<tr>
<td>STS-1</td>
<td>OC-1</td>
<td>51.84</td>
</tr>
<tr>
<td>STS-3</td>
<td>OC-3</td>
<td>155.52</td>
</tr>
<tr>
<td>STS-9</td>
<td>OC-9</td>
<td>466.96</td>
</tr>
<tr>
<td>STS-12</td>
<td>OC-12</td>
<td>994.08</td>
</tr>
<tr>
<td>STS-18</td>
<td>OC-18</td>
<td>3288.32</td>
</tr>
<tr>
<td>STS-24</td>
<td>OC-24</td>
<td>7166.40</td>
</tr>
<tr>
<td>STS-36</td>
<td>OC-36</td>
<td>11886.24</td>
</tr>
<tr>
<td>STS-48</td>
<td>OC-48</td>
<td>24688.32</td>
</tr>
</tbody>
</table>

- "OC-n" means multiple users, muxed
- "OC-nI" means one user – slightly higher User B/W

ATM over SONET

- ATM designed to run over SONET OC-3c
- Basic: 155.52 Mbps gross rate
 - Usually quoted as 155 Mbps
- New generation runs at OC-12 (622 Mbps), OC-48 (2.4 Gbps)
ATM - Physical and ATM Layers

- Background
- Physical and ATM Layers
 - Cells, Formats, and Addressing
 - Virtual Circuits
 - Switches and Media
 - Interfaces
- AALs
- Applications

ATM Interfaces

- Broadband Inter-Carrier Interface (B-ICI)
 - Public Network-to-Network Interface
 - Based on Broadband ISDN User-Part (B-ISUP) messages

NNI

- Switch-to-switch interface protocol
- Two versions: Public and private (similar, more flexibility in private version)
- NNI Includes:
 - Routing protocol (Link-sate/OSPF)
 - Signaling protocol for link setup/teardown
UNI

- Protocol for interfacing with user equipment
- Follows ITU-T Q.2931 message format

DXI

- "Frames In, Cells Out"
- Provides Frame-Based Access to an ATM Network

DXI Variants

<table>
<thead>
<tr>
<th>Mode</th>
<th>AALs Supported</th>
<th>VCs Supported</th>
<th>Flag Header</th>
<th>Body</th>
<th>FCS</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>AAL5</td>
<td>1023</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1b</td>
<td>AAL5,3/4</td>
<td>1023,1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>AAL3/4,5</td>
<td>16.6M</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

ATM

- Background
- Physical and ATM Layers
- AALs
 - AAL Overview
 - AAL 1 and 2
 - AAL 3/4
 - AAL 5
- Applications
Why AAL?

An “impedance matcher” between ATM and higher-level protocols with variable-length cells

The Evolution Of the AAL’s

Original Service Classes

A Real-time Constant Bit Rate Connection-Oriented
B Real-time Variable Bit Rate Connection-Oriented
C Non-real-time Variable Bit Rate Connection-Oriented
D Non-real-time Variable Bit Rate Connectionless

AAL1
AAL2
AAL3
AAL3/4
AAL4
AAL5

Cell Formation

ATM

• Background
• Physical and ATM Layers
• AALs
 • AAL Overview
 • AAL 1 and 2
 • AAL 3/4
 • AAL 5
• Applications
AAL 1

- Designed to support Class A traffic (voice)
- Voice has good error tolerance -> No bit error control (CRC) needed
- Sequence numbers needed to ID missing cells

AAL 1 Convergence Sublayer

- Detects lost cells
- Detects mis-delivered ("misinserted") cells
- Smooths incoming traffic to minimize jitter
- Breaks bit stream into 47/46-byte segments for SAR sublayer
- Does not add headers or trailers

AAL 1 SAR PDU (non-pointer type)

- Adds sequence # with protection (checksum)
- Adds parity bit (even) over header

AAL 1 SAR PDU (Pointer Type)

- Pointer field gives offset to start of next message (0-92 bytes)
AAL 2
- Designed to support Variable Bit Rate ("Bandwidth on Demand")
- Provides for partial payloads to support low-rate data with low latency
- Error protection over full PDU
- Simple flag to indicate position in message

AAL 2 SAR PDU
- [Diagram]

ATM
- AAL Layer

ATM
- Background
- Physical and ATM Layers
- AALs
 - AAL Overview
 - AAL 1 and 2
 - AAL 3/4
 - AAL 5
- Applications

AAL 3/4
- Originally 2 separate AALs:
 - AAL3: Connection-oriented packet svcs (X.25)
 - AAL4: Connectionless svcs (IP)
- Eventually combined into a single type for all data service
- Data support overtaken by AAL5
AAL3/4 CS PDU

<table>
<thead>
<tr>
<th>bytes</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1 to 65535</th>
<th>8 to 3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **CPI**: Common Part Indicator - Message type, Units for BA Size and Length
- **Btag**: Identical sentinel bytes, Incremented for each new message
- **BA Size**: Estimated payload size (for buffer allocation)
- **Pad**: Bytes added to make Payload a multiple of 4 bytes
- **Length**: True payload size

AAL3/4 SAR PDU

<table>
<thead>
<tr>
<th>bytes</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>44 bytes</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Seq #</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muxing ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **ST**: Segment Type
 - Indicates if this cell is from the middle (00), end (01) or beginning (10) of this message or if this is a single-cell message (11)
- **Muxing ID**: ID of the session that this cell belongs to (the CS may be handling multiple sessions simultaneously)

ATM - AAL Layer

- **AAL5**
 - Pushed by computer industry as a lower-overhead data format
 - The idea: Instead of using some of the 48-byte cell payload for SAR info, steal a bit from the cell to denote end of message

<table>
<thead>
<tr>
<th>Efficiency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL3/4: 4 bytes per message + 4 bytes per cell => 44 User Data Bytes / Cell</td>
</tr>
<tr>
<td>AAL5: 8 bytes per message => 48 User Data Bytes / Cell, 8% improvement</td>
</tr>
</tbody>
</table>

AAL Overview
- AAL 1 and 2
- AAL 3/4
- AAL 5

Applications

Chart © Glenn W Cox, 2001-2004
AAL5 CS PDU

- Payload
- Pad
- UU
- Length
- CRC

1 to 65535 bytes
0 to 47
1
1
2
4

- Pad: Inserted to make entire CS PDU a multiple of 48 bytes
- UU: "User-to-User" field. Available for use by higher levels.
- Length: Payload length, not counting padding

AAL5 SAR

- Simply breaks CS PDU into 48-byte chunks and passes them to ATM Layer.
- No overhead bytes added.

ATM - AAL Layer

ATM - Applications

- Background
- Physical and ATM Layers
- AALs
- Applications
 - QoS
 - LANE
 - IP over ATM, MPOA

ATM QoS

- A (The?) Major ATM selling point vs. Best-Effort
- The idea:
 - At VC setup, sender specifies level and quality of service required, also planned traffic profile.
 - While establishing VC, network attempts to allocate resources to meet requirements.
 - Requirements are agreed to or available capability is passed back to sender.
 - During transmission, network enforces traffic profile
ATM Classes of Service

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>CCA-C Cell Rate</th>
<th>CTA-C Cell Transfer Delay</th>
<th>SCR-C Sustained Cell Rate</th>
<th>DCR-C Drop Cell Rate</th>
<th>PCR-C Peak Cell Rate</th>
<th>VBR-T Variable Bit Rate, Real-Time</th>
<th>VBR-NRT Variable Bit Rate, Non-Real-Time</th>
<th>ABR Available Bit Rate, File Transfer, Email</th>
<th>UBR Unspecified Bit Rate (e.g., TCP/IP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR</td>
<td>Constant bit rate (e.g., Phone traffic)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>VBR-RT</td>
<td>Variable bit rate, Real-Time (e.g., Interactive Compressed Video)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>VBR-NRT</td>
<td>Variable bit rate, Non-Real-Time (e.g., Multimedia email)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ABR</td>
<td>Available bit rate (e.g., File Transfer, Email)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>UBR</td>
<td>Unspecified bit rate (e.g., TCP/IP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

QoS Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR - Peak Cell Rate</td>
<td>Max rate req'd</td>
</tr>
<tr>
<td>SCR - Sustained Cell Rate</td>
<td>Avg rate req'd</td>
</tr>
<tr>
<td>MCR - Minimum Cell Rate</td>
<td>Min acceptable rate (Used in ABR Service)</td>
</tr>
<tr>
<td>DCR - Cell Delay Variation Tolerance</td>
<td>Max acceptable jitter</td>
</tr>
<tr>
<td>SCR - Cell Loss Rate</td>
<td>Fraction of cells lost in rate</td>
</tr>
<tr>
<td>CTD - Cell Transfer Delay</td>
<td>Delivery time (mean and max)</td>
</tr>
<tr>
<td>SCR - Cell Delay Variation</td>
<td>Measured jitter</td>
</tr>
<tr>
<td>SCR - Cell Error Rate</td>
<td>Fraction with one or more errors</td>
</tr>
<tr>
<td>SECBR - Severely-Errored Cell Block Ratio</td>
<td>Fraction of "M"-cell blocks with "N" or more errored cells</td>
</tr>
<tr>
<td>DMR - Cell Misinsertion Rate</td>
<td>Fraction delivered to wrong destination</td>
</tr>
<tr>
<td>BT - Burst Tolerance</td>
<td>Max Burst that can be sent at Peak Rate</td>
</tr>
</tbody>
</table>

Traffic Shaping

Unregulated Cell Stream

```
| Target Mean | Max Burst |
```

Leaky Bucket

```
Max: Discard above Mean
Release at Regular Rate
```

Regulated Cell Stream

Agenda

- Background
- Physical and ATM Layers
- AALs
- Applications
 - QoS
 - LANE
 - IP over ATM, MPOA
LANE – The Goal

To Make Work Like

- Virtual Circuits
- No (easy) Broadcast
- Packet-Oriented (802)
- Broadcast as a Basic Function

LANE Protocol Stack

- Application
- ATM-LAN Bridge
- Media Access Control
- ATM
- Physical

LANE -- Address Translation in the Virtual LAN

The idea is to establish a VC to the host that a LAN packet would go to. We need a way to determine which host to set up the VC to.

In 802-series LAN, the ARP protocol is used to translate Network-Layer Address (e.g., IP) to MAC address. Network addresses are broadcast to all possible targets, the right one responds.

Broadcast and Unknown Server (BUS)

Provides Broadcast, Multicast Capability

Cells to be Broadcast

- LEC
- BUS
- LEC
ATM
- Background
- Physical and ATM Layers
- AALs
- Applications
 • QoS
 • LANE
 • IP over ATM, MPOA

Classical IP over ATM
• Could use LANE to implement ATM-IP interoperability, but may be too much overhead for large networks
• Defined by IETF (RFC 1577)
• The key is IP <-> ATM address resolution
 • ATM Address Resolution Protocol (ATMARP)
 • Inverse ATMARP (InATMARP)

IP over ATM
Connection Setup Process

MultiProtocol Over ATM (MPOA)
LANE supports a single legacy LAN format over ATM. MPOA extends this to multiple LAN types