
1536-1268/05/$20.00 © 2005 IEEE ■ Published by the IEEE CS and IEEE ComSoc PERVASIVEcomputing 81

P R O T O C O L S

P
ervasive computing environments
gracefully integrate networked com-
puting devices—from tiny sensors to
extremely dynamic and powerful de-
vices—with people and their ambient

environments. A room, for example, might be
saturated with hundreds of devices that provide
information to people without needing their

active attention. Service discov-
ery is essential to achieving such
sophistication. It enables devices
and services to properly discover,
configure, and communicate with
each other. Unfortunately, we
now spend precious time actively
looking for services and manually
configuring devices and pro-

grams. Sometimes the configuration requires spe-
cial skills that have nothing to do with the tasks we
want to accomplish.

Service discovery protocols are designed to
minimize administrative overhead and increase
usability. They can also save pervasive system
designers from trying to foresee and code all pos-
sible interactions and states among devices and
programs at design time. By adding a layer of
indirection, service discovery protocols simplify
pervasive system design.

Over the past few years, many organizations
have designed and developed service discovery
protocols. Examples in academia include the
Massachusetts Institute of Technology’s Inten-
tional Naming System (INS),1 University of Cal-

ifornia at Berkeley’s Ninja Service Discovery Ser-
vice (SDS),2 and IBM Research’s DEAPspace.3

Major software vendors ship their service discov-
ery protocols with their current operating sys-
tems—for example, Sun Microsystems’ Jini Net-
work Technology,4 Microsoft’s Universal Plug and
Play (UPnP),5 and Apple’s Rendezvous.6 Other
organizations have also proposed discovery pro-
tocols standards, including Salutation Consor-
tium’s Salutation protocol,7 Internet Engineering
Task Force’s Service Location Protocol (SLP),8 and
Bluetooth Special Interest Group’s Bluetooth SDP.9

All these protocols support service discovery
in ambient computing environments in terms of
network topology or location. Each one addresses
a different mix of issues, but most are designed for
home or enterprise environments and thus don’t
always apply to pervasive computing beyond
these confines. However, the various design
approaches provide useful reference points for
future protocol design. We have therefore devel-
oped a taxonomy of existing protocols as a basis
for analyzing their approaches and identifying
problems and open issues relative to service dis-
covery in pervasive computing environments.

Pervasive environment challenges
Pervasive computing environments are far

more dynamic and heterogeneous than enterprise
environments. Enterprise network services oper-
ate within a network scope protected by firewalls
and managed by system administrators. But a net-
work scope can’t easily define the ambient ser-

Pervasive computing environments pose unique service discovery
challenges. A survey and taxonomy of existing discovery protocols
clarifies the open research problems for anytime, anywhere computing.

Feng Zhu and Matt W. Mutka
Michigan State University

Lionel M. Ni
Hong Kong University of Science
and Technology

Service Discovery in
Pervasive Computing
Environments

vices in pervasive computing environ-
ments, nor are all services likely to be
managed by system administrators. Per-
vasive service discovery in an office envi-
ronment might target an enterprise com-
puting service, but it might also target a
service that doesn’t belong to the enter-
prise domain—for instance, a colleague’s
personal service.

Ambient services discovery also dif-
fers significantly from Web services dis-
covery over the Internet. For example,
Web services have no physical location
limitations, whereas ambient services are
local. Moreover, current Web service
architectures focus only on interopera-
tions among applications—not people.
For example, the World Wide Web Con-
sortium defines its Web services archi-
tecture (www.w3.org/TR/ws-arch) to
facilitate platform interoperability
through standards such as the Web Ser-
vice Description Language (WSDL)10

and XML. The discovery and configu-
ration process for Universal Description,
Discovery, and Integration11—a repre-
sentative Web services discovery proto-
col—can involve analysts, programmers,
and administrators. This limits UDDI’s
applicability in pervasive computing
environments. Furthermore, its registry
and data structure focus on electronic
commerce, which is too specific for per-
vasive computing services.

Pervasive computing environments
pose unique questions relative to inte-
gration with people and their ambient
environments.

Integration with people
Perhaps the most serious challenge to

pervasive computing service discovery is

the integration of computing devices
with people. For one thing, how do we
protect personal privacy? When com-
puting devices are integrated with peo-
ple, various personal information is
expressed in digital form. Service discov-
ery protocols can communicate this infor-
mation over networks—either directly or
by inference. For example, you can infer

a person’s presence information from the
RFID tags on clothes or the devices car-
ried in a hand bag. Similarly, you can
infer a person’s health status from dis-
covering a wearable medical device.
Moreover, users expose their intentions
in service discovery—to untargeted as
well as targeted services. These possibil-
ities impose complex requirements on
system design.

Another question has to do with how
much prior knowledge a user or service
provider must have for service discov-
ery. Most existing protocols consider
only interactions among computers and
programs that are acting as clients (dis-
covering devices), services (network ser-
vices), and directories (centralized ser-
vice information storage). Nevertheless,
people serve two roles in discovery
processes: as users of services via clients
and as service providers. One end of the
spectrum requires little knowledge—
users can acquire information without
actively managing pervasive computing
devices. The other end requires special
skills. For instance, many existing ser-
vice discovery protocols standardize ser-
vice names and attributes to eliminate
ambiguity when, say, a client looks for
a “print” service while a service provides
a “printing” service. Does this mean that
a user must learn service terminology?

Finally, pervasive computing environ-
ments allow multiple service providers to
coexist at a place. What user roles and
administrative domains are properly
involved in a discovery? For example, in
Bob’s office, he might own services and so
might his colleague Alice, the office, or
the landlord. The credentials he uses to
access Alice’s MP3 player differ from
those he uses to access the office printer.
You can’t assume that users will provide
proper credentials as they do in tradi-
tional computing environments because
supplying them requires knowledge of
the relations among services, service
providers, and the user’s credentials. The
relations can be complex or ultimately
unmanageable when a user interacts with
thousands of dynamic services that are
owned by dozens of service providers.

Integration with environments
Integrating computing devices with

environments raises an interesting ques-
tion: how can we precisely define the
ambient environment that a service dis-
covery instance targets?

The primary service discovery proto-
col approaches are based on LANs and
single-hop wireless communication.4–5,9

These approaches are simple and effec-
tive for, respectively, enterprise environ-
ments that are behind firewalls and
devices that communicate via ad hoc net-
works. However, they can be too coarse
for pervasive computing environments,
which are more appropriately defined by
physical-world boundaries,12 such as a
room, and other high-level context infor-
mation, such as location and current user
tasks. Moreover, different users in the
same place can have different views of the
augmented environments. For instance, a
visitor’s view differs from a host’s view.

In pervasive computing, heterogeneity
occurs in many aspects: hardware, soft-
ware platforms, network protocols, and
service providers. Future devices and ser-
vices will increase the diversity. Although

82 PERVASIVEcomputing www.computer.org/pervasive

P R O T O C O L S

Pervasive computing environments pose unique

questions relative to integration with people and

their ambient environments.

service discovery protocols accommodate
heterogeneity, existing protocols have var-
ious design goals and solutions. Each has
its advantages and disadvantages in dif-
ferent situations, so it seems unlikely that
a single protocol could dominate in per-
vasive computing environments. With
current protocols, this means clients and
services can’t discover each other if they
don’t use a common protocol. We should
therefore establish a common platform
to enable interoperability among service
discovery protocols.

Are the dynamic conditions typical in
pervasive computing qualitatively dif-
ferent from those in mobile computing
systems? They seem at least to reach an
extreme in pervasive computing: unat-
tended tiny devices, user and device
mobility, changing user roles and tasks,
and partial failure on devices and appli-
cations. Service discovery results can be
inconsistent in consecutive queries, and
service states can be uncertain. When
inconsistency and uncertainty rates are
high, users may perceive the system as
unstable. Many service discovery pro-
tocols adopt time-based approaches
(soft states and lease-based approaches)
to address dynamic conditions. These
approaches simplify distributed system
designs to handle dynamic conditions.
However, quantitative design analysis
might be difficult without actual perva-
sive computing environments to measure.

Service discovery designs
Existing service discovery protocols

often use different terminologies to bet-
ter reflect unique aspects of their design
choices. A common terminology and
classification mechanism help analyze
their advantages and disadvantages and
identify areas worthy of additional
efforts to meet pervasive computing
environment requirements.

Figure 1 shows major service discov-
ery protocol components and classifies
the design choices for them in a consis-

tent taxonomy. Table 1 compares nine
protocols relative to this scheme. The
table also addresses security and privacy
issues.

Service and attribute naming
In the discovery process, a client

searches a service by specifying a service
name and attributes. This approach has
much lower administrative overhead
than traditional network service access,
which requires prior knowledge of a ser-
vice’s existence and manual inputs such
as computer names. Because pervasive
computing environments might include
hundreds of devices and services, manu-
ally configuring them for potential ser-
vice accesses seems infeasible.

To provide expressiveness for various
services and expandability for new ser-
vices, many discovery protocols use a
template-based approach to naming—
that is, they define a format for service

names and attributes. For instance,
Apple’s Rendezvous (based on the Inter-
net’s Domain Name System) defines how
a service name must be composed.

In addition to template-based naming,
several protocols offer a predefined set
of common attributes and frequently
used service names. For example, Blue-
tooth SDP defines a set of 128-bit Uni-
versal Unique Identifiers for frequently
used services and a set of attribute IDs.
This eliminates ambiguity regarding
names and attributes when clients, ser-
vices, and directories interact.

Several protocols, such as Jini and Blue-
tooth SDP, offer user-friendly service
names and attributes besides the machine-
friendly versions. Nevertheless, users still
need to learn the terms to use services.

The various templates and predefined
service names and attributes mean that
pervasive computing environments face
the problem of how clients, services, and

OCTOBER–DECEMBER 2005 PERVASIVEcomputing 83

Service and attribute naming

Template-based Template-based
and predefined

Initial communication method

Unicast BroadcastMulticast

Discovery and registration

Query-based Announcement-based

Service discovery infrastructure

Nondirectory-based Directory-based

Service information state

Soft state Hard state

Discovery scope

Network
topology

Context

Service selection

Automatic Manual

User role

Service invocation

Service
location

Application
operations

Communication
mechanism

Service usage

Explicitly released Lease-based

Service status inquiry

1

2

4

5

6

7

83

9

10

Notification Polling

Figure 1. Major service discovery protocol
components.

directories can understand each other
when more than one discovery protocol
is widely adopted.

Initial communication method
Unicast is the most efficient initial

communication method among clients,
services, and directories because it
involves only related parties. Its draw-
back is a requirement to configure net-
work addresses with prior knowledge.

Such configuration might be infeasible
to do manually in pervasive computing.

An elegant solution in current service
discovery protocols is User Datagram
Protocol multicast. After clients, services,
and directories receive a few UDP multi-
cast messages, they determine unicast
addresses dynamically and switch com-
munications to unicast. In this way, they
only need to set a few multicast addresses
initially. They can also save the unicast

addresses for future usage and perfor-
mance optimization.

An alternative method is link layer
broadcast. Broadcast has the same
advantage as multicast, but it is usually
limited within a single hop of wired or
wireless networks.

Binding a service discovery protocol
tightly to the underlying network pro-
tocols can limit its discovery capability.
For example, a device with only a Blue-

84 PERVASIVEcomputing www.computer.org/pervasive

P R O T O C O L S

TABLE 1
Comparison of service discovery protocols according to major component categories and security issues.

Research community Software vendors

Feature INS Ninja SDS DEAPspace Jini

Service and attribute Not available Not available Not available Template-based
naming and predefined

Initial communication Unicast and multicast Unicast, multicast, and Broadcast Unicast and multicast
method broadcast

Discovery and Query- and Query- and Announcement- Query- and
registration announcement-based announcement-based based announcement-based

Service discovery Directory-based, Directory-based, Nondirectory-based Directory-based,
infrastructure flat or hierarchical* hierarchical flat or hierarchical

Service information Soft state Soft state and hard state‡ Soft state Soft state
state

Discovery scope User role (administrative User role (administrative Network topology User role (administrative
domain) domain), context (single-hop ad hoc domain), context

(location), and network network) (location), and network
topology (LAN) topology (LAN)

Service selection Automatic Manual Manual Manual

Service invocation Not available Not available Not available Service location and
communication
mechanism
(downloadable Java
code and RMI)

Service usage Not available Not available Not available Lease-based

Service status inquiry Not available Not available Not available Notification

Security dependency Not available Built-in Not available Built-in

Authentication Not available Yes (user and service) Not available Yes (user and service)

Authorization Not available Yes (access control list Not available Yes
and capability)

Confidentiality Not available Yes Not available No

Integrity Not available Yes Not available Yes

Availability Not available Yes Not available No

Nonrepudiation Not available Yes Not available No

Privacy Not available Service privacy Not available No

* Flat in subdomain and hierarchical globally.
† Multiple directories in SLP do not communicate with each other. Coexisting directories are designed for fault tolerance and performance.
‡ Soft state at leaf directories; hard state at other directories.

OCTOBER–DECEMBER 2005 PERVASIVEcomputing 85

tooth network interface won’t be dis-
covered by any devices that lack one.
Salutation provides an innovative solu-
tion by using two interfaces: one that lets
applications call service discovery func-
tions and the other that makes the Salu-
tation transport layer independent. A
mapping from Salutation to Bluetooth
SDP enables discovery of Bluetooth
devices.13

Discovery and registration
Clients, services, and directories have

two basic options for exchanging discov-

ery and registration information. Many
protocols support both approaches.

In the announcement-based approach,
interested parties listen on a channel.
When a service announces its availabil-
ity and information, all parties hear the
information. So in this approach, a client
might learn that the service exists and a
directory might register the service’s
information.

In the query-based approach, a party
receives an immediate response to a
query and doesn’t need to process unre-
lated announcements. Multiple queries

asking for the same information are
answered separately.

Service discovery infrastructure
Protocols choose between directory-

and nondirectory-based infrastructure
models.

The directory-based model has a ded-
icated component: a directory that main-
tains service information and processes
queries and announcements. Some direc-
tories provide additional functionality.
For instance, Ninja SDS directories sup-
port secure announcements and queries.

Industry standards community

UPnP Rendezvous Salutation SLP Bluetooth SDP

Template-based Template-based Template-based Template-based Template-based
and predefined and predefined and predefined

Unicast and multicast Unicast and multicast Unicast and broadcast Unicast, multicast, Unicast and
and broadcast broadcast

Query- and Query-based Query- and Query- and Query-based
announcement-based announcement-based announcement-based

Nondirectory-based Directory-based, Directory-based, flat Nondirectory- or Nondirectory-
hierarchical directory-based† based

Soft state Soft state and Hard state Soft state Soft state
hard state

Network topology User role (administrative Network topology User role and network Network topology
(LAN) domain) (LAN) topology (LAN) (single-hop ad-hoc

network)

Manual Manual Manual Manual Manual

Service location, Service location Service location, Service location (URL) Service location
communication (TCP/IP address communication
mechanism (XML, and port) mechanism (RPC),
SOAP, and HTTP), and and application
application operations operations

Explicitly released Not available Explicitly released Explicitly released Not available

Notification and Not available Notification Not available Not available
polling

UPnP Security DNS Security Extension Built-in Built-in Built-in and
Bluetooth Security

Yes (user, service, Yes (service information) Yes (user) Yes (service Yes (device
and device) information) authentication)

Yes (Access control No Yes No Yes
list and certificates)

Yes No No No Yes

Yes Yes No Yes No

No No No No No

No No No No No

No No No No No

The nondirectory-based model has no
dedicated component. When a query
arrives, every service processes it. If the
service matches the query, it replies.
When hearing a service announcement,
a client can record service information
for future use.

The nondirectory-based model is suit-
able for simple environments such as
individual homes where the services are
relatively few. The directory-based
model is more suitable for environments
with hundreds or thousands of services,
where a directory can process client

queries more efficiently.
SLP and Salutation provide more flex-

ible solutions. SLP supports both the
directory-based and nondirectory-based
models. Although the initial discovery
stage incurs some overhead to determine
the existing discovery model, such flex-
ibility is preferable in heterogeneous per-
vasive computing environments. Salu-
tation has a component, Salutation
Manager, that integrates the service dis-
covery functions of a client, service, and
directory into one component. This
enables one device to act according to
different roles in different situations.

Directory-based models fall into two
design categories: flat and hierarchical
structures. In a flat directory structure,
directories have peer-to-peer relation-
ships. For example, within an INS sub-
domain, directories have a mesh struc-
ture: a directory exchanges information
with all other directories. On the other
hand, Rendezvous and Ninja SDS have
a tree-like hierarchical directory struc-
ture. Because pervasive computing envi-

ronments often integrate services with
ambient environments or people, a
directory must determine whether the
service information that it exchanges
with a neighbor or a parent directory is
appropriate in terms of locality, security,
and privacy.

Service information state
Most service discovery protocols main-

tain service status as a soft state. A ser-
vice announcement specifies the service’s
life span. Before the service expires, a
client or directory can poll the service for

validity or the service can announce itself
again to renew the registration lease.
Otherwise, the service will become
invalid after expiration. The directory-
based model removes expired service
entries from the directories. This grace-
ful, soft-state, service management mech-
anism greatly simplifies system design
and keeps service information fresh.

Alternatively, clients and directories
can maintain service status as a hard
state. Hard state requires few service
announcements and housekeeping jobs.
However, it does require the clients and
directories to periodically poll services
to make sure that their information is
up-to-date.

Discovery scope
Proper discovery scopes minimize

unnecessary computation on clients, ser-
vices, and directories. Scopes based on
network topologies, user roles, context
information, or combinations of such
information help to properly define ser-
vice discovery session targets.

In network topology-based discovery
scopes, some protocols use LANs as the
default, while others use a single-hop
wireless network range. An implicit
assumption is that the clients, services,
and directories are in a place that belongs
to the same administrative domain. The
assumption might hold true in enterprise
and home computing environments, but
pervasive computing environments
might include multiple, coexisting
administrative domains as well as dif-
ferent underlying networks that might
not be connected.

User roles offer another approach.
Many service discovery protocols support
administrative domains as a discovery
scope. Users either authenticate with a
domain or supply the designated domain
as an attribute. This lets users control the
target domain, but it requires them to
have prior knowledge of the target ser-
vice and its domain. A fine-grained imple-
mentation of this approach should reflect
an ambient environment according to a
user’s roles instead of reflecting the same
augmented environment to all users.

High-level context information such
as temporal, spatial, and user activity
information can also help define the dis-
covery scope. Proper use of context infor-
mation will save users time and effort in
discovering services. However, few pro-
tocols integrate context information in
simple forms. For example, a Jini service
query can specify a physical location as
an attribute. In brief, graceful integration
with context-aware systems and meth-
ods for utilizing imperfect context infor-
mation still need much research.

Service selection
Although discovery scopes limit the

number of service matches, a discovery
result might still contain a list of
matched services. When this happens,
service discovery protocols can offer
manual or automatic selection options.
A completely manual mode gives users

86 PERVASIVEcomputing www.computer.org/pervasive

P R O T O C O L S

A directory must determine whether

service information that it exchanges

with other directories is appropriate

in terms of locality, security, and privacy.

total control, prompting them to select
a list of services. However, the selection
process can be tedious and users might
not know enough about the services to
distinguish among them.

At the other extreme, with automatic
mode, the service discovery protocols
select the service. This approach simpli-
fies client programs or requires little user
involvement. In INS, a service lookup is
resolved to a service location at the deliv-
ery time. When a set of similar services
meet a client’s request, a service request
is routed to one of the services accord-
ing to an application-defined service
weight. INS calls this anycast. This
approach utilizes service-side knowledge
and helps balance the load among ser-
vices. Nevertheless, the target service
might not meet the user’s intent because
it’s challenging to automatically and
accurately fit a need that the user hasn’t
explicitly specified in attributes.

The Condor project14 has developed a
sophisticated service selection mecha-
nism, Matchmaking with ClassAds, that
supports attribute matching even if a
query hasn’t explicitly specified all attrib-
utes. The mechanism also allows both
discovering parties and service providers
to specify their preferences. In short,
Matchmaking with ClassAds can express
a wide range of resource information
without a schema.

Service invocation
After service selection, a client invokes

the service. Invocation involves a ser-
vice’s network address, an underlying
communication mechanism, and opera-
tions specific to an application domain.
Existing service discovery protocols pro-
vide three different support levels.

At the first level, protocols provide
only network addresses—that is, service
location; applications are responsible for
defining the communication mechanism
and operations. At the second level, in
addition to service location, a protocol

defines the underlying communication
mechanisms—Remote Procedure Call
and its variations. For example, Jini uses
Remote Method Invocation and down-
loadable Java code. The Java code moves
from a service to a directory and then to
a client. Next, the client calls the service
via the downloaded code. UPnP’s com-
munication mechanism is based on
XML, SOAP, and HTTP. The platform-
independent UPnP protocol stack
increases interoperability. WSDL is
based on a similar underlying commu-
nication mechanism: XML, SOAP, and

HTTP. WSDL also provides a model to
describe operations, message flows, fault
handling, and plug-in components.

At the third level, Salutation and
UPnP define application operations spe-
cific to an application domain in addi-
tion to the communication mechanism
and service location.

Pervasive computing environments
might require a more general approach
to service invocation because they can’t
guarantee that a client and service have
prior application-domain knowledge to
understand and interact with each other.
Such an approach also establishes a gen-
eral interface for introducing new devices
and services. Pioneering work such as HP
Cooltown15 uses Web pages as the gen-
eral information format, and clients and
services exchange URLs for addressing. It
therefore requires minimal prior knowl-
edge. Researchers at the Palo Alto
Research Center proposed recombinant
computing,16 a concept that provides a
set of general interfaces for arbitrary
devices or services to interact. In the

PARC implementation, the interfaces
allow services and devices to set up con-
nections and control behaviors. Devices
and services understand each other by
explicitly exchanging their context infor-
mation. This approach lets users decide
what devices or services should interact
instead of having application designers
make the decisions.

Service usage
In some service discovery protocols, a

client must explicitly release a service’s
resources once service usage is granted.

Unlike those protocols, Jini uses a lease-
based mechanism. A client and a service
negotiate a service usage period, which
the client can later cancel or renew. Thus,
the client and service know that resources
will be reclaimed when leases expire.
Information is deleted after leases expire
so that services won’t accumulate stale
information, which can occur in tradi-
tional distributed systems when a client
crashes. Therefore, lease-based service
usage handles dynamic conditions better
in pervasive computing environments.

Service status inquiry
A client can keep up with a service’s

events or status by polling it periodically.
Another way is through service event
notification. In this method, clients reg-
ister with a service, and the service then
notifies them when something of interest
occurs. If a service generates events fre-
quently or changes status quickly, it’s
better to use service polling.

It’s even better to have agents filter and
aggregate events. Jini provides several

OCTOBER–DECEMBER 2005 PERVASIVEcomputing 87

A general approach to service invocation

in pervasive computing environments also

establishes a general interface for introducing

new devices and services.

88 PERVASIVEcomputing www.computer.org/pervasive

P R O T O C O L S

ways to do this. A service can send events
to agents and let them ensure delivery to
clients, or an agent can act as a sink for
events that it filters, aggregates, and then
sends to clients. An agent can also resem-
ble a mailbox that filters events over
time. Although event filtering and aggre-
gation benefit both clients and services,
they require some network computer
resources to handle the events.

Heterogeneous device support
Many devices in pervasive computing

environments have limited resources and
so don’t have service discovery capabil-
ities. Sun Microsystems designed Jini
Surrogate17 to assist those devices. A
Jini-capable machine hosts a Java object
(surrogate) to represent a device for Jini
service discovery.

Security and privacy
Service discovery protocols need

security and privacy features to protect
devices, services, and users. Neverthe-
less, existing security solutions might
not directly apply. Ross Anderson
pointed out that many security solu-
tions fail when applied to different envi-
ronments, simply because the environ-
ments change.18 Furthermore, many
current solutions require people to have
special skills.

Unlike an enterprise environment,
where physical boundaries and firewalls
can separate outsiders and insiders, users
and service providers can coexist in a
pervasive computing environment and
interact via wireless networks. Further-
more, personal privacy remains a criti-
cal issue. From a service provider’s per-

spective, service information, identities,
and presence information might be sen-
sitive. From a user’s perspective, so are
authentication credentials and service
query information.

While keeping in mind that environ-
ments change, we revisit the service dis-
covery components.

In discovery and registration, clients,
services, and directories should exchange

sensitive information only with legiti-
mate parties in the vicinity. Legitimacy
refers to both valid credentials and access
privileges on services. For example, Bob’s
office can be a legitimate service provider
to him in terms of printing services but
not in terms of pop songs. Unfortunately,
legitimacy might not be easy to acquire.
Users that are discovering services might
not know of existing services and service
providers prior to discovery. Similarly,
pervasive computing’s mobility and
dynamic characteristics might keep ser-
vice providers from having prior knowl-
edge of legitimate users. We’ve expressed
the legitimacy problem as a chicken-and-
egg problem elsewhere19 and proposed a
progressive-exposure approach where
users and service providers progressively
exchange credential and service infor-
mation to determine legitimacy.

Rethinking service discovery infra-
structures from users’ and service
providers’ perspectives reveals how
much improvement is necessary for secu-
rity, especially in proper interaction
between humans and computing devices.
Current designs focus on interactions
among clients, services, and directories.
From a user’s perspective, however, a

discovery should reflect a user’s roles
instead of a client device. For example,
Bob and his son should discover differ-
ent services at home when using the same
PDA. More challenging, a user might
want a client device to interact with
many services, each requiring different
kinds of credentials.

Moreover, everyone can own many
services and become a service provider
when computing devices are integrated
with their belongings. From a service
provider’s perspective, managing and
sharing services via a service discovery
protocol requires system software that
provides simple user interfaces and pow-
erful tools to manage security and pri-
vacy. Carl Ellison found that a security
policy for a home environment could be
much more complex than for an enter-
prise environment.20 Building a tool that
lets users learn who has accessed or is
accessing a service is also desirable.

Because clients can invoke a service
over insecure networks, we should use
end-to-end encryption to protect client-
service interactions. Additionally, prudent
interface design and implementation for
clients and services are necessary because
predicting all potential interactions
between a client and service is difficult.

In comparison to service discovery
functionality, support for security and
privacy in existing service discovery pro-
tocols is still at an early stage. In table 1,
we compare the protocols on authenti-
cation, authorization, confidentiality,
integrity, availability, nonrepudiation,
and privacy. Most secure protocols
shown in the table directly use existing
security solutions, which means that
many pervasive computing require-
ments aren’t met. However, recent revi-
sions of the service discovery protocols
and new protocols are supporting more
security features. The “Secure Service
Discovery Protocols” sidebar describes
representative secure service discovery
protocols.

Rethinking service discovery infrastructures

from users’ and service providers’ perspectives

reveals how much improvement is necessary

for security.

O
bviously, many problems
need further research.
Among the problems, service
discovery for unfamiliar

computing environments hasn’t been
addressed well. However, service dis-
covery protocols must work in unfamil-
iar computing environments to achieve
the goal of computing anytime and any-
where. Service discovery design for such
environments is more challenging: users
don’t have much prior knowledge, most
don’t have special skills, and they might
not trust the environment. This means
that service discovery protocols and the
underlying computing infrastructure
must have more intelligence.

ACKNOWLEDGMENTS
We thank the anonymous editor and reviewers for
their valuable comments to help us improve this
article. The research was supported in part by US
National Science Foundation grant 0334035,
and Hong Kong Research Grants Council grants
HKUST6161/03E and AoE/E-01/99.

REFERENCES
1. W. Adjie-Winoto et al., “The Design and

Implementation of an Intentional Naming
System,” Proc. 17th ACM Symp. Operating
System Principles (SOSP 99), ACM Press,
1999, pp. 186–201.

2. T. Hodes et al., “An Architecture for Secure
Wide-Area Service Discovery,” ACM Wire-
less Networks J., vol. 8, nos. 2/3, 2002, pp.
213–230.

3. M. Nidd, “Service Discovery in DEAP-
space,” IEEE Personal Comm., Aug. 2001,
pp. 39–45.

4. Jini Technology Core Platform Specifica-
tion, v. 2.0, Sun Microsystems, June 2003;
www.sun.com/software/jini/specs/core2_0.
pdf.

5. UPnP Device Architecture 1.0, UPnP
Forum, Dec. 2003; www.upnp.org/resources/
documents/CleanUPnPDA10120031202s.
pdf.

6. S. Cheshire and M. Krochmal, “DNS-Based
Service Discovery,” IETF Internet draft,
work in progress, June 2005.

7. Salutation Architecture Specification, Salu-
tation Consortium, 1999.

8. E. Guttman et al., Service Location Proto-
col, v. 2, IETF RFC 2608, June 1999;
www.ietf.org/rfc/rfc2608.txt.

OCTOBER–DECEMBER 2005 PERVASIVEcomputing 89

B luetooth Security1 defines a profile for service discovery appli-

cations that augments the security Bluetooth provides at the

link layer. Service discovery is classified as trusted and untrusted. In

trusted discovery, service information is exposed only to a device that

shares a common secret with the service. In untrusted discovery, ser-

vice information is available to any device. In pervasive computing,

requiring two parties to share a secret beforehand might be incon-

venient or even infeasible. Thus, a high-level protocol to distribute

secrets to Bluetooth devices might be desirable.

Unlike other secure service discovery protocols, UPnP Security

defines interactions among not only computers but also people

and environments.2 For example, it specifies a security procedure

for a user to take ownership of a device. By standardizing the

human-computer interaction procedure, UPnP Security reduces

many security problems caused by human operations. Moreover,

because it is designed for heterogeneous devices and services,

UPnP Security supports many authorization methods: access con-

trol lists, authorization servers, authorization certificates, and

group definition certificates. In short, UPnP Security addresses

many security issues for pervasive computing service discovery.

Jini provides an abstract, extensible interface by which applica-

tion designers or system administrators can use various security

protocols to support other security requirements such as authentica-

tion and confidentiality. In addition, Jini addresses new security

issues raised in its service invocation—specifically, verifying the trust-

worthiness and granting permissions to downloadable Java code.3

Ninja SDS is a centralized security solution. It supports authentica-

tion, authorization, data and service privacy, and integrity. Directo-

ries, known as SDS servers, are trusted. Clients and services authenti-

cate with the directories for service lookups and announcements,

respectively. Ninja SDS is good for enterprise environments where

users and services are willing to expose information to central

directories. In pervasive computing, however, trusted central

directories pose personal privacy problems because every service

registers with central directories and every request is sent to cen-

tral directories.

PrudentExposure addresses security and privacy issues when

multiple service providers coexist.4 The discovery is user-centric—

that is, based on user roles. By exchanging a little information, an

agent can select pertinent credentials to authenticate with service

providers automatically. The design simplifies the security require-

ments on clients and frees users from memorizing the relationships

among services, service providers, and their own credentials. Pru-

dentExposure also protects sensitive information by not responding

to arbitrary requests unless some trust information is exchanged.

REFERENCES

1. Bluetooth SIG Security Expert Group, “Bluetooth Security White Paper,”
Apr. 2002; http://grouper.ieee.org/groups/1451/5/Comparison%20of
%20PHY/Bluetooth_24Security_Paper.pdf.

2. C. Ellison, “UPnP Security Ceremonies V1.0,” Oct. 2003; www.upnp.org/
download/standardizeddcps/UPnPSecurityCeremonies_1_0secure.pdf.

3. F. Sommers, “Jini Starter Kit 2.0 Tightens Jini’s Security Framework,”
Java World, May 2003; www.javaworld.com/javaworld/jw-05-2003/
jw-0509-jiniology.html.

4. F. Zhu, M. Mutka, and L. Ni, “A Private, Secure and User-Centric Infor-
mation Exposure Model for Service Discovery Protocols,” to be published
in IEEE Trans. Mobile Computing.

Secure Service Discovery Protocols

9. Specification of the Bluetooth System, Blue-
tooth SIG, Feb. 2003.

10. R. Chinnici et al., Web Services Description
Language (WSDL) Version 2.0,” W3C
working draft, Aug. 2004; www.w3.org/
TR/2004/WD-wsdl20-20040803.

11. UDDI Version 2.04 API Specification,
OASIS standard, July 2002; http://uddi.org/
pubs/ProgrammersAPI-V2.04-Published-
20020719.pdf.

12. T. Kindberg and A. Fox, “System Software
for Ubiquitous Computing,” IEEE Pervasive
Computing, vol. 1, no. 1, 2002, pp. 70–81.

13. B. Miller, “Mapping Salutation Architec-
ture APIs to Bluetooth Service Discovery
Layer, Version 1.0,” white paper, 1999;
http://citeseer.ist.psu.edu/251752.html.

14. M. Litzkow, M. Livny, and M.W. Mutka,
“Condor—A Hunter of Idle Workstations,”
Proc. 8th IEEE Int’l Conf. Distributed
Computing Systems, IEEE Press, June 1988,
pp. 104–111.

15. T. Kindberg et al., “People, Places, Things:
Web Presence for the Real World,” Proc.
3rd IEEE Workshop Mobile Computing
Systems and Applications (WMCSA 00),
IEEE CS Press, 2000, p. 19–28.

16. K. Edwards, M. Newman, and J. Sedivy,
The Case for Recombinant Computing,
tech. report CSL-01-1, Palo Alto Research
Center, Apr. 2001.

17. Jini Technology Surrogate Architecture
Specification, Sun Microsystems, July 2001;
http://surrogate.jini.org/sa.pdf.

18. R. Anderson, Security Engineering: A
Guide to Building Dependable Distributed
Systems, John Wiley & Sons, 2001.

19. F. Zhu et al., “Expose or Not? A Progressive
Exposure Approach for Service Discovery
in Pervasive Computing Environments,”
Proc. 3rd IEEE Int’l Conf. Pervasive Com-
puting and Communications (PerCom
2005), IEEE CS Press, 2005, pp. 225–234.

20. C. Ellison, “Home Network Security,” Intel
Tech. J., vol. 6, no. 4, 2002, pp. 37–48.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib.

the AUTHORS

Feng Zhu is a PhD candidate in computer science and engineering at Michigan
State University. His research interests include pervasive computing, security for per-
vasive computing, computer networks, and distributed systems. He received his MS
in computer science and engineering from Michigan State University. He is an IEEE
student member. Contact him at the Dept. of Computer Science and Eng., 3115
Eng. Bldg., Michigan State Univ., East Lansing, MI 48824; zhufeng@cse.msu.edu.

Matt W. Mutka is an associate professor in the Department of Computer Science
and Engineering at Michigan State University. His research interests include mobile
computing, wireless networking, and multimedia networking. He received his PhD
in computer science from the University of Wisconsin-Madison. He is an IEEE senior
member and a member of the ACM. Contact him at the Dept. of Computer Science
and Eng., 3115 Eng. Bldg., Michigan State Univ., East Lansing, MI 48824; mutka@
cse.msu.edu.

Lionel M. Ni is chair professor and head of the Computer Science Department at
the Hong Kong University of Science and Technology. His research interests include
wireless sensor networks, distributed systems, high-speed networks, and pervasive
computing. He earned his PhD in electrical and computer engineering from Purdue
University. He is an IEEE fellow and a member of the ACM and SIAM. Contact him at
Dept. of Computer Science, Hong Kong Univ. of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong; ni@cs.ust.hk.

90 PERVASIVEcomputing www.computer.org/pervasive

P R O T O C O L S

www.computer.org/internet/

Stay on Track
IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

