
Using Conceptual Graphs to Capture Semantics of
Agent Communication

Lois W. Harper, Harry S. Delugach

Department of Computer Science
N300 Technology Hall

{lharper, delugach} @ cs.uah.edu
University of Alabama in Huntsville

Huntsville, AL 35899 USA

Abstract. Agent communication languages such as KQML and the FIPA ACL
serve as metalanguages to define software agent message-passing protocols.
These metalanguages are incompatible with each other, preventing
intercommunication between agents employing different agent communication
languages. The primary hindrance to agent intercommunication is the different
underlying semantics of the message passing protocols. Conceptual graphs
provide a mechanism to bridge this agent communication barrier by
representing the semantics of message-passing protocols in the formal
representation of conceptual graphs. Semantic content of the KQML tell
performative is contrasted with that of the FIPA ACL inform performative and
represented in conceptual graphs. The intent is that software agents conversant
in CGIF may intelligently translate messages between agents employing
different agent communication languages.

1 INTRODUCTION

A great deal of interest exists in developing enterprise agent-based software
applications that will support distributed processes and distributed artificial
intelligence. The development of distributed agent-based applications is being
pursued both for Internet applications and for other networked environments, such as
those found in manufacturing facilities. Three technical challenges that have been
identified in supporting these types of agent-based applications are:

• reusability of agent components to support short development lifecycles.
• definition of frameworks that support heterogeneous computing platforms.
• standardization in agent communication languages and protocols.

The third issue, standardization in agent communication languages and
protocols, has been studied in light of human communication and Speech Act
Theories [1]. Shen, et al [2] state what is needed for intelligent agents to see practical
application:

• agents need to be aware of the existence of other agents and of their access
mechanisms.

• agents need to know and be capable of communicating their domain ontology.
• agents need to be aware of all available agent services.
• agents need to know how to monitor other agent tasks for completion success and

performance status.
• agents need to know how to specify parameters to customize their service

requests.

This list emphasizes that good communication is as critical for successful
software agent applications as it is for any successful human endeavor. However,
software agents are a new programming paradigm. There are no commonly accepted
definitions of what comprises a software agent (mobile or intelligent), nor are
software agent systems and agent communication mechanisms standardized. A
significant number of different and incompatible agent-based systems will continue to
exist until industries can agree upon and apply standards for agent interfaces, agent
communication languages and agent computing platforms.

2 AGENT COMMUNICATIONS AND CONCEPTUAL GRAPHS

FIPA ACL and KQML are two Agent Communication Languages (ACLs) that model
communication between intelligent software agents after spoken human
communication. These models draw from speech act theories, particularly the
approach presented by J. R. Searle [3]. Searle’s theory considers natural language
utterances such as questions, replies and declarations as actions, and also identifies
three types of actions associated with an utterance:

• Locution, the physical utterance by the speaker
• Illocution, the intended meaning of the utterance by the speaker
• Perlocution, the action that results from the locution

The intended meaning of a communication act can be termed its illocutionary
force. The term performative identifies the illocutionary force of an illocution and is
identified by a verb such as “tell”, “convince” or “ask” which is the core meaning of a
speech act. The intended meaning of the message passed between two software
agents corresponds to illocution in speech act theory. As a result, the messages
between intelligent software agents are commonly referred to as performatives. The
FIPA uses the terms communicative act instead of the term performative. Since
communicative act and performative are interchangeable, we will use the term
performative in this paper.

A performative is therefore a fundamental ‘unit of communication’ between
software agents. A performative is a wrapper for some content that an agent wants to
send or receive. The wrapper indicates who sent the message, what language the
content of the message is written in, etc. Agent Communication Languages (ACLs)
structure the type and sequence of performatives into communication protocols that

govern the exchange of messages between software agents. These ACL protocols are
metalanguages that define both what are acceptable sequences of messages and also
the expected outcome of acceptable sequences of messages. Thus a performative
distinguishes between the type of message and its content, whereas a protocol is an
expected sequence of messages.

The Foundation for Intelligent Physical Agents (FIPA) began to evaluate
specifications for agent technologies in 1995. [12] Their purpose was to promote the
success of emerging agent-based applications and services. By making specifications
on agent-based technologies available to the global community, the FIPA intended to
improve the ability of different agents implementations to operate as societies of
agents capable of effective communication acts. [4] The FIPA determined that agent
technologies that are grounded in artificial intelligence techniques were sufficiently
mature for establishing specifications and FIPA specifications for agent technologies
have been developed accordingly [5].

The Defense Advanced Research Project Agency (DARPA) Knowledge Sharing
Effort (KSE) initiated research efforts towards knowledge sharing and reuse as early
as 1990 [4]. DARPA produced several well-known software languages and utilities
that facilitate intelligent agent communications, such as KQML, KIF, Ontolingua and
OKBC. KQML was among the first of the ACLs to be developed and used [1], [2].
Researchers who have contributed to the DARPA KSE effort include Tim Finin and
Yannis Labrou. A significant side-effect of the separate FIPA and DARPA KSE
efforts towards defining and developing agent communication technologies is that the
two most commonly known agent communication languages, KQML and the FIPA
ACL (hereafter referred to as FIPA), cannot be directly translated from one form to
the other [4].

As our modeling language we use conceptual graphs, which are a modeling and
reasoning technique based around concepts and relations [6]. A special kind of
relation, called an actor, is used to denote actions or functional relationships between
concepts. With conceptual graphs (CGs), we can model semantics and then use our
semantic models to reason about a domain. As an emerging knowledge interchange
standard (through CGIF [7]) we can also exchange and re-use our models in other
knowledge modeling efforts. The use of CG-based software agents that function as
knowledge providers for Internet transactions is already being examined [8]. When
conceptual graphs are used to represent the semantics of ACLs, a mechanism is
provided that may allow software agents to communicate not only the content of a
single message, but also the semantics of each performative and the intended outcome
of a sequence of performatives. Since KQML and FIPA cannot be directly translated
from one form to the other, their semantic framework must be implicitly represented
in the knowledge bases of the software agents designed to be conversant in these
languages. Capturing the semantics of these ACLs in CGIF form makes these
semantic frameworks explicitly available to other software agents conversant in
CGIF. The CGs presented in this paper were drawn using the CharGer Conceptual
Graph Editor [13].

The main focus of this paper is to illustrate agent communication semantics in
conceptual graphs by using a sample message sent from an agent called A to an agent
called B. We then describe its semantics in some detail for each of the agent
languages. Our purpose is two-fold: we want to show that conceptual graphs are

capable of representing agent communication semantics, and we want to use our
representations to illustrate the semantic differences between the KQML and FIPA
agent languages.

3 CONCEPTUAL GRAPH MODELS

This section presents conceptual graphs (CGs) that represent a tell KQML
performative and an inform FIPA performative, and includes the following:

• a description of the tell KQML and inform FIPA performatives’ syntax.
• a simple example proposition that forms the actual content to be communicated,

represented in CG form.
• preconditions, postconditions and completion conditions for the tell KQML and

inform FIPA performatives.

The goal of both the tell KQML performative and the inform FIPA
performatives is to convey to some receiving agent that the sending agent believes a
particular proposition (contained in the content field of a performative) is true.
Referring to Table 1, it can be seen that the syntax of the FIPA inform performative
is identical to KQML’s tell performative (except for the two different keywords tell
and inform). The syntax of both FIPA and KQML is based on s-expressions in LISP;
the first element is the performative name and the remaining elements are the
keyword/value pairs that make up the performative’s arguments. While the syntax of
these FIPA and KQML performatives are identical, the semantic frameworks of the
two ACLs are substantially different [4], which our example will illustrate. As a
result, there is no exact transformation or mapping between the two ACLs, even in
this simple example of two syntactically equivalent performatives that appear to
support the same goal.

Table 1. KQML tell and FIPA inform Performatives

KQML tell Performative FIPA ACL inform Performative
(tell
: sender agent A
: receiver agent B
: content (“Agent A performs the task
 negotiate.”)
: language text)

(inform
: sender agent A
: receiver agent B
: content (“Agent A performs the task
 negotiate.”)
: language text)

The FIPA and KQML ACLs do not impose any constraints on how a proposition
is expressed in the content field. For example, the content may be statements in a
programming language, a series of binary digits, or a text string as shown here.
Consequently, the proposition in the content field may also be expressed in CGIF
form.

A query in conceptual graphs is denoted by a graph where one or more concepts
are unbound. We show bound and unbound CG representations of the sentence
“Agent A performs the task negotiate.” in Figure 1. The unbound form of this
sentence represents a query and is referred to as ‘Y’ in the KQML specification, but is
not referred to by the FIPA ACL specification [9], [5]. The bound form of this
sentence represents a proposition declared to be true by the agent sending the
sentence. (The bound proposition is referred to as ‘X’ in both the KQML and FIPA
ACL specifications.) In this paper, all references to the content field of this
performative refer to the bound and unbound forms of the content sentence of Table
1, represented in CG form in Figure 1.

Fig. 1. CG Representation of a Proposition, unbound and bound Forms

We make the following note about the term agent. It is customary in CGs to use
the relation name agent to link an action’s concept to the animate-entity concept that
performs the action [7]. Unfortunately, this may cause some confusion when the
animate–entity itself is a software agent in the sense we are using in this paper. To
prevent confusion, intelligent software agents will be denoted in the following CGs by
the concept label iagent. Also, we will not use the relation agent in this paper.

3.1 Illocution of KQML tell and FIPA ACL inform Performatives

The CG representations of the KQML performative tell and the FIPA performative
inform are shown in Figure 2. The left graph is the KQML performative tell and the
right graph is the FIPA performative inform. These graphs are almst identical, as one
would expect for performatives that are syntactically equivalent and appear to support
the same goal. The goal of both performatives is to convey to the receiving agent
(iagent B) that a sending agent (iagent A) believes the proposition in the
performative’s content field is true.

Looking at the two graphs in Figure 2, we see that they have identical structure
and content. A key point of our paper is that their differences are found not in their
structure, but in their semantics – their intent as well as the context in which they are
used – as we will show in the rest of the paper.

(a) (b)
Fig. 2. CG Representation of the KQML tell (a) and FIPA inform (b) Illocution Act

3.2 Preconditions on Agent A and Agent B

The semantics of KQML is expressed in terms of pre-conditions, post-conditions, and
completion conditions for each performative [9]. If the pre- and post-conditions do
not hold, a sorry or error performative is returned and the completion condition
cannot occur. [9] A completion condition indicates that the intention, or core
meaning, of the performative has been fulfilled.

FIPA expresses communication semantics in terms of a performative’s
feasibility conditions and its rational effect [5]. Feasibility preconditions are
conditions necessary for the sender to perform the illocution act. The rational effect is
the expected result(s) of the performative being fulfilled. Thus, in the FIPA
specification for the inform performative, the feasibility preconditions are specified
for the sender and rational effect postconditions are specified for the receiver. In our
paper, we use the terms preconditions, postconditions and completion conditions for
both the FIPA ACL inform performative and the KQML tell performative.

3.2.1 Preconditions on Agent A

The CGs shown in Figure 3 and summarized in Table 2 illustrate that both FIPA and
KQML require that agent A holds the bound proposition to be true. However, KQML
agent A (Figure 3(a)) also knows that KQML agent B has performed a query with the
unbound proposition. The query may have been in the form of the KQML
performatives ask-if, ask-all or stream-all. KQML agent A is not required to have
prior knowledge of KQML agent B’s knowledge base. FIPA agent A (Figure 3(b))
must intend that FIPA agent B comes to believe that the bound proposition is true, but
also has two preconditions placed on its knowledge of FIPA agent B’s knowledge
base. FIPA Agent A must know that FIPA agent B has no knowledge of the bound
proposition, or, that FIPA agent B is uncertain of the truth of the bound proposition.

(a) (b)

Fig. 3. CG Representation of Preconditions on KQML agent A (a) and FIPA agent A (b)

A practical consequence of these differences on the preconditions placed on
agent A is that KQML agent A may send the tell performative whether or not KQML
agent B has prior knowledge of the bound proposition, whereas FIPA agent A may
not send the inform performative if FIPA agent A perceives that FIPA agent B has
certain knowledge of the bound proposition. [5]

Table 2. Summary of Preconditions on agent A

KQML tell Preconditions (agent A) FIPA inform Preconditions (agent A)
Agent A holds the bound proposition to
be true

Agent A holds the bound proposition to
be true

Agent A ‘knows’ that agent B desires to
verify an unbound proposition

Agent B has no knowledge of the bound
proposition or is uncertain of the bound
proposition

3.2.2 Preconditions on Agent B

Although there are preconditions imposed on agent B in KQML [9] there are no
preconditions specified for agent B in FIPA [5]. Figure 4 shows that KQML agent B
has sent a query concerning the unbound proposition and desires a tell performative in
return. The ask-if performative is represented in Figure 4, although the query sent
may also have been one of the KQML ask-all or stream-all performatives.

Fig. 4. CG Representation of KQML agent B’s Preconditions

In contrast, Figure 5 shows that the FIPA inform performative enforces no
preconditions on agent B. The FIPA Specification states, “… perhaps agent A has
been asked,” but it does not say that FIPA agent B has to have already placed a prior
query with FIPA agent A. [5]

Fig. 5. CG Representation of FIPA agent B’s Precondition

The FIPA specification [5] states that perhaps FIPA agent A has been asked
about the proposition. As a result, this is an optional precondition that is not shown in
Table 3.

Table 3. Summary of Preconditions on agent B

KQML tell Preconditions (agent B) FIPA inform Preconditions (agent B)
Agent B has sent an ‘ask-if’, ‘ask-all’, or
‘stream-all’ performative to agent A in
the past concerning the unbound
proposition

(no mandatory preconditions)

Agent B desires to receive a tell
performative concerning the unbound
proposition

3.3 Postconditions for the KQML tell and FIPA ACL inform Performatives

The CGs for the postconditions on agent A make use of the type of node referred to as
an actor. Actors are used in CGs to represent processes that use their input concepts’
referents to change the referents of their output concepts. [10] The actors in these CGs
illustrate that the KQML tell performative and the FIPA ACL inform performative
change agent A’s view of agent B’s knowledge base.

3.3.1 Postconditions on Agent A

A significant difference between the postconditions on agent A for the two ACLs is
the effect the performatives have on agent A’s representation of agent B’s knowledge
base. Referring to Figure 6 (summarized in Table 4), the viewpoint of KQML agent A
(Figure 4(a)) is that the tell performative might have changed KQML agent B’s
unbound proposition to the bound proposition sent to KQML agent B by KQML
agent A. The viewpoint of FIPA agent A (Figure 4(a)) is that the inform performative
has asserted a bound proposition into FIPA agent B’s knowledge base.

(a) (b)

Fig. 6. CGs For Postconditions on KQML agent A (a) and FIPA agent A (b)

Bear in mind that these postconditions are representing agent A’s viewpoint of
the communication act, i.e., these postconditions reflect agent A’s representation of
what it knows about agent B’s knowledge base.

Table 4. Summary of Postconditions on agent A

KQML tell Postconditions (agent A) FIPA inform Postconditions (agent A)
Agent A holds the bound proposition to
be true

Agent A holds the bound proposition to
be true

Agent A’s view of agent B’s knowledge
base shows that agent A has optionally
changed the unbound proposition in
agent B’s knowledge base to the bound
proposition.

Agent A’s view of agent B’s knowledge
base shows that agent A has asserted the
bound proposition into agent B’s
knowledge base.

3.3.2 Postconditions on Agent B

The postconditions for agent B are similar between the two ACLS. Figure 7(a) shows
that KQML agent B is free to retain the unbound proposition (perhaps while polling a
number of agents with the same query), but also knows that KQML agent A believes
that the bound proposition is true. Figure 7(b) shows that FIPA agent B knows that
FIPA agent A believes that the bound proposition is true, but is not required to accept
the bound proposition sent by agent A. [5] states that “ whether or not the receiver
does, indeed, adopt the proposition will be a function of the receiver’s trust in the
sincerity and reliability of the sender.” This is summarized in Table 5.

(a) (b)

Fig. 7. CGs For Postconditions on KQML agent B (a) and FIPA agent B (b)

Table 5. Summary of Postconditions on agent B

KQML tell Postconditions (agent B) FIPA inform Postconditions (agent B)
Agent B holds the unbound proposition Agent B's view of agent A’s knowledge

base shows that agent A holds the bound
proposition to be true.

Agent B’s view of agent A’s knowledge
base shows that agent A believes the
bound proposition is true.

Agent B's view of agent A’s knowledge
base shows that it is agent A’s choice that
agent B hold the bound proposition to be
true.

3.4 Completion Conditions on Agent A for the KQML tell and FIPA ACL
inform Performatives

Referring to Figure 8(a), the completion condition applies for KQML agent A as long
as KQML agent B does not send a sorry or error performative. There is no statement
as to ‘how long’ KQML agent A must wait for a sorry or error performative to be
returned. [9] FIPA ACL does not state a completion condition, but does state that the

rational effect of the inform performative is that FIPA agent B (Figure 8(b)) believes
the bound proposition sent by FIPA agent A. However, Section 3.3 noted that FIPA
agent B is not required to accept the bound proposition sent by FIPA agent A. Our
interpretation is that, whether or not FIPA agent B accepts the bound proposition, it is
accepted in FIPA agent A’s representation of FIPA agent B’s knowledge base.

(a) (b)

Fig. 8. CGs For Completion Conditions on KQML agent B (a) and FIPA agent B (b)

4. DISCUSSION

Section 3 illustrated the different semantics underlying the KQML tell performative
and the FIPA ACL inform performative. The difference in semantics is substantial
although the performatives have the same syntax and goal (both intend to convey to a
receiving agent that a sending agent believes a stated proposition is true).

The CGs of these performatives are shown in graphical form, but of course, they
may also be represented in Conceptual Graph Interchange Form (CGIF) [7]. As the
CGIF standard emerges, more systems will be able to share knowledge bases, so that
intelligent software agents that are ‘conversant’ in CGIF may be written that are
capable of bridging the communication gap between different ACLs.

Moore [11] analyzed the semantics of KQML and translated performatives into
“more or less equivalent” forms in FLBC, the Formal Language for Business
Communication. Moore’s goal was not to facilitate communication between software
agents conversant in these two ACLs. Rather, Moore states, “… a message for
automated electronic communication should more closely reflect its underlying
meaning” and proposes FLBC as “exemplar of this approach”. The use of CGs to

capturing semantics of ACLs meets the need expressed by Moore to represent the
underlying semantics of ACLs, but has the significant added advantage of
representing both the explicit and implicit semantics of one or more ACLs in CGIF
machine-readable form that offers interchange and reasoning capabilities beyond that
of an ACL.

A (KQML) : iagent B (FIPA) : iagent

form/evaluate
CG representation

ask-if (‘What is your task?’)

map (‘ask-if, What is your task?’)

inform (performative, ‘query-if’)time

inform (source, ‘iagent A’)

inform (content, ‘What is your task?)

inform (KBA, ‘no prior knowledge’)

inform (‘My task is negotiate’)

CG : iagent

Fig. 9. Sequence Diagram Depicting Example Agent Performative Mapping Sequence

Figure 9 is a UML sequence diagram showing an example agent communication
sequence. The purpose of a UML sequence diagram is to show the time-sequence of
messages sent between objects. The messages sent between objects are depicted as
horizontal lines. Time flows from the top of the diagram downward, although no time
scale is implied. The objects at the top of Figure 9 are intelligent software agents.

The sequence diagram in Figure 9 shows an example agent communication
scenario. In this example an agent conversant in FIPA receives an ask-if performative
from an agent conversant in KQML. The content of the ask-if performative is the
query, “What is your task?” The FIPA agent does not recognize the KQML ask-if
performative. Since the FIPA agent is intelligent it may choose to ignore the message.
However, consider the scenario where the services of a CG agent are available. The
FIPA agent may refer the message to the CG agent for translation. This is shown in
Figure 9 as a map performative. The CG agent evaluates the message, recognizes the
performative as being a member of the KQML ACL and returns information that will
assist the FIPA agent in responding to the KQML agent’s message. In this example,
the CG agent informs the agent conversant in FIPA that a similar FIPA ACL
performative is query-if, and also informs the FIPA agent that the KQML agent has
no prior knowledge of the FIPA agent’s task. This is significant, since a practical
consequence of the preconditions placed on agents is that a KQML agent may send
the tell performative whether or not the receiving KQML agent has prior knowledge

of a proposition, whereas an FIPA agent may not send the inform performative if the
sending FIPA agent perceives that the receiving FIPA agent has certain knowledge of
a proposition. (Refer to Section 3.2.1) In this example scenario, the agent conversant
in FIPA may then return an inform performative with the sentence “My task is
negotiate.”

Such behavior on the part of software agents requires that rules be developed for
mapping the performatives in the different ACLs based on the semantic representation
of the performatives. While this is not possible from analysis of the syntax of the
performatives alone, the conceptual graph representation of the semantic content of a
performative may form a basis from which this mapping process occurs.

The net effect of enlisting the mapping services of the CG-based agent is that
messages may be sent between agents conversant in different, incompatible agent
communication languages. An agent conversant in one ACL may send a performative
to an agent conversant in a semantically different and incompatible ACL. The
receiving agent may then return an appropriate response. In this scenario, indirect but
effective translation of messages between agents conversant in different agent
communication languages may occur.

Although this paper examined the semantics of two ACLs (FIPA and KQML),
there are also many ‘dialects’ of KQML, each tailored to a specific application. [2]
The same approach may be taken to communicate between agents conversant in
different dialects of KQML and also may be useful in facilitating communication
between legacy and current versions of the same dialect of an ACL.

Our future work is to examine the other performatives in both FIPA and KQML
and represent their semantics in conceptual graph terms. This will give us an
opportunity to improve our understanding of the performatives and their
corresponding roles in FIPA and KQML ACLs. Our ultimate goal is to find ways that
agents using different languages can automatically communicate, even if their
underlying semantics differ.

5 CONCLUSIONS

In this paper, we have shown how conceptual graphs are capable of representing
agent communication semantics, and we illustrated the semantic differences between
two performatives used by two of the most commonly known agent communication
languages, KQML and FIPA ACL. These performatives were selected because
although they are syntactically equivalent and support the same communication goal,
they are significantly different in their underlying semantics. The conceptual graphs
shown illustrate specific semantic incompatibilities. We also illustrated a scenario of
a possible communication sequence between agents conversant in two different
ACLs.

Our aim is to overcome semantic incompatibilities by using CG-based
translation techniques based on semantic representations in the machine-readable
CGIF form. The conceptual graphs presented in this paper are meant as a proof-of-
concept for the approach; we will pursue modeling of other performatives as well.
Once we have established semantic models of other performatives used in the FIPA

and KQML ACLs, we will be in a position to develop CGIF-conversant agents that
can facilitate the transfer of messages (and therefore message content) between agents
designed for otherwise-incompatible ACLs.

REFERENCES

[1] M. N. Huhns and L. M. Stephens, "Multiagent Systems and Societies of
Agents," Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, Cambridge: The MIT Press, 1999.

[2] W. Shen, N. Douglas, and J. P. Barthes, Multi-Agent Systems for Concurrent
Intelligent Manufacturing New York, NY: Taylor & Francis Inc., 2001.

[3] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language,
Cambridge University Press, Cambridge 1970.

[4] Y. Labrou, T. Finin, and Y. Peng, "Agent Communication Languages: The
Current Landscape," IEEE Intelligent Systems, vol. 14, pp. 45-52, 1999.

[5] FIPA, "FIPA 97 Specification Part 2: Agent Communication Language,"
Foundation for Intelligent Physical Agents, October, 1998.

[6] J. F. Sowa, Conceptual Structures: Information Processing in Mind and
Machine. Reading, Mass.: Addison-Wesley, 1984.

[7] J. F. Sowa, "Conceptual Graph Standard,"
http://users/bestweb.net/~sowa/cg/cgstandw.htm, 2000.

[8] G. W. Mineau, "A First Step Toward the Knowledge Web: Interoperability
Issues Among Conceptual Graph Based Software Agents," in Conceptual
Structures: Integration and Interfaces, vol. 2393, Lecture Notes in Artificial
Intelligence, U. Priss, D. Corbett, and G. Angelova, Eds.: Springer-Verlag,
2002, pp. 250-260.

[9] Y. Labrou and T. Finin, "A Semantics Approach for KQML - A General
Purpose Communication Language for Software Agents," presented at the
Third International Conference on Information and Knowledge
Management, 1994.

[10] H. S. Delugach, "Specifying Multiple-Viewed Software Requirements with
Conceptual Graphs," Journal on Systems and Software, vol. 19, pp. 207-224,
1992.

[11] S. Moore, "KQML & FLBC: Contrasting Agent Communication
Languages," IEEE Proceedings of the 32nd Hawaii International Conference
on System Sciences, 1999.

[12] H. Suguri, "A Standardization Effort for Agent Technologies: The
Foundation for Intelligent Physical Agents and Its Activities," IEEE
Proceedings of the 32nd Hawaii International Conference on System
Sciences, 1999.

[13] H. S. Delugach, " CharGer Conceptual Graph Editor,"
http://www.cs.uah.edu/~delugach/CG, 2003.

