
Handbook of Research on
Socio-Technical Design
and Social Networking
Systems

Brian Whitworth
Massey University-Auckland, New Zealand

Aldo de Moor
CommunitySense, The Netherlands

Hershey • New York
InformatIon scIence reference

Volume I

Director of Editorial Content: Kristin Klinger
Director of Production: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Typesetter: Michael Brehm
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Handbook of research on socio-technical design and social networking systems / Brian Whitworth and Aldo de Moor, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "Every day throughout the world, people use computers to socialize in ways previously thought impossible such as e-mail, chat,
and social networks due to emergences in technology. This book provides a state-of-the-art summary of knowledge in this evolving, multi-
disciplinary field"--Provided by publisher.
 ISBN 978-1-60566-264-0 (hardcover) -- ISBN 978-1-60566-265-7 (ebook)
 1. Online social networks. 2. Internet--Social aspects. 3. Information technology--Social aspects. I. Whitworth, Brian, 1949- II. Moor,
Aldo de.
 HM742.H37 2009
 303.48'33--dc22
 2008037981

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

.

��0

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter XX
Formal Analysis of Workflows

in Software Development
Harry S. Delugach

University of Alabama in Huntsville, USA

abstract

Automated tools are often used to support software development workflows. Many of these tools are aimed
toward a development workflow that relies implicitly on particular supported roles and activities. Develop-
ers may already understand how a tool operates; however, developers do not always understand or adhere
to a development process supported (or implied) by the tools, nor adhere to prescribed processes when they
are explicit. This chapter is aimed at helping both developers and their managers understand and manage
workflows by describing a preliminary formal model of roles and activities in software development. Using
this purely descriptive model as a starting point, the authors evaluate some existing tools with respect to their
description of roles in their processes, and finally show one application where process modeling was helpful
to managers. We also introduce an extended model of problem status as an example of how formal models
can enrich understanding of the software development process, based on the analysis of process roles.

People sometimes make errors. The problem here was not the error, it was the failure of NASA’s systems
engineering, and the checks and balances in our processes to detect the error. That’s why we lost the space-
craft.

Edward Weiler,
NASA’s Associate Administrator on the loss

 of the $327 million Mars Climate Orbiter.

 ���

Formal Analysis of Workflows in Software Development

IntroductIon

Many automated tools are available to support
software development. There are two main reasons
for an organization to use these tools:

• Much of software development takes place in
distributed environments, or at least where the
participants have difficulty meeting regularly
face-to-face. Automated (often web-based)
tools allow them to collaborate in a generally
cost-effective way compared to travel and
shipping costs.

• Software development workflows prescribe
various activities to be tracked and artifacts
to be created and maintained. Even when
developers are able to collaborate in person,
the number of these can become large and
therefore requires organizing tools and a
central repository.

As with all tools, their effectiveness is deter-
mined by how well participants understand how
to use them. There is ample evidence that mere
use of tools is not sufficient to support an effective
workflow. Even if developers understand a tool’s
basic operation, they often do not understand or
adhere to any development process supported (or
implied) by the tool. This chapter examines some
popular web-based software engineering tools from
a pragmatic role-oriented perspective. That is, we
intend to focus on the roles and purposes within
the context of the development process, rather than
characteristics of artifacts or products.

Our ultimate goals in developing these models
is the following:

1. To better describe and analyze the processes
themselves.

2. To formally analyze and evaluate tools with
respect to generally accepted process models,
and

3. To formally compare and contrast the models
with each other.

4. To provide formal definitions based on process
models.

The approach in this chapter illustrates all four
of these goals. First we motivate the general value
of formal models in analyzing process, and then
provide some background on workflow modeling
with respect to the software development process.
The main body of the chapter applies this approach
to one particular sub-process (namely bug tracking).
Each of the four goals is discussed in turn, using
examples to illustrate the approach.

This work continues in the spirit of previous
work in modeling development processes (Delugach,
2007) (de Moor & Delugach, 2006) and in using
conceptual graphs for modeling communica-
tion (Delugach, 2006) and software development
(Delugach, 1996) (Delugach, 1992). In this chapter,
we use conceptual graphs—a well-known knowl-
edge representation—as a clear and effective way
of formally representing the parts of a workflow.
In future work, some automated analysis may use
conceptual graphs’ formal basis in logical reasoning
and inference; however, this chapter does not exploit
those capabilities for these illustrations.

the Value oF Formal
modelInG

At this point, it is useful to evaluate the role of
formal modeling in software system development.
While nearly all developers acknowledge the value of
formally modeling the software system itself, there
is less agreement on the role of formal modeling of
the process of software development. Resistance to
this idea is usually caused by “horror stories” of:

• Incorrect or incomplete models of a process,
which initially give the impression of sound-
ness but then later reveal themselves to be
inappropriate

• Models that have been imposed on a devel-
opment team by either upper management
without proper evaluation, or by contractual
obligations that are included as “boiler plate”
requirements without any evaluation as their
appropriateness

���

Formal Analysis of Workflows in Software Development

• Models that are perceived as reducing
someone’s power or control, infringing on
their “turf” or responsibilities to the overall
project.

In short, using the wrong model is probably
worse than having none at all. Many (most?) of
these bad experiences stem from misunderstanding
the proper role of a model. This chapter promotes
descriptive models: these do not impose or require
a particular structure or process, but serve as a
template for evaluating processes and comparing
them with each other.

One feature of the formal models proposed in this
chapter is to describe roles and define them in terms
of responsibilities with respect to the workflow. As
the reader will see, one such role is the responsibility
for fixing a software problem that has been previ-
ously identified. Many tools exist for dealing with
defects in software, but organizations often do not
have a repeatable process for applying them. That
doesn’t mean organizations can’t succeed without
them, but it does suggest that the personnel may not
always know how they were able to succeed. Use of
a formal model can help them understand.

Here is a typical response when such a model is
proposed for an organization’s evaluation:

It’s a waste of time to define roles and responsibilities.
There’s no formal way to decide who fixes a bug—the
matching of an individual to a problem is dependent
upon the nature of the defect. A well-established
team avoids that issue as that allocation process
happens informally. What’s the problem?

This attitude deserves a detailed response.

First of all, the “waste of time” idea deserves
further study. Formal modeling takes time and
resources, like any other software development sup-
port activity. Certainly tracking those resources will
help over time to determine whether such approaches
are cost-effective—such studies must be performed
and their conclusions verified. Such studies are
outside the scope of this chapter, however.

Next, the models shown in this chapter do not
describe a formal way to decide who fixes a defect.
Since a defect is usually characterized by some gen-
eral attributes, these might be formally matched up to
known developer skills. (Some of these skills might
not in fact be generally known; “did you know that
person Y used to work on demographic databases?”)
We would never propose that developers blindly
or arbitrarily follow a model, any more than a taxi
driver with a GPS navigator should drive through
a “road closed” barrier. We do, however, propose
that the model can provide guidance to managers
and developers if they choose to be guided.

The last claim about “a well established team”
is an interesting one. Over the long term, intact
teams of experienced people tend toward informality
– either their once-formal procedures have become
internalized or else they depend upon trust and past
experience to guide their (informal) interactions.
This is effective in some groups, and thus provides
seeming counter-examples to the claim of formality’s
usefulness; however, trust and past experience usu-
ally require long periods of interaction that not all
teams are fortunate enough to possess. In many
distributed development environments, develop-
ers have not ever met face to face. Personnel may
come and go, further interfering with the effect of
experience and trust. In short, formal models of a
process can help current and future participants to
understand what their responsibilities are, as well as
understanding others’ responsibilities as well.

We are familiar with this last claim. In fact, in
one of our studies, we formally modeled a team
process in consultation with the manager of the
team (de Moor & Delugach, 2006). This was a “well
established” team, some of whom had been working
together for a few years. The model revealed that
in a small team, when personnel fulfill more than
one role, it is possible for checks and balances to
be circumvented if the same person fulfills both
the executing role and the evaluating role. This
situation represented a potential conflict of inter-
est in the team (see below) that the manager didn’t
realize and responded with “I think I want to look
into that one.”

 ���

Formal Analysis of Workflows in Software Development

Failures in software system development (an
important group of technical systems in general)
are well documented. Here we are not talking about
defects in the software itself, but shortcomings in
the development processes themselves. Spectacular
failures appear in public news reports from time to
time. One well-documented failure was the NASA’s
Mars Climate Orbiter in 1999 in the United States
(MCO-MIB-I, 1999). The spacecraft flew too close
to Mars and was permanently lost, a cost of $327.5
million. The spacecraft’s trajectory was wrong
because software teams in two different locations
made different implicit assumptions about which
measurement units were used. Although each team’s
calculations were completely correct (presumably
to a number of decimal places), one team assumed
metric (SI) units, while the other team assumed
English units.

The point of this failure is not that simple mis-
takes can have profound effects. The investigation
of the failure showed that the error was evident
every time the spacecraft did a course correction
with its rocket engine, but the personnel monitoring
the spacecraft simply expected another correction
to fix it. There were thus two project failures—the
first committed by the distributed development
team in its inability to detect the inconsistency,
and the second committed by the monitoring team
in not understanding that they were observing
unexpected behavior and not knowing where or
how to report it.

Both of the failures could have been detected
by modeling, if the distributed teams had been able
to share each other’s model of both the software’s
development itself and the management of the project
during flight; however, no such modeling occurred.
This chapter argues that the modeling approach
supports analysis of such possible errors before they
happen. Of course, there is no guarantee that any
approach will solve this problem, but without doing
something, the problem will persist. One prominent
software engineer writes about “... the difficulty of
technology transition and the cultural change that
accompanies it. Even though most of us appreciate
the need for an engineering discipline for software,

we struggle against the inertia of past practice and
face new application domains (and the developers
who work in them) that appear ready to repeat the
mistakes of the past.” (Pressman, 2001, p. 870).

The next section describes the approach for
workflow modeling.

workFlow modelInG

This chapter is intended to provide an approach
for describing and evaluating software develop-
ment processes, while focusing on two particular
examples. It is important to emphasize the purpose
of modeling is not to impose structure on an existing
process, but to help understand what the structure
is. Our position is therefore neutral with respect to
being either normative or descriptive (i.e., neither
“to-be” or “as-is” in the sense discussed by Scacchi
(Scacchi, 2002)). While the discussion in (Scacchi,
2002) gives valuable insight into an environment
(namely, open-source) where prescriptive models
may not be viable or useful, this chapter takes the
position that one must first have a model of a work-
flow in order to effectively understand, evaluate and
ultimately improve that workflow. There are prob-
ably many uses of the model once an organization
has produced them.

It is useful at this point to briefly mention some
other processes for general problem-solving, both
for comparison purposes as well as a reminder that
process modeling (especially for problem solving)
is not new; considering it from the general point of
view may provide some insight. Some techniques
are described in (Levinson & Rerick, 2002). Among
some well-known problem solving processes are the
Team-Oriented Problem Solving (TOPS) process
pioneered by Ford Motor Company in the USA. This
approach is sometimes called the “8-D” approach
because of the eight “dimensions” it is intended to
address; these are described simply as steps in the
process.

Figure 1 is a typical description of the process
(verbs italicized for emphasis).

An important point, which will be made several
times during this chapter, is that the process focus

���

Formal Analysis of Workflows in Software Development

is usually on particular activities or tools, without a
clear delineation or definition of roles. For example,
it is often useful to have independent (or at least dif-
ferent) personnel do the monitoring and validating
of another group’s constructive activities. Though
there are several activities identified (e.g., define,
implement, etc.) that are required to be performed
by a TOPS team as a whole, there is no particular
guidance (at this level of the description) for who on
the team will perform those activities, even given in
D1 that someone is presumed to have the knowledge,
time, authority or skill. There is also no clear idea
of how the process should be monitored or audited
for being carried out correctly or effectively.

Some may argue that each organization should
prescribe its own process for assigning these roles,
monitoring, auditing, etc. We agree that organiza-
tions should do that; our approach does not prescribe
any particular process development methodology.
Their own methodology must answer the question:
what’s the right process for a given organization?
Our approach is meant only to (i) alert organizations
to possible omissions in their process descriptions

(whether they choose to fill them in or not), (ii) sug-
gest some typical roles if they do choose to specify
them and (iii) suggest the value of being able to
analyze and improve processes that are supported
by explicit models.

(Levinson & Rerick, 2002) mentions other prob-
lem solving techniques (e.g., the “Deming wheel”
of Plan-Do-Check-Act (PDCA) and Six Sigma’s
DMAIC) whose descriptions similarly omit a clear
description of roles at the top level. Of course, re-
finements of these techniques have provided more
guidance about the roles needed, but again they
are considered secondary to the primary process
framework.

Being “informal” does not render a process
incapable of being modeled; on the contrary, most
formal processes have their origins as informal
activities that underwent successive refinement.
We begin with the assumption that developing any
model of a process is generally more useful than
not modeling it at all. That being said, this chapter
does not propose imposing any particular model
on any software development environment; rather

Figure 1. TOPS problem-solving process

 ���

Formal Analysis of Workflows in Software Development

it is an attempt to establish a framework for model-
ing and thence understanding one’s own software
development environment, especially with respect
to the roles that necessarily appear in any human-
supported workflow. As the range of environments
becomes more diverse (e.g., open source, agile
methods, etc.) it becomes even more important to
develop models and then to validate them.

Workflow modeling, as used in this chapter, is
taken from the workflow specification definitions
used in (de Moor & Jeusfeld, 2001), and based on
the RENISYS model of organizational roles (de
Moor, 1997). One key feature of those models is
the notion of organizational actors, each of whom
has particular obligations with respect to their roles
in various activities. We use conceptual graphs
(Sowa, 1984) as a convenient formalism and eas-
ily understood visual aid to represent the models.
Conceptual graphs are well described elsewhere
(Sowa, 1984) (Polovina & Heaton, 1992).A simple
model of a workflow activity is shown in Figure 2,
adapted from (de Moor & Delugach, 2006).

The graph in Figure 2 may appear simple;
in fact, we consider this one of the strengths of
conceptual graphs. This chapter proposes some
modifications and additions to this model, based
on some shortcomings in its power to express
some important pragmatic relationships in the bug
tracking process.

We will focus on the workflow involved in two
different software development activities: problem
reporting (often called “bug tracking”) and require-
ments change. Software problem tracking is one
portion of a much large set of processes belonging
to software configuration management (SCM) which
has been extensively studied; for a summary, see
(Pressman, 2001). The motivation for a controlled
SCM process comes from the observation that
software systems constantly change while under
development, either through additional requirements
or business needs, or through the natural process of
successively refining artifacts from inception to de-
ployment. Because this process has many purposes,
there are often many people involved.

Another software activity is the process of
making a change to the formal requirements in a
software project. Along with de Moor, we conducted
an experiment in modeling such a process in an
industrial software development setting (de Moor &
Delugach, 2006). This process is important because
of the large lifecycle costs that result from errone-
ous requirements, a well-documented phenomenon
(Pressman, 2001). Although requirements change is
likewise subject to the control of SCM, we do not
specifically address that feature in this chapter.

This chapter is focused on modeling software
engineering processes with respect to its role- and
purpose-oriented human aspects: who is involved,
what are stakeholders’ roles in the process’s success,
what responsibilities do they hold with respect to
the system and what goals are they expected to
pursue. The intent is that developers will better
understand the processes they are using, perhaps
finding omissions and mistakes along the way. We
have applied these techniques in a production-level
environment and as a result were able to suggest
improvements to an organization’s activities within
a specified process.

modelInG soFtware deVeloPment
workFlows

The main emphasis of this chapter is to formally
capture software development workflows so that

There is a set of control concepts, each of which is
characterized by a deontic effect (see below) and each
performed by a particular role. For each control concept,
there is a set of activities, each of which is operated upon
by that control.

Figure 2. Workflow step represented by conceptual
graphs

���

Formal Analysis of Workflows in Software Development

they may be better understood and analyzed. This
section suggests the main area where current work-
flow descriptions are lacking. We will restrict our
current attention to one task in software engineering;
namely, bug tracking. The goal of this section (and
of this chapter) is not restricted to this particular
process, however; it is our way of illustrating the
various uses of formal models in general.

This section illustrates the four goals given in
the introduction. First we show how models can be
used to describe software engineering processes.
Next we show how models can be used to analyze
particular software engineering processes and tools
for their completeness and understandability. Then
we show how models can be used to compare mod-
els to one another, in this case a prescribed process
model vs. a model of the actual practice. Finally we
offer an example of how definitions can be created
from formal process models.

describing software engineering
Workflows

This section illustrates how formal models are used
to describe software engineering workflows. We
chose bug tracking as a typical activity in software
engineering.

Bug tracking can be viewed as one kind of
problem resolution process. The software engineer-
ing community has established standards for such
processes, as exemplified in ISO/IEC 12207 (ISO/
IEC, 1996). In this section of the chapter, we first
describe some generic problem resolution process
steps using the workflow models developed previ-
ously, then we briefly describe the 12207 process,
and summarize the bug tracking processes supported
by Bugzilla, a well-known software development
tool set. Although primarily known as a tool (not
a methodology), its description implies a process
to be followed when using the tool’s bug tracking
features. In this section, formal models are shown
for the ISO/IEC 12207 process and Bugzilla.

The first thing that one notices in studying
the bug tracking capabilities of existing tools and
processes is that there is generally no explicit set of

roles which are defined in the process. Of course,
the mere existence or use of a tool never guarantees
that it will be used effectively or even correctly;
however, most tools seem implicitly geared toward
a particular change control process. Some of them
appear to imply certain roles, while others appear
role-neutral.

Requirements modification may also be seen as
a problem resolution process, but of a different sort.
In bug tracking, problems are explicitly identified
by testers or users; in requirements modification,
problems are usually identified through analysis. In
either case, once the problem is identified, certain
steps are performed in the resolution of the prob-
lem. In most descriptions of workflows, some key
pragmatic knowledge is either left implicit or not
even considered. This chapter’s approach models
the workflow so that some of that implicit pragmatic
knowledge can be filled in.

First we will illustrate the kind of knowledge that
is often omitted in descriptions of workflows, even
when they appear to be well defined. The tools in
sourceforge, for example, include a bug tracker. A
tracked bug using sourceforge’s tracker has the fol-
lowing attributes: assignee, status, category, group
and description. Note that few of the attributes have
any reference to persons or roles’ responsibilities
in software development.

• Assignee: The project administrator to which
a tracker item is assigned. Can be chosen from
one of the administrators registered in this
project.

• Status: This is the (potentially changing) cur-
rent status of a bug. The online help says:

 You can set the status to ‘Pending’ if you are
waiting for a response from the tracker item
author. When the author responds the status
is automatically reset to that of ‘Open’. Oth-
erwise, if the author doesn’t respond within
an admin-defined amount of time (default
is 14 days) then the item is given a status of
‘Deleted’.

 This provides the beginnings of a primitive
set of definitions for the possible status values,

 ���

Formal Analysis of Workflows in Software Development

and perhaps implies a particular workflow,
however unstated.

• Priority: a nine-level scale.
• Category: “project-specific”.
• Group: “project-specific”.

The list of sourceforge’s bug attributes clearly
illustrates one of the major hurdles for practitioners
in developing systems using existing tools: there
is no structure or process guidance provided! To
be sure, sourceforge’s organizational goal is not to
develop or impose specific processes, so one of its
goals is to ensure as much flexibility as possible.
Our approach likewise does not require complete-
ness or assess quality; our main purpose here is to
show how the approach can be used to analyze and
evaluate different specified processes.

The attributes of “category” and “group” are
good examples of this: each project administrator
can choose them based on their own preferences. The
downside of this approach is that the automated bug
tracker has no capability to relate them to each other,
to accommodate constraints between particular
categories, groups or values of the other attributes
(except for the ability to search each list by value).
For example, are “category” and “group” orthogonal
to each other, or is a group a sub-category, etc.?

We point out that software development is not
alone in lacking clear organizational responsibili-
ties for various activities in a process. This section
describes our model of an organizational process
(including an ontology) and later we will show how
to model roles in a formal way. As an illustration, we
give general models for two bug-tracking activities:
reporting and repairing.

We adopt Figure 8 as a description of a general
workflow step with some pragmatic knowledge.
Note the inclusion of the concept Intention with
respect to a role in the process. This concept is
lacking in previous models, which simply showed
the obligations (required, allowed, prohibited) as the
deontic effect assigned to a particular role. Previous
models therefore did not give any indication as to
why a particular role would be given a particular
assignment.

For example, why would a program manager
be required to review a change, or why would a
developer be allowed (but not required) to make a
change? For our future goals, if we want to reason
automatically about roles and their appropriateness
or legitimacy, we must start to model their purpose
and relationship to the system’s development as a
whole. Figure 8 shows a more complete model of a
workflow step. While the language is not great prose,
it captures the essential elements of what the graph
says. More importantly, the graph itself is formal and
we can therefore reason about it automatically.

The model in Figure 3 is meant to emphasize
that a participant’s intentions need to be captured
for each activity in a workflow model, as well as
the status intended for the result(s) of that activity.
(Later, we will propose a more formal idea of what
“status” really means.)

Figure 4 shows a basic ontology for the bug-track-
ing domain. Arrows represent the supertype-of or
is-a-kind-of relationship, in the taxonomic sense.
For example, an Activity is a kind of Process, Ap-
prove is a kind of Activity, and so on. The “QA”
role represents that of Quality Assurance, whose
duties include (among other things) verifying that
processes have been followed. This ontology is taken
from (Delugach, 2007). This constitutes a summary
of the full ontology’s description; all of the types
require definitions, which can be represented using
conceptual graphs. One important point of such
an ontology is to make a clear distinction between
roles, intentions and obligations (deontic effects).
In some organizations, these are lumped together
in such a way that they are difficult to understand
and therefore difficult to adapt for new workflows
and situations.

Figure 5 and Figure 6 illustrate how to model
two typical bug-tracking steps. The point here is that
a formal model can help developers visualize their
process, remind them of their obligations and also
allow process analysts to compare different models
to each other, process vs. practice models, etc.

Note in Figure 5 that the bug report is both
a result of the initiated request and a goal of the
developer’s report activity. This may seem obvious:

���

Formal Analysis of Workflows in Software Development

why would the developer start something if they
didn’t have its result as a goal? Our point in this
chapter is that process descriptions may implicitly
assume this, but they either omit the goal, or the
role, or both. Models can help identify “obvious”
omissions, leaving it to the organization as to what
to do with them.

Figure 6 shows a general template for the process
of fixing a bug.

Our motivation for establishing basic graph
models for these workflows stems from a belief
that by analyzing them, we can identify potential
missing or incorrect elements in existing workflows.
Once the graphs are established, it is necessary to
validate them. One avenue of validation would be
to use conceptual graph tools to scan the wealth of
existing data as advocated in (Ripoche & Sanson-
net, 2006). Examples of natural language sources
are emails, forum posts, program source code com-
ments (Etzkorn, Davis, & Bowen, 2001), and even
identifier names in programs (Etzkorn & Delugach,
2000). The task of validating graphs linguistically
is a significant one, but beyond the scope of this
chapter. We confine ourselves to providing simple
English paraphrases of the graphs as an aid to un-
derstanding and potential validation.

analyzing Particular software engi-
neering Workflows and Tools

We have already suggested some important omis-
sions in typical process models. This section illus-
trates those omissions by showing models of two
bug-tracking processes using the conceptual graph
representation already introduced. We then lead into
a discussion of sourceforge’s status indicator, as a
typical example of an underspecified attribute for
the purposes of process support.

ISO/IEC ���0� Problem Resolution
Process

The problem resolution process of the ISO/IEC
12207 standard is reprinted in Figure 7.

This standard’s process description is shown
so that the reader can note one striking omission:
nowhere does it prescribe who is tasked with any
of the steps or activities! For example, the standard
says “analysis shall be performed” but it does not
state who will perform the analysis. This lack of
specified roles weakens an organization’s ability to
provide appropriate process descriptions, includ-
ing specifying who does what and also providing
reasonable checks and balances for management.
(Incidentally, some technical writers recommend
using “passive voice” which ends up encouraging
the lack of role knowledge.)

Figure 3. Workflow model incorporating intention

There is a role with some level of control (“deontic effect”) over some activity that
the role intends to implement. The activity’s result is an object that is the goal of
the role’s intention. The object has a status.

 ���

Formal Analysis of Workflows in Software Development

Figure 4. Ontology for a role-based analysis of bug tracking

Figure 5. Generic model for reporting a bug

There is a developer who is allowed to initiate a request whose result is a bug
report with status “reported”. The same developer intends to report the bug report
using the request.

There is a developer who is required to execute a revision whose result is a
module with status “fixed”. The same developer intends to repair the module
using the revision.

Figure 6. Generic model for fixing a bug

��0

Formal Analysis of Workflows in Software Development

The ISO/IEC 12207 process’s model of problem
resolution is shown in Figure 8. Compare this graph
to the one in Figure 3. Note that while the deontic
effect of “Required” is present (meaning initiation is
required), there is no role shown that is responsible
for that initiation, nor is there any indication of the
purpose of the problem report or the goal in “han-
dling” it. In short, the model is clearly incomplete,
in ways that could directly impact an organization’s
ability to understand the process and therefore to
implement it reliably in their workflow or audit its
correct implementation.

Bugzilla

The Bugzilla bug tracking process is described in
Figure 14 (taken from Figure 6-1 of the Bugzilla
Guide at http://www.bugzilla.org/docs/3.0/html/).
Note that several of the transitions have no labels,
indicating that while it is possible for a bug to follow
that transition, there are no constraints on when or
how that transition is permitted. As in most other
descriptions of these kinds of workflows, there is
little guidance as to who is authorized to change the
status of a bug. One might assume that the “owner”
of a bug is authorized to change its state, but even
in that case there is little organizational support
for the reasons or circumstances under which the
change is legitimate. For example, what does “un-
confirmed” mean? The owner could simply mark a
bug as “unconfirmed” if they did not want to deal
with it at the moment, or the owner could engage in
a detailed exploration and be unable to reproduce
the bug, or perhaps the owner just hasn’t had time
to check out the bug yet.

In short, participants in a given software develop-
ment workflow need a set of guidelines, constraints,
operating procedures, etc. that govern what these
status values mean. In a more sophisticated process,
there would be procedures for changing/augment-
ing the set of status values as the team gains more
experience.

The Bugzilla process is somewhat more com-
pletely defined than in the ISO/IEC 12207 process.
Using Figure 9 as a basis, we can describe the model

formally as shown in Figure 10. Again compare this
graph to the one in Figure 3.

Note that the Bugzilla model, while still rather
informal, does in fact include much of the vital
pragmatic knowledge needed for an organization to
implement the process. Roles are shown in several
places, and verbs indicated activities are also shown.
“Ownership” and “possession” are not specifically
represented in the process models, but does seem
to suggest a “required” obligation of some sort. In
summary, Bugzilla’s process appears more complete
than the ISO/IEC one in.

This section showed clearly the lack of role and
goal knowledge in workflow descriptions, as well as
illustrating the need for such knowledge. Again, it is
not the purpose of this chapter to prescribe particular
roles or to tell organizations how to assign them;
the purpose is merely to call attention to the need
for a clear set of roles and descriptions.

comparing software engineering
Workflows

Models can be also be used to compare prescribed
process descriptions and observed practice de-
scriptions. This section describes an earlier study
performed by Aldo de Moor and myself using a
conceptual model to evaluate an existing industrial
development process. The study itself was described
in (Delugach & de Moor, 2005) and (de Moor &
Delugach, 2006); the results are summarized here
to illustrate some of the benefits of formal process
modeling. This example is different from the previ-
ous ones in that the developers were cognizant of the
roles involved in their processes and used the above
framework to specify two models: (i) their prescribed
process from their development guidelines, and (ii)
their actual practice instantiated with the names of
their actual developers. As we will see, there were
some significant differences between them.

Our example was based on a detailed study of a
small-sized internal software development group
that develops and maintains aerospace software.
This particular group is characterized as small
(10-20 persons), necessitating multiple roles per

 ���

Formal Analysis of Workflows in Software Development

Figure 7. ISO/IEC 12207 problem resolution process

There is an initiate process that is required for handling a problem report
which has a status.

Figure 8. Model for standard problem resolution process

person, with little duplication or cross training of
roles, some occasional role re-assignment, and (we
discovered) implicit accumulating adaptations of
the official process in practice.

Software development in this group is project-
based; we compared its prescribed process and actual
practice models. Space does not permit us to show
our complete model of a software process; we fo-
cused on one small part: namely, this organization’s
activity of creating and approving changes to the
requirements.

The graphs resulting from this study consisted of
a few dozen nodes each. One of them is reproduced
here to show the practicality of these models as
well as to illustrate the complexity that can arise
in even a short process with simple steps. Figure 11
shows the instantiated model of a particular small
team’s software requirements change process. Each
step has an Initiate, Execute or Evaluate activity,
with its accompanying role(s), objects and results.
There is a new feature of conceptual graphs shown
in the model of Figure 11—a dashed line connects

���

Formal Analysis of Workflows in Software Development

Figure 11 shows several steps in sequence, each
with a resulting artifact (e.g., Change_Request)
that is then used by succeeding steps (e.g., relations
“uses” and “object”). For example in the first step,
a software engineer “Jerry” is permitted to initiate
a MakeRequest activity and also to execute that
same activity, which results in an “Evaluate” activity
which the software lead “Terry” evaluates, and so
on. The purpose of this (large) example is twofold:
it is a good example of a usable conceptual graph
and it shows the large number of relationships in a
typical process.

Note that this process model appears more com-
plete than the previous ones in that it does show both
roles and their deontic effects. This is an intentional
result of the acquisition process by which the model
was obtained. A manager was interviewed, with the
purpose of explicitly recording roles. For each step,
therefore, the manager was asked who did what
and what was their deontic role. It is worth noting
that the mere asking of these questions would oc-
casionally provoke some thought in the manager
about the precision of his process description. Once
the prescribed process and actual practice graphs
were manually obtained, an automated comparison
produced a small list of differences, but those dif-
ferences were significant from a process-oriented
viewpoint.

Figure 12 highlights a key difference between
the workflow models. The highlighted portions are

Figure 9. Bugzilla bug tracking process

There is a developer who is required to initiate a development that will imple-
ment their intention to complete a bug report. The development’s result is a
bug report with status “resolved”.

Figure 10. Bugzilla bug tracking process model

several concepts to each other. This dashed line is
called a “co-referent link” or a “line of identity”
indicating that the joined concepts refer to the
same individual. (This gives the ability to identify
individuals without necessarily using exact names.)
This is especially important when considering roles,
since the lines indicate that the same person serves
multiple roles.

 ���

Formal Analysis of Workflows in Software Development

in white, with the rest of the graph “grayed out”.
Differences are apparent between how requirements
engineers (RE’s) are modeled. The prescribed
process model on the left—Figure 17(a)—shows
a notEqual relation between the RE who writes
the requirement and the RE who incorporates the
requirement into the formal requirements document.
This represents the prescribed process constraint
that the RE who writes the requirement and the one
who incorporates the requirement into the document
should be two different people. In the actual practice

model on the right—Figure 12(b), however, the RE
who produced the requirement (we name them *r)
is also the same person (referred to as *s) who in-
corporated the requirement into the formal software
requirements, a situation that is disallowed due to
the notEqual relation in the process model.

The point here is that the separation of roles
(i.e., the explicit notEqual relation) specified in
the prescribed process model represents an explicit
prohibition, whereas in practice this separation
of roles did not occur. This occurred because the

Figure 11. A requirements modification process model instantiated with individuals

���

Formal Analysis of Workflows in Software Development

same developer (“Jerry”) had more multiple roles
in the (small) team that happened to coincide for
this particular workflow.

Whenever comparisons between models are
made, there is always a question about how to pro-
ceed: if there is a discrepancy, something is wrong,
but what? Which model should be changed? Or
should both be changed? Our technique does not
prescribe a definitive answer solely from the models;
it is up to actual participants such as the software
managers and developers to interpret and analyze
the comparisons.

Forming Definitions Based on Formal
models

This section of the chapter describes another value
in using a model; namely, developing definitions of
concepts based on their process relationships. We
consider the concept of “status” which often appears
in tracking and management artifacts. The particular
notion of a bug’s status is an interesting one. As
one educator reported using the sourceforge tools,
“if the phrases describing subtask status are not
defined, different student teams often give different
meanings to the same phrase. Even worse, some-
times, different members in the same team would
interpret the same phrase differently.” (Liu, 2005).
They identified the need to define status phrases
indicating which role and workflow are involved;
e.g., the status “Ready for Review” meant ready to
be reviewed by the quality assurance (QA) role on
the team. A better way to name this would be an
explicit “Ready for Review by QA” status.

Another way to envision status as a working
concept is to approach it from the perspective of its
relationships to the concepts in a given workflow:
an item’s status reflects the process that produced it,
not some arbitrary choice from a pull-down menu.
So a more accurate and useful definition of status
would look something like Figure 13.

This representation shows status not as an
independent attribute but instead as a dependent
attribute—dependent on the process that produced
it. This example illustrates another power of con-

ceptual graphs—the graph contains a context that
allows the modeling of feature clusters. In this case,
a definition is described in terms of workflow step
features. One can easily envision that, given adequate
definitions in a formal model, some characteristics
of a process (e.g., “status”) would not have to be
explicitly stated by participants—they could be
derived by observing the current workflow step.
This one example is meant to suggest one clear
advantage of formal models in their being able to
support automatic logical inferences, which is a
subject of future research.

summary

This chapter was intended as an illustration using
formal models of process concepts to describe,
analyze, compare and reason about some software
development processes. Because most workflow
definitions provide only vague (or absent) roles,
responsibilities and managerial duties may also
be vague. For example, most existing tools do not
address the issues of why someone is authorized
(or not) to make a change to an item’s status, so it
is possible for the status of items to be inconsistent
with whatever process the software’s developers are
supposed to follow.

The advantages of using conceptual graphs to
represent the workflows are (i) conceptual graphs
have the potential to be formally manipulated and
compared, and (ii) they provide an easily understood
visual description of the process for developers and
analysts. In one requirements modification exercise
based on this approach, the models’ comparison
led to a specific potential weakness in the current
workflow, toward which a manager was able to focus
effort to correct.

For bug-tracking in particular, the subsequent
process of how to actually correcting the defects
identified during the process, with duties and re-
sponsibilities assigned to appropriate roles, is an
interesting area to study further, since it involves a
superset of the same roles involved in problem track-
ing. Obviously it will be useful to compare different

 ���

Formal Analysis of Workflows in Software Development

organizations’ processes to find common features,
and (likely) missing features; this is a natural next
step. It will also be useful to identify where the
processes actually conflict with each other. This last
issue becomes quite relevant as companies’ products
and personnel are merged with other companies’
products and personnel.

Using formal models is an important aspect
in workflows: models help us conceive, develop,

describe, evaluate and compare workflows in
system development. This chapter described one
technique for representing workflows that is capable
of accomplishing all these purposes, with the hope
that researchers and practitioners will ultimately
benefit.

Figure 12. Comparing a prescribed process (a) and an observed process (b) model

(b)(a)

���

Formal Analysis of Workflows in Software Development

reFerences

de Moor, A. (1997). Applying Conceptual Graph
Theory to the User-Driven Specification of Network
Information Systems. In D. Lukose, H. S. Delugach,
M. Keeler, L. Searle & J. F. Sowa (Eds.), Conceptual
Structures: Fulfilling Peirce’s Dream, LNAI Vol.
1257, pp. 536-550): Springer-Verlag.

de Moor, A., & Delugach, H. (2006). Software
Process Validation: Comparing Process and Prac-
tice Models. Eleventh Intl. Wkshop on Exploring
Modeling Methods in Systems Analysis and De-
sign (EMMSAD ‘06). In conjunction with 18th
Conf. on Advanced Information Systems Engr.,
Luxembourg.

de Moor, A., & Jeusfeld, M. (2001). Making Work-
flow Change Acceptable. Requirements Engineer-
ing, 6(2), 75-96.

Delugach, H., & de Moor, A. (2005). Difference
Graphs. In F. Dau, M.-L. Mugnier & G. Stumme
(Eds.), Common Semantics for Sharing Knowledge:
Contributions to ICCS 2005 (pp. 41-53). Kassel,
Germany: Kassel University Press.

Delugach, H. S. (1992). Specifying Multiple-Viewed
Software Requirements With Conceptual Graphs.
Jour. Systems and Software, 19, 207-224.

Delugach, H. S. (1996). An Approach To Conceptual
Feedback In Multiple Viewed Software Require-
ments Modeling. In Viewpoints 96: International
Workshop on Multiple Perspectives in Software
Development (pp. 242-246). San Francisco.

Delugach, H. S. (2006). Active Knowledge Systems
for the Pragmatic Web. In M. Schoop, A. de Moor
& J. Dietz (Eds.), Pragmatic Web: Proc. of the
First Intl. Conf. on the Pragmatic Web (Vol. P-39,
pp. 67-80). Stuttgart, Germany: Gesellschaft für
Informatik.

Delugach, H. S. (2007). An evaluation of the
pragmatics of web-based bug tracking tools. In
Buckingham Shum, S., Lind, M. and Weigand, H.,
(Eds).Proc. 2nd Intl. Pragmatic Web Conf., 22-23
Oct. 2007, Tilburg: NL. ISBN 1-59593-859-1 &
978-1-59593-859-6. ePrint Archive: http://oro.open.
ac.uk/9275, pp. 49-55.

Etzkorn, L., & Delugach, H. (2000). Towards a
semantic metrics suite for object-oriented design.
Proceedings of the34th International Conference

A bug report with status “reported” is defined to be a bug report where a
developer has imitated a request for the bug report, and that same developer
intends that request to report a bug.

Figure 13. Status defined as a derived concept

 ���

Formal Analysis of Workflows in Software Development

on Technology of Object-Oriented Languages and
Systems, (pp. 71-80).

Etzkorn, L. H., Davis, C. G., & Bowen, L. L. (2001).
The language of comments in computer software:
A sublanguage of English. Journal of Pragmatics,
33(11), 1731-1756.

ISO/IEC. (1996). ISO/IEC 12207-0:1996, Standard
for Information Technology - Software life cycle
processes.

Levinson, W. A., & Rerick, R. A. (2002). Lean
Enterprise: A synergistic approach to minimizing
waste: Amer. Soc. for Quality Management.

Liu, C. (2005). Using Issue Tracking Tools to Fa-
cilitate Student Learning of Communication Skills
in Software Engineering Courses. 18th Conference
on Software Engineering Education and Training
(CSEE\&T), Ottawa, Canada, April.

MCO-MIB-I, Mars Climate Orbiter Mishap Investi-
gation Board, Phase I Report, Nov. 10, 1999, National
Aeronautics and Space Administration.

Polovina, S., & Heaton, J. (1992). An Introduction
to Conceptual Graphs. AI Expert, (pp. 36-43).

Pressman, R. S. (2001). Software Engineering:
A Practitioner’s Approach (5th ed.). New York:
McGraw-Hill.

Ripoche, G., & Sansonnet, J. P. (2006). Experi-
ences in Automating the Analysis of Linguistic
Interactions for the Study of Distributed Collectives.
Computer Supported Cooperative Work (CSCW),
15(2-3), 149-183.

Scacchi, W. (2002). Understanding the requirements
for developing open source software systems.” IEE
Proc.-Softw., 149(1), 24--39.

Sowa, J. F. (1984). Conceptual Structures: Infor-
mation Processing in Mind and Machine. Reading,
MA: Addison-Wesley.

key terms

Conceptual Graphs: A knowledge modeling
approach based on semantic networks and first-order
logic, first introduced by Sowa, whereby knowledge
is represented by concepts and relations linked
together in a bipartite graph.

Deontic Effect: A feature of an activity assign-
ing to it some role’s obligations, such as whether the
role is required to perform the activity, permitted
(but not required) to perform it, or prohibited from
performing it.

Formal Model: Any model with well-formed
syntax and semantics, such that it is amenable to
systematic (usually automatable) processing and
analysis subject to logical rules.

Process Model: Any description of a process
(not necessarily formal), that shows a series of steps
aimed at accomplishing some goal.

Requirements Change Process: A systematic
series of steps by which changes to formal software
requirements are identified, evaluated, approved
and incorporated.

Software Development Process: The overall
process of software development, from initial in-
ception through analysis, design, implementation,
test and deployment.

Software Issue Tracking: Also called “bug
tracking”; a process by which issues (errors, defects,
faults, problems) in some software component are
identified, evaluated, analyzed, authorized and
implemented.

Workflow Model: A process model specifically
aimed at representing a development process, as
opposed to an algorithm or program.

